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Abstract
Acute pancreatitis (AP) is one of the most common dis-
eases of the gastrointestinal tract, bearing significant 
morbidity and mortality worldwide. Current treatment 
of AP remains unspecific and supportive and is mainly 
targeted to aggressively prevent systemic complications 
and organ failure by intensive care. As acute pancreati-
tis shares an indistinguishable profile of inflammation 
with sepsis, therapeutic approaches have turned to-
wards modulating the systemic inflammatory response. 
Targets, among others, have included pro- and anti-
inflammatory modulators, cytokines, chemokines, im-
mune cells, adhesive molecules and platelets. Even 
though, initial results in experimental models have 
been encouraging, clinical implementation of immune-
regulating therapies in acute pancreatitis has had a 
slow progress. Main reasons include difficulty in clinical 
translation of experimental data, poor understanding 
of inflammatory response time-course, flaws in experi-
mental designs, need for multimodal approaches and 
commercial drawbacks. Whether immune-modulation in 
acute pancreatitis remains a fact or just fiction remains 
to be seen in the future.
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Core tip: Acute pancreatitis is a common entity with 
significant mortality worldwide. Treatment remains 
non-specific and mainly supportive, mostly focusing on 
intensive care. Presence of inflammatory response syn-
drome during AP has driven recent immune-modulating 
therapeutic attempts in experimental models, including 
cytokine, chemokine, immune cell and other inflamma-
tory mediator blockade. Although initial data are promis-
ing, translation to clinical routine has been less encour-
aging. The authors attempt to elucidate whether and to 
what extent tampering with the immune burst triggered 
by acute pancreatitis could actually ensure better out-
comes, or that remains a farfetched expectation.
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INTRODUCTION
Acute pancreatitis (AP) is a common disease, posing a 
tremendous burden in health care systems globally[1,2]. 
The incidence of  AP varies between 4.9 and 73.4 cases 
per 100000 worldwide[3,4]. Progression to multiple organ 
dysfunction syndrome (MODS), as a consequence of  
the systemic inflammatory response syndrome (SIRS) 
represents a major contributor to high mortality in the 
early phase of  the disease[5,6]. Consequent breakdown of  
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intestinal integrity, bacterial translocation and increased 
infection risk can further complicate outcome in the late 
phases of  AP[7-9].

Current treatment of  AP remains non-specific and 
supportive and is mainly targeted to aggressively prevent 
systemic complications by intensive care. During the last 
decade, a number of  new therapeutic modalities have 
changed the management of  acute pancreatitis, including 
enteral feeding in severe AP, the use of  early antibiotic 
treatment in necrotizing pancreatitis and therapeutic en-
doscopic retrograde cholangiopancreatography (ERCP) 
with endoscopic sphincterotomy in severe biliary pancre-
atitis[10,11]. However, although the case fatality rate for AP 
has decreased over time, the overall population mortality 
rate has remained unchanged[12].

Recent data has come to show that in the early phase 
of  AP, excessive leukocyte activation and consequent in-
flammatory mediator release are critical for development 
of  early organ failure[13-16]. As a result, current experimen-
tal and clinical research has been driven by the need to 

inhibit the systemic inflammatory reaction thus; prevent 
the development of  MODS. This article attempts to criti-
cally review recent data on immune-modulating strategies 
in AP. 

LOCAL AND SYSTEMIC INFLAMMATION
Pancreatic self-digestion
Acute pancreatitis represents an inflammatory disorder; 
hence, a complex cascade of  immunologic events affects 
disease pathogenesis and progression. Alcohol and gall-
stones remain the major etiologic factors of  AP. Irrespec-
tive of  the cause, triggering events lead to premature acti-
vation of  pancreatic proteases, as a result of  intracellular 
co-localization with lysosomal enzymes[17,18]. An increase 
in intracellular calcium triggers activation of  trypsino-
gen and induces local inflammation[19], further leading to 
auto-digestion, destruction of  the parenchyma and finally 
necrosis of  the pancreas[17,20-23](Figure 1). 

