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Background: KAT I and GT-Kidney (K) are identical enzymes that �-eliminate and transaminate Se-methyl-L-selenocys-
teine (MSC).
Results: KAT III and GT-Liver (L) are identical and metabolize L-selenomethionine (SM).
Conclusion: MSC and SM are transaminated to seleno-keto acids, recognized HDAC inhibitors, by KAT/GT enzymes.
Significance: Anticancer efficacy of MSC and SM depends in part on tissue expression of KAT/GT enzymes.

Three of the four kynurenine aminotransferases (KAT I, II,
and IV) that synthesize kynurenic acid, a neuromodulator, are
identical to glutamine transaminase K (GTK), �-aminoadipate
aminotransferase, and mitochondrial aspartate aminotrans-
ferase, respectively. GTK/KAT I and aspartate aminotrans-
ferase/KAT IV possess cysteine S-conjugate �-lyase activity.
The gene for the former enzyme, GTK/KAT I, is listed in mam-
malian genome data banks as CCBL1 (cysteine conjugate beta-
lyase 1). Also listed, despite the fact that no �-lyase activity has
been assigned to the encoded protein in the genome data bank,
is a CCBL2 (synonym KAT III). We show that human KAT III/
CCBL2 possesses cysteine S-conjugate �-lyase activity, as does
mouse KAT II. Thus, depending on the nature of the substrate,
all four KATs possess cysteine S-conjugate �-lyase activity.
These present studies show that KAT III and glutamine trans-
aminase L are identical enzymes. This report also shows that
KAT I, II, and III differ in their ability to transaminate meth-
yl-L-selenocysteine (MSC) and L-selenomethionine (SM) to
�-methylselenopyruvate (MSP) and �-ketomethylselenobu-
tyrate, respectively. Previous studies have identified these sel-
eno-�-keto acids as potent histone deacetylase inhibitors.
Methylselenol (CH3SeH), also purported to have chemopreven-
tive properties, is the �-elimination product of SM and the
�-elimination product of MSC catalyzed by cystathionine
�-lyase (�-cystathionase). KAT I, II, and III, in part, can catalyze
�-elimination reactions with MSC generating CH3SeH. Thus,
the anticancer efficacy of MSC and SM will depend, in part, on
the endogenous expression of various KAT enzymes and cysta-

thionine �-lyase present in target tissue coupled with the ability
of cells to synthesize in situ either CH3SeH and/or seleno-keto
acid metabolites.

The glutaminase II pathway, first elucidated by Meister and
co-workers (1– 4), consists of a glutamine transaminase (EC
2.6.1.–, Equation 1)3 coupled to �-amidase (�-amidodicar-
boxylate amidohydrolase; EC 3.5.1.3; Equation 2) (1–10). The
net reaction is shown in Equation 3. Rat tissues contain at least
two glutamine transaminases, namely a liver type (glutamine
transaminase L (GTL))4 and a kidney type (glutamine transam-
inase K (GTK)) (6 –10).5 GTK is identical to kynurenine ami-
notransferase I (KAT I) (13–15).
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3 Although the Enzyme Commission now recommends the word aminotrans-
ferase in place of the word transaminase, the word transaminase continues
to be used for GTK. Most aminotransferases utilize glutamate as a sub-
strate. Thus, continued use of transaminase for enzymes that catalyze ami-
notransferase reactions with glutamine may provide a useful distinction
between glutamine- and glutamate-utilizing aminotransferases. Because
GTK is widely used as the name for the kidney type glutamine transami-
nase, for consistency we use the name GTL (glutamine transaminase L)
here for the liver type glutamine transaminase.