The role of  tumour necrosis factor alpha (TNF-α) 
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Figure 1  Schematic representation of innate and adaptive immune response mechanisms implicated in acute pancreatitis. Triggering factors initiate trypsino-
gen activation and pancreas autophagy. Damaged acinar cells release damage-associated molecular pattern molecules (DAMPs) and pro-inflammatory mediators 
attracting leukocytes at the site of inflammation. Leukocyte activation leads to increased leukocyte aggregation through increased expression of adhesion molecules 
and tissue infiltration within the microcirculation. There, these cells increase production of cytokines and other inflammatory mediators including prostaglandins, leukot-
rienes, thromboxanes, platelet activating factor (PAF), free radicals, nitric oxide and proteases. These substrates increase vascular permeability resulting in neutrophil 
extravasation and activation, oedema and microvascular disturbances which eventually lead to lack of oxygen and tissue injury. Pro-inflammatory mediators contribute 
to failure of intestinal barrier function and translocation of intestinal microflora or their products into the vascular bed. Neu: Neutrophil; AC: Acinar cell; Mo: Monocyte; 
Ma: Macrophage; ICAM-1: intercellular adhesion molecule 1; ROS: Reactive oxygen species; VCAM-1: Vascular adhesion molecule 1; TNF-α: Tumour necrosis factor 
alpha; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; IL: Interleukin; CXCL: C-X-C motif chemokine; CCL: Chemokine (C-C motif) ligand; PLT: 
Platelet; TLR: Toll like receptor; LPS: Lipopolysaccharide; LFA: Lymphocyte function associated antigen; Mac-1: Macrophage-1 antigen.
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in the potential activation of  pancreas polypeptide and 
nuclear factor kappa-light-chain-enhancer of  activated 
B cells (NF-κB)[24] has been recently investigated[25-29]. 
Whether there is a link between pancreatic NF-κB and 
trypsinogen activation remains controversial[27]. However, 
it seems that these processes may be unrelated and may 
both contribute to inflammation, possible through reac-
tive O2 species (ROS) mediation and calcium (Ca2+) sig-
nalling[30,31] (Figure 1). 

At this stage, it appears that the autophagy machinery 
interfaces with various cellular stress-response pathways 
including those involved in immune response and in-
flammation, entailing among others direct interactions 
between autophagy proteins and immune signalling mol-
ecules[32-34]. This complex interplay modulates both the 
induction and suppression of  immune and inflammatory 
responses and vice versa, while it seems that the same genes 
that regulate autophagy are involved in xenophagy[35,36]. 
In this respect, a potential protective role for interleukin 
(IL)-22 against the autophagic pathway in pancreatitis is 
currently under investigation[37]. 

Leukocyte activation and cascade reaction
Endogenous molecules released as a result of  tissue in-
jury, referred to as damage-associated molecular patterns 
represent primary activators of  the immune system[38-40]. 
Among those, high mobility group box 1 (HMGB1) 
protein, a nuclear DNA binding protein[41-43], has been 
recently suggested to act as a key mediator for inflam-
mation and organ failure in AP[44-46]. Pancreatic-derived 
intracellular HMGB1 limits the severity of  the disease by 
protecting cells from NF-κB activation, DNA damage, 
cell death, and release of  nucleosomes from injured aci-
nar cells[47]. On the other hand, extracellular HMGB1 re-
leased by necrotic cells, can, via members of  the Toll-like 
receptor (TLR) family trigger acute lung injury[48,49] and 
a lethal systemic inflammatory process[50,51]. Extracellular 
HMGB1 can further stimulate the release of  pro-inflam-
matory cytokines including TNF-α and IL-1β by induc-
ing nuclear translocation of  NF-κB and conversely, the 
pro-inflammatory cytokines can control further release 
of  HMGB1 into the extracellular space (Figure 1)[52-54] .

Activated acinar cells also secrete pro-inflammatory 
factors including C-X-C motif  chemokine (CXCL) 10, 
Chemokine (C-C motif) ligand 2 also referred to as 
monocyte chemotactic protein-1 (MCP-1), IL33[55,56], 
platelet activating factor (PAF), TNF-α and IL-1β lead-
ing to migration of  monocytes and neutrophils into the 
pancreas[57,58]. Neutrophils are specifically activated by 
CXCL-1 and CXCL-2 (also called macrophage inflam-
matory protein 2-alpha, MIP2-α), while monocytes, eosi-
nophils and T-cells are activated by CCL-2 (MCP-1) and 
CXCL-10[59] (Figure 1). However, monocyte and mac-
rophage populations involved in AP are heterogeneous, 
with great phenotypic and functional plasticity[60]. Re-
cently, a subtype of  monocytes that derive from the bone 
marrow and express TNF-α has been identified, which 
appears to determine pancreatic oedema and acinar cell 

injury/necrosis[61]. T cells are also present in smaller num-
bers in the inflamed pancreas and appear to be necessary 
for progression of  AP[62]. As AP progresses, changes in 
the number and ratio of  CD4+ and CD8+ T cells has 
been noted, probably because CD4+ T cells contribute 
to activation of  macrophage via antigen presentation and 
release of  inflammatory cytokines[63]. In contrast to total 
depletion of  CD4+ T cells, and consistent with functional 
heterogeneity of  CD4+ T cells, recent data indicate that a 
subset of  CD4+ IL22+ T cells likely protects against AP 
in mice, even though exact mechanisms remain elusive[64].

The magnitude of  the inflammatory process is am-
plified following further secretion of  inflammatory 
mediators by infiltrating immune-associated cells[65-67], 
and over-expression of  adhesion molecules including 
intercellular adhesion molecule 1 (ICAM-1) and vascu-
lar adhesion molecule 1[68,69].The latter represent ligands 
for lymphocyte function-associated antigen 1[70] on leu-
kocytes and lymphocytes, αLβ2 and CD11a-CD18 on 
monocytes and integrin macrophage 1 antigen (Mac-1) 
on neutrophils, while their secretion is promoted by ROS 
generation and TNF-α itself  (Figure 1)[71-73]. Notably, 
ICAM-1 deficiency and systemic depletion of  neutrophils 
were each shown to reduce the severity of  AP and lung 
injury[71].

Bacterial translocation
Except for regulation of  cellular apoptosis, TNF-α was 
shown to increase intestinal paracellular permeability, by 
affecting tight junctions[74] and facilitating bacterial trans-
location from the epithelium[75]. It has been suggested 
that, pathogen-associated molecular patterns derived 
from the intestinal micro flora activate the host innate 
immune system via pattern recognition receptors, such 
as TLRs and nucleotide-binding domain and leucine-rich 
repeat-containing molecules[76] (Figure 1). Activation of  
TLRs and nucleotide-binding domain and leucine rich 
repeat-containing molecules likely mediates the mecha-
nism by which bacterial translocation leads to severe 
AP. Consistent with this, mice that lack TLR4 develop 
less severe forms of  AP[77], and polymorphisms in TLR 
genes have been associated with susceptibility to AP[78,79]. 
Interestingly, up-regulation of  TLR4 has been associated 
with increased expression of  TNF-α in peripheral blood 
mononuclear cells during early stages of  AP[80].

Pancreatic microcirculatory disturbance
Various molecules and mechanisms appear to complete 
the full spectra of  manifestations in AP, mainly attributed 
to microcirculatory disturbance including nitric oxide, 
endothelin, oxygen free radicals, bradykinin, prostaglan-
din I2 and endothelin[81]. Inflammatory mediators induce 
microcirculatory disturbance mainly through increasing 
capillary permeability and decreasing capillary blood flow 
velocity (such as ICAM-1), promoting the contraction of  
arteries and veins (such as endothelin), as well as, promot-
ing platelet aggregation and inducing thrombosis (such as 
PAF and TXA2). In the latter case, PAF exerts its biologi-
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(CARS)[96]. Even though, CARS may be sufficient to 
control SIRS and ensure favourable prognosis, excessive 
CARS may be overwhelming, leading to immune defi-
ciency or suppression, which renders the host susceptible 
to secondary infections[97]. Increased serum concentra-
tions of  anti-inflammatory mediators including IL-10, 
IL-11, TNF-α receptors, and IL-1 receptors antagonist 
(IL-1ra) have been demonstrated in AP[98-102]. In immune-
suppression monocytes are characterized by a significant-
ly decreased human leukocyte antigen antigen-DR (HLA-
DR) expression, process mostly attributed to IL-10 
production[103]. Along with consequent impaired antigen 
presentation[104,105], monocytes show a profound reduction 
of  their ability to produce pro-inflammatory cytokines 
e.g., TNF-α[106,107], facts associated with development of  
secondary infections[97] and organ failure[108,109]. IL-1ra and 
IL-6 are also important anti-inflammatory cytokines. IL1-
ra blocks IL-1 mediated responses[110] while IL-6 appears 
to prevent synthesis of  IL-1β and TNF-α[111]. 

THE STORY OF IMMUNE-MODULATING 
THERAPIES: FACT...
Following understanding that, outcomes of  our patients 

cal activity through binding to its specific receptors on 
the surface of  leukocytes, endothelial cells and platelets 
leading to microcirculatory disturbance in AP[82-85] (Figure 
1). Furthermore, an increasing body of  evidence reveals a 
pro-inflammatory role of  platelets except for their estab-
lished function in thrombosis and haemostasis[86-88]. Dur-
ing AP, data have come to show that platelets regulate 
neutrophil accumulation in the pancreatic tissue[89], even 
though exact mechanisms underlying platelet dependent 
leukocyte recruitment remain elusive. At the moment 
these mechanisms and various molecules[90], although 
important; surpass the purpose of  this review and will 
not be discussed further. Figure 1 represents a schematic 
summary of  innate and adaptive immune response mech-
anisms implicated in acute pancreatitis.