4 The abbreviations used are: used: GTL, glutamine transaminase L; AAT,
�-aminoadipate aminotransferase; BTC, S-benzothiazolyl-L-cysteine;
CCBL, cysteine S-conjugate �-lyase; DCVC, S-(1,2-dichlorovinyl)-L-cysteine;
GTK, glutamine transaminase K; h, human; HDAC, histone deacetylase;
KAT, kynurenine aminotransferase; KMSB, �-keto-�-methylselenobu-
tyrate; m, mouse; mitAspAT, mitochondrial aspartate aminotransferase;
Se-methyl-L-selenocysteine; MSP, �-methylselenopyruvate; PLP, pyridoxal
5�-phosphate; SM, L-selenomethionine; TFEC, S-(1,1,2,2-tetrafluoroethyl)-
L-cysteine; FDR, false discovery rate; r, rat.

5 The sequence of rat kidney GTK was first published by Perry et al. (11). Later,
a slightly different sequence was reported by Abraham and Cooper (12). A
BLAST analysis of the amino acid sequence in the region reported by Abra-
ham and Cooper was found to be slightly different from that reported by
Perry et al. and yielded no recognizable protein. Therefore, the mammalian
genomes contain only one GTK gene, and the sequence reported by Abra-
ham and Cooper most likely contained some errors in amino acid
assignment.
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L-Glutamine � �-keto acid% �-ketoglutaramate

� L-amino acid (Eq. 1)

�-Ketoglutaramate � H2O3 �-ketoglutarate � NH3

(Eq. 2)

L-Glutamine � �-keto acid � H2O3 �-ketoglutarate

� L-amino acid � NH3 (Eq. 3)

GTK/KAT I is one of four mammalian aminotransferases that
catalyze the irreversible transamination of kynurenine to
kynurenic acid, and the crystal structure of the human enzyme
(hGTK/KAT I) has been elucidated (16). KAT II is identical to
�-aminoadipate aminotransferase (AAT) (14, 17, 18), and KAT
IV is identical to mitochondrial aspartate aminotransferase
(mitAspAT) (19, 20). The KAT enzymes are of considerable
interest to neurochemists because kynurenic acid is an antagonist
of the N-methyl-D-aspartate glutamate receptor subtype, and the
enzymes can be psychopharmacological targets (17, 21).

Although previous studies characterized KAT I, KAT II, and
KAT IV, KAT III required further characterization. KAT I and
KAT III share similar genomic structures, have high sequence
homology (22, 23), and possess broad specificity toward L-
amino acids and �-keto acids. Glutamine and �-keto-�-me-
thiolbutyrate are very good amino acid and �-keto acid sub-
strates, respectively, of mouse KAT III (mKAT III), whereas
L-alanine and pyruvate are much less effective (22). mKAT III
and rat liver GTL exhibit remarkably similar properties,
namely, monomer size (Mr � �51,000), subunit composition
(homodimer) and substrate specificity, and optimum pH 8.5–
9.0 (5). Thus, we hypothesize that GTL is identical to KAT III.
In addition to comparative enzyme kinetic data, the present
study provides mass spectral analysis to verify this hypothesis.

Rat kidney GTK/KAT I shows cysteine S-conjugate �-lyase
activity depending on the substituent group in the �-position
(Refs. 24 and 25; reviewed in Refs. 26 and 27). A �-elimination
reaction results in the production of aminoacrylate and a sul-
fur-containing fragment. The aminoacrylate nonenzymatically
tautomerizes to �-iminopropionate, which hydrolyzes nonen-
zymatically to pyruvate and ammonium. The net cysteine
S-conjugate �-lyase reaction is shown in Equation 4.

XSCH2CH�NH3
��CO2

� � H2O3 CH2C�O�CO2
� � NH4

� � XSH

(Eq. 4)

Many electrophiles are detoxified/metabolized via the mer-
capturate pathway. In this pathway, the electrophile initially
conjugates with glutathione, which is subsequently hydrolyzed
to a cysteine S-conjugate, acetylated to N-acetyl-L-cysteine
S-conjugate (mercapturate), and excreted in the bile and/or
urine. However, if the cysteine S-conjugate contains a strong
electron attracting group (a nucleofuge) in the � position, cys-
teine S-conjugate �-lyases readily catalyze a �-elimination
reaction. �-Elimination reactions of halogenated alkene cys-
teine S-conjugates can generate sulfur-containing fragments
that are highly reactive and toxic (reviewed in Ref. 26). Toxifi-
cation reactions that generate halogenated, sulfur-containing