In mild AP, inflammation is regulated and confined 
by the host’s inflammatory response in the affected area. 
Although, most episodes of  AP are mild, some patients 
proceed to SIRS, as a result of  pro-inflammatory media-
tors’ release into the circulation[91,92], with local and extra-
pancreatic complications[93], including respiratory, renal 
and hepatic dysfunction[94,95]. Systemic inflammation in 
AP is concomitantly associated with rapidly strengthen-
ing compensatory anti-inflammatory response syndrome 

Figure 2  Immune modulating therapies. (1) Target inflammatory response promoting or attenuating anti and pro-inflammatory mediators respectively (recombinant 
cytokine/chemokine administration, cytokine/chemokine antagonists, receptor blockade); (2) ameliorate parenchymal and fatty tissue necrosis of the pancreas [e.g., 
infliximab, blockade of interleukin (IL)-1 receptor, IL-10 blockade, IL-12 suppression, platelet activating factor (PAF)]; (3) alleviate alveolar oedema and development of 
acute respiratory distress syndrome (e.g., infliximab, IL-10 blockade, IL-8 blockade);  (4) correct intestinal barrier and prevent bacterial translocation (e.g., anti-tumour 
necrosis factor, TNF); (5) modulate immune cell response (e.g., stem cell immunosuppressive strategies); (6) impair platelet activation and further immune activation 
(e.g., PAF); and (7) protect against endothelial barrier dysfunction, transmigration of neutrophils and concomitant microcirculatory derangements (e.g., adhesion mol-
ecule blockade). Ma: Macrophage.
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seem to be mostly dependent on pro- as well as, anti-
inflammatory responses; in the last few years, a number 
of  experimental and clinical studies have focused their 
interest in immune regulation during AP (Figure 2).

TNF-α
Recent data in animal models has come to show that, 
TNF-antagonism by either TNF-receptor blockade or 
anti TNF-antibodies protected from local intra-pancre-
atic damage, systemic complications and overall mortal-
ity in the vast majority of  cases[29,112-117]. Administration 
of  infliximab -a monoclonal TNF-antibody- appears 
to decrease serum amylase activity in both acute oede-
matous pancreatitis and severe necrotizing pancreatitis 
in a murine model[118]. In the latter case, a tendency to 
ameliorate both parenchymal and fatty tissue necrosis 
of  the pancreas and alleviate acute respiratory distress 
syndrome-like pulmonary complications, was also noted. 
However, even though TNF-α has been clearly associ-
ated with failure of  intestinal barrier, the latter study 
provided no information upon infliximab’s role on intes-
tinal permeability since bacterial translocation was not 
considered a septic complication. However, previous 
reports that TNF-α blockage appears to correct intestinal 
permeability in people with Crohn’s disease[119], suggests 
that this effect may occur in other types of  disorders and 
could represent a feasible therapeutic option. In a recent 
study, Aydin et al[120] showed that, infliximab administra-
tion 6 h after the induction of  pancreatitis exerted ben-
eficial effects on blood amylase levels and histopathologic 
changes in experimental necrotizing pancreatitis, while 
significant decrease in the degree of  BT was noted. Even 
though, premature administration of  anti-TNF 6 h post 
pancreatitis induction was beneficial, previous reports 
support that a prophylactic design starting the treatment 
before the induction could be superior, while the protec-
tive effect of  TNF-antagonism on disease severity and 
mortality was still observed after the systemic effects 
had developed[116]. To date, no study has been conducted 
investigating TNF-a impact in clinical acute pancreatitis 
except for an isolated report in a patient with Crohn’s dis-
ease complicated with acute pancreatitis[121]. Interestingly, 
favourable outcome was observed following infliximab’s 
administration. However, data from two phase Ⅲ sepsis 
trials[122,123] sharing an indistinguishable profile of  inflam-
matory mediators with AP, have not been that optimistic. 
The use of  an anti-TNF antibody in patients with sepsis 
failed to reduce 28-d mortality, suggesting that previous 
results from experimental studies or anecdotal reports 
should be interpreted with caution.

Cytokines
As previously described, pro-inflammatory cytokines 
such as IL-6, IL-1 and TNF are released in acute pan-
creatitis, while their plasma level correlates well with the 
severity of  the disease and the occurrence of  multi-organ 
failure[124-126]. By contrast, anti-inflammatory mediators 
such as IL-10, appear to mitigate the effects of  inflam-

matory response and their level seems to be inversely 
proportional to the severity of  pancreatitis[127,128]. 

IL-1: As observed for TNF, organ-specific expression 
of  IL-1 is an early feature in experimental acute pan-
creatitis and is found in both the pancreas and distant 
organs[129,130]. Blockade of  the IL-1 receptor by either 
targeted genetic disruption or pharmacological agents 
uniformly reduced the extent of  intra-pancreatic damage, 
systemic complication, and mortality, similarly to TNF-α 
blockade[131-135]. Alternatively, the approach of  inhibiting 
caspase-1, formerly termed interleukin 1β-converting 
enzyme (ICE) has been explored. Targeting ICE activity 
by a specific synthetic inhibitor dramatically attenuated 
both severity and mortality irrespective of  the model 
used[136-139]. Interestingly, severity and mortality were still 
reduced even when a therapeutic window of  12 h follow-
ing induction of  severe acute pancreatitis was allowed[137]. 
Similarly to TNF-α, implementation of  experimental 
findings to the clinical setting has been controversial. 
Even though, a post hoc analysis of  a controlled trial 
of  human recombinant IL-1ra in patients with sepsis 
showed a trend towards increased survival in patients 
with MODS[140], this observation could not be confirmed 
in a subsequent trial[141]. Technical reasons concerning the 
optimal dosage, duration and in vivo activity of  the anti-
body could be responsible for these discrepancies [142].

IL-10: IL-10 - irrespectively of  whether its activity has 
been blocked or augmented -has been shown to exert a 
protective effect in several models of  acute pancreatitis in 
the past[143-149]. Cytokine manipulation appeared to signifi-
cantly ameliorate organ specific damage in the pancreas 
and peripheral tissues, including the lung and the liver, 
while mortality was significantly reduced. Interestingly, 
IL-10 protective effect was still observed even when 
intervention occurred therapeutically after acute pan-
creatitis had already been induced[144,145,149]. However, this 
data has not been confirmed in the clinical setting. No 
significant differences were detected between IL-10 and 
placebo administration within 36 h of  onset of  symp-
toms, in days of  hospital stay, CT scan score, organ fail-
ure score and local complications[150]. Conflicting results 
have come to light from randomized double-blind studies 
regarding the ability of  IL-10 to prevent ERCP–induced 
AP. In his study, Devière et al[149] reported that, IL-10 de-
creased the incidence of  post-ERCP pancreatitis, as well 
as, the length of  hospital stay independently from other 
risk factors. This was not confirmed by a later American 
trial in which only a trend towards and not a significant 
decrease in the former parameters was noted[151]. A recent 
meta-analysis including patients receiving recombinant 
IL-10 or placebo before ERCP could show that, IL-10 
significantly reduces the risk of  post-ERCP pancreati-
tis[152]. Whether IL-10 treatment can ultimately prevent 
post-ERCP still remains under investigation.

IL-2: In contrast to the late effects of  IL-2 deficiency 
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and immune-paralysis, the excessive IL-2 mediated T-cell 
response during the early course of  the disease can be 
deleterious[62,153-157] Following transcriptional regulation 
by administration of  the FK506 agent which inhibits 
IL-2 production, decreased early local and systemic dis-
ease severity was noted even when given in a therapeutic 
fashion[155]. Similarly, early data have come to show that, 
sirolimus, an immune-modulatory agent, acting through 
inhibition of  response to IL-2, thereby blocking activa-
tion of  T and B cells, reduces acute pancreatic damage 
in the first week and less chronic changes in the further 
course of  disease[157]. However, opposite results were 
shown by other studies. FK506 administration signifi-
cantly worsened survival in diet-induced murine pancrea-
titis[156] while potentiation of  IL-2 production through 
levamisole administration effectively decreased the inci-
dence of  pancreatic infections in a cat model of  severe 
acute pancreatitis[153].

IL-18: IL-18 or interferon-inducing factor represents a 
novel key regulator of  Th-1 response, through its ability 
to induce IFN-production in T and natural killer cells[158]. 
Scarce data on this interesting cytokine have shown that 
intra-pancreatic damage was decreased more effectively 
following neutralization of  IL-18 activity by monoclonal 
antibodies than neutralizing IL-1 activity in cerulein-
induced pancreatitis in mice[159]. Further research in IL-18 
and its role during AP is currently in progress.

IL-6: Despite the numerous clinical studies investigat-
ing the role of  IL-6 in the development of  inflammatory 
syndrome, unfortunately only few reports have examined 
the role of  this interleukin as potential target for modu-
lating disease severity. Even though, IL-6 has been found 
to be a good predictor in predicting pancreatitis associ-
ated complications, including organ failure[160], limited 
experimental data have revealed that genetic deletion 
or prophylactic inhibition of  IL-6 rather worsened out-
comes than exerted a protective effect on disease severity 
and mortality[161-163].

PAF
Following previous observations implicating PAF in clas-
sical morphologic and biochemical derangements induced 
during AP[164], a number of  groups have pursued the po-
tential therapeutic role of  this novel cytokine[165-171]. Ex-
cept for one case[172], pathophysiological changes of  acute 
pancreatitis were reduced in all established experimental 
models following PAF antagonism[168-171]. When PAF an-
tagonists were applied therapeutically, local intra-pancre-
atic damage and micro-circulatory derangement was sig-
nificantly ameliorated while systemic complications and 
mortality was considerably decreased[168,170,171]. One of  the 
most promising PAF antagonists Lexipafant has been re-
cently tested in two phase Ⅱ trials including patients with 
acute[173] or predicted severe pancreatitis[174]. Results were 
encouraging, showing significant improvement of  organ 
failure or organ failure scores. Subsequently though, in a 

randomized, double blind trial encountering patients with 
severe AP, intravenous administration of  lexipafant for 7 
d did not show any benefit in reducing MODS or mortal-
ity[175]. Nonetheless, systemic levels of  IL-8 and E-selectin, 
sepsis or pseudocysts development were significantly 
lower in the treated than in the non-treated group, espe-
cially in patients treated within 48 h from the onset of  
symptoms[175]. In view of  the multiple prior experimental 
studies suggesting that lexipafant is highly effective in 
reducing SIRS associated with AP[176,177], discrepancies 
among results finally came to challenge the actual role 
of  PAF antagonism in the clinical setting. Discordance 
among studies can be partly attributed to the timing of  
each intervention and/or commercial influence and are 
further discussed.

Chemokines
So far, only a limited number of  experimental and clini-
cal studies have examined the efficacy of  chemokine 
blockade in AP, mostly due to their more distal position 
within the inflammatory mediator cascade in comparison 
to cytokines. 

In view of  IL-8 detrimental effect in experimental 
AP[178], Osman et al[179] investigated the impact of  prophy-
lactic blockade of  IL-8 in a rabbit model. Interestingly, 
significant reduction in systemic severity including lung 
injury, and mortality was observed, whereas the degree of  
local intrapancreatic damage remained unchanged. Even 
though, this study could not assess for potential thera-
peutic effects, the above data strongly supported the role 
of  chemokines in mediating distant organ failure in AP.

Besides IL-8, high concentrations of  other chemo-
kines such as MCP-1, growth-related oncogene alpha, 
and epithelial neutrophil-activating protein 78 could be 
also found during the early stages of  clinical acute pan-
creatitis. Blockade of  specific CXC chemokines via spe-
cific antibodies, synthetic inhibitors or genetic deletion 
appeared to reduce pancreatitis associated pulmonary 
damage in several experimental studies[59,180,181]. None-
theless, similar to IL-8, a complete absence of  effect on 
local intrapancreatic damage was also observed[59,180,181].
So far, only MCP-1 seemed to exert a detrimental role 
on the degree of  local intrapancreatic damage[182]. Even 
though, in most of  these studies, protective effects of  
chemokine blockade were observed even in a therapeutic 
design[59,180,182], no systematic study of  their impact upon 
mortality has ever been carried out.

Adhesion molecules
The expression of  adhesion molecules is pivotal for the 
development of  endothelial barrier dysfunction, trans-
migration of  neutrophils and concomitant development 
of  organ dysfunction. Treatment with antibodies against 
adhesion molecules like ICAM-1 and platelet endothelial 
cell adhesion molecule-1 (PECAM-1) has shown to be ef-
fective in the experimental setting[71,183-185]. Similarly, recent 
data demonstrate that platelets regulate leukocyte rolling 
in acute pancreatitis via induction of  P-selectin, which 
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was critical in supporting leukocyte rolling in inflamed 
venules of  the pancreas[186]. It seems that inhibition of  
P-selectin protected against pancreatic tissue injury in ex-
perimental pancreatitis[187].

Macrophages
The roles of  macrophages in the pathogenesis and pro-
gression of  experimental AP make these cells interest-
ing therapeutic targets since they exhibit both pro- and 
anti-inflammatory properties. Macrophages inhibitors 
(compounds such as gadolinium chloride, liposome-
encapsulated dichloromethylene diphosphonate, and 
PAF antagonists) were shown to modulate the systemic 
inflammatory response[188]. However, most studies admin-
istered the inhibitors before AP was induced, which is 
clinically less relevant because most patients present after 
pancreatic injury. Other approaches to modify macro-
phages, either in vivo or ex vivo, into cells with anti-inflam-
matory properties have recently been tested. Currently, 
favourable effects of  IL-4 and IL-13 have only been 
confirmed in vitro[189], while transfer of  hemin-activated 
macrophages promoting production of  anti-inflamma-
tory agents seems promising[60,64,190,191]. In a study involv-
ing a xenogenic system, human bone marrow-derived 
clonal mesenchymal stem cells were administered to rats 
with mild or severe AP[192]. The human bone marrow–
derived clonal mesenchymal stem cells induced Foxp3+T 
regulatory cells and suppressed pancreatic infiltration by 
T cells. Although more studies are needed in this area of  
research, stem cell–based immunosuppressive strategies 
could be developed as allogenic therapies for AP[193].

Corticosteroids, NF-κB and HMBG1
In rat models of  AP, hydrocortisone has reduced mortal-
ity and blood cytokine levels[194-196]. At the moment, no 
human trials using steroids as treatment of  AP have been 
published and attempts to show a beneficial effect of  
steroids as prophylaxis against post-ERCP pancreatitis 
in prospective placebo-controlled trials have been disap-
pointing[197-199]. The use of  glucocorticoids may, however, 
find a place as part of  a combination therapy, as they 
suppress the inflammatory response, potentially through 
the inhibition NF-κB[200,201]. 

Increased levels of  NF-κB during acute inflamma-
tion correlate well with AP severity[24,25], indicating that 
potential inhibition could improve outcomes[202,203]. NF-
κB signalling seems to regulate autophagy during necro-
tising pancreatitis, while inhibition of  NF-κB pathway 
reduced serum amylase and autophagosome formation 
in experimental models[204]. Similarly, lung injury and pan-
creatic destruction was lower in rats with acute necrotis-
ing pancreatitis following administration of  NF-κB-N-
acetylcysteine inhibitor[205].

The complex role of  HMG1 in AP has not allowed 
the conduction of  many studies[206]. Previous results have 
shown that anti-HMGB1 antibody improves lipopoly-
saccharide (LPS)-induced acute lung injury in mice[51], 
and ventilator-induced lung injury in rabbits[207]. In AP 

blockade of  HMGB1 has been reported to attenuate 
the development of  severe disease, as well as, associated 
organ dysfunction[208]. However, even though, HMGB1 
can increase the permeability in enterocytic monolay-
ers and bacterial translocation in mice[209], blockade of  
HMGB1 eventually deteriorated gut barrier function in 
this study[208].

THE STORY OF IMMUNE-MODULATING 
THERAPIES:...OR FICTION
Inhibiting pro-inflammatory mediators (e.g ., PAF, 
IL-6, ICAM-1, TLR-4), enhancing anti- inflammatory 
mechanisms (e.g., IL-10) or modulating cellular immune 
responses, have all been found to be beneficial in experi-
mental pancreatitis models[71,149,210,211]. Unfortunately, at 
the moment, they have all failed to find their way from 
the laboratory bench to the patient’s bedside[211,212], with 
the possible exception of  preventing post-ERCP pancre-
atitis[213,214]. In this respect, a number of  issues must be 
considered and addressed.

First, we have to keep in mind that discouraging re-
sults coming from the few representative clinical studies 
available on single anti-inflammatory agents does not 
necessarily mean that this approach is flawed in principle. 
The inflammatory mediators identified so far, most likely 
represent only the “tip of  the iceberg”[215]; a million other 
mediators, underlying, interacting and regulatory mecha-
nisms awaiting elucidation. Therefore, the concept of  
blocking single pro-inflammatory mediators could be an 
over-simplistic strategy to deal with the complex problem 
of  acute pancreatitis, if  there is any “ultimate” target at 
all. Of  note, disastrous effects have been noted when 
single proximal mediators of  the inflammatory response 
were blocked including development of  anti-DNA, anti-
nuclear or antithyroid antibodies, leading to various mus-
coloskeletal, neurological and skin manifestations[216,217].

In the complex network of  inflammatory response, a 
multimodal strategy to inhibit several pro-inflammatory 
agents instead of  one may be more useful[218,219]. The 
combination of  the broad-acting antioxidant N-acetylcys-
teine, monoclonal antibodies against the adhesion mol-
ecule PECAM-1 and lexipafant was effective in animals 
with organ failure associated with AP[220]. The acute phase 
response and organ dysfunction was decreased, while gut 
barrier failure and translocation was prevented[220]. How-
ever, even in the case of  multimodal strategy the example 
of  TNF and anti IL-1 that share similar characteristics in 
both their pathophysiological functions, as well as, their 
regulation is worth noting[134,221]. As it was convincingly 
shown by Denham et al[131], no additive protective effects 
could be demonstrated by combined genetic disruption 
the IL-1 receptor and TNF in a murine model of  AP, 
reflecting the huge challenges lying beyond the functional 
redundancy of  the immune system[222].

However, even in such cases of  multimodal manage-
ment the timing of  intervention remains critical. It is 
evident that the window for anti-inflammatory therapy 
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to suppress excessive immune activation is very limited. 
Experimental and clinical evidence shows that the time 
limit for efficacious medical treatment is no more than 60 
h from the onset of  the symptoms of  AP[223]. In fact, as 
stated by at least two controlled clinical trials including the 
European PAF-antagonist phase Ⅲ trial[175,224], beneficial 
effect was achieved when treatment was introduced no 
later than 48 h after the onset of  symptoms. Even though 
further trials are pivotal to clarify the proper timing for 
intervention, efforts are hampered by the fact that many 
patients present at a late stage of  the disease, when organ 
failure may already be present and the patient may be al-
ready on his way to CARS or even immunosuppression[175]. 

This data challenges us to further explore and under-
stand the tight balance and mechanisms underlying SIRS, 
CARS or even a mixed inflammatory response syndrome 
during the time-course of  acute pancreatitis. In the last 
few years, an effort to monitor defects in monocyte func-
tion, as those reflected in reduced expression of  HLA-
DR during severe AP is under progress[107,225,226]. How-
ever, inflammatory stages may not be synchronous in 
the same patient, and even though immune-suppression 
may be evident in the peripheral blood, other end organs 
including the lungs may still be in the pro-inflammatory 
stage. Therefore, immune-stimulatory treatment must be 
used with caution and physicians should have the proper 
means to monitor the patients’ immune-inflammatory 
state, in order to most accurately identify patients who 
are at risk of  organ failure. Signalling pathways and mol-
ecules of  circulating leukocytes including HLA-DR, NF-
κB, signal transducers and activators of  transcription, and 
members of  mitogen activated protein kinase family rep-
resent good candidates that could serve as future indices 
to identify the patients at risk for secondary infections 
and, thus, late organ failure[227-229].

Nonetheless, currently progress in AP research is slow, 
mainly due to the inaccessibility of  the human pancreas to 
direct observation or biopsy, as well as, the self-destructive 
nature of  the disease itself  which does not allow distin-
guishing initiating events from the concomitant or conse-
quent inflammatory response. Flaws in study design, in-
cluding small sample sizes, variable tools to stratify disease 
severity and non-comparable study endpoints further hin-
der understanding of  this complex disease. Consequently, 
most of  our knowledge comes either from circulating in-
flammatory mediators and cells or animal models that are 
inevitably unable to simulate the complexity and individu-
ality of  human condition[230-232]. As a result, the authors of  
this review note a relative gap in experimental but mostly 
clinical research pertaining to AP during the last decade. 
The latter is reflected in the year of  publication of  many 
of  our references, in contrast to the flourishing field of  
animal model pancreatitis during the 90’s and the dawn of  
the new millennium. 

The key to future advances lies in obtaining data upon 
actual patients, making use of  correct scientific meth-
ods and better design of  clinical trials[233]. Recording of  
other meaningful parameters besides mortality including 

time from the onset of  symptoms to type of  interven-
tion, permanent target organ damage, quality of  life, pain 
scores or hospital stay should also be recorded. Improve-
ment of  the communication of  the results is also pivotal. 
Scientific and editorial community must share the respon-
sibility of  publishing well-designed and well-conducted 
clinical studies irrespective of  commercial or financial 
influence. Examples of  poor management of  these issues 
could be partly mirrored by the controversial efficacy of  
protease inhibitors in human AP[234] as well as, the highly 
debated results following lexipafant administration[235]. 

CONCLUSION 

Treatment of  AP by immune modulation currently rep-
resents an attractive and highly promising concept. How-
ever, further meticulous work lies ahead in order to over-
come the fundamental conceptual problems surrounding 
the complex pathophysiology of  this challenging disease. 
Individualized and timely management calls for close 
monitoring so that best possible outcomes are ensured 
for our patients.
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