fragments (XSH) include S-(1,2-dichlorovinyl)-L-cysteine (DCVC;
the cysteine S-conjugate of trichloroethylene) and S-(1,1,2,2-
tetrafluoroethyl)-L-cysteine (TFEC; the cysteine S-conjugate
of tetrafluoroethylene). By contrast, the eliminated sulfur-con-
taining fragment of S-(benzothiazolyl)-L-cysteine (BTC; the
cysteine conjugate of benzothiazole 2-sulfonamide) is stable
and relatively nontoxic (reviewed in 26).

Following the publication by Stevens et al. (25), several inves-
tigators assumed that GTK is the cysteine S-conjugate �-lyase
responsible for catalyzing �-elimination reactions with DCVC
and TFEC. As a result, the gene for GTK is listed in mammalian
gene data banks as CCBL1 (cysteine S-conjugate beta-lyase 1).
In a similar fashion, a gene closely related to CCBL1 is listed in
mammalian gene data banks as CCBL2, despite the fact that
cysteine S-conjugate �-lyase activity had not previously been
assigned to the gene product. As noted above, this gene codes
for KAT III.

We previously reported that L-methionine is a better sub-
strate than is L-selenomethionine (SM) for recombinant human
GTK (hGTK) (26, 27). Blarzino et al. (28), on the other hand,
reported that SM is an excellent substrate of a glutamine trans-
aminase isolated from bovine liver. We show here that SM is an
excellent substrate of mGTL/KAT III. Thus, it appears that
Blarzino et al. (28) may have isolated and characterized the L
type glutamine transaminase/KAT III from bovine liver.

MSC was noted previously to be a moderately good sub-
strate, both as an aminotransferase substrate and as a modest
�-lyase substrate of rat GTK (24), a finding we verified for
hGTK (27). Thus, the current study extends the distinct quan-
tifiable differences among the KAT enzymes in their prefer-
ences for �-lyase substrates and organoselenium-containing
amino acids (26).

Lastly, it was previously shown that SM is a �-lyase substrate
of cystathionine �-lyase (29). Here we show that MSC is a
�-lyase substrate of purified rat liver cystathionine �-lyase. In
both cases, the eliminated fragment is predicted to be methyl-
selenol (CH3SeH). Thus, the capacities of mammalian tissues to
catalyze transamination and elimination reactions with seleno-
amino acids are well established (30). Although methylselenol
has never been isolated or measured in situ within tissue, it can
be generated simultaneously with seleno-�-keto acid metabo-
lites, which are measurable by electrochemical detection, as
part of competing transaminase/lyase reactions that can occur
at the active site of the KAT enzymes. These reactions are of
considerable importance for understanding the chemopreven-
tive efficacy of seleno-amino acids against a variety of cancers,
in particular prostate and bladder. Fig. 1 illustrates the struc-
tural formulae of selected amino acid substrates of the KAT
enzymes relevant to the current studies and their correspond-
ing �-keto acid derivatives.

EXPERIMENTAL PROCEDURES

Substrate Preparations—DCVC was a gift from Dr. Robert
Schwarcz (University of Maryland). TFEC was prepared by the
method of Hayden and Stevens (31), and the acetate salt of BTC
was prepared by the method of Cooper et al. (32) and was a gift
from Dr. Sam Bruschi (University of Washington, Seattle, WA).
MSC and SM were gifts from the Sabinsa Corporation (East Wind-
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sor, NJ). �-Keto-�-methiolbutyrate (systematic name: 4-(methyl-
sulfanyl)-2-oxobutanoate; synonyms; �-keto-�-methylthiobutyrate,
2-oxo-4-methylthiobutanoate; 4-methylthio-2-oxobutanoate)
was purchased from Sigma. S-Allylmercapto-L-cysteine was
obtained from Wakunaga of America Co. Ltd. (Mission Viejo,
CA).

Enzyme Preparations—Recombinant human GTK/KAT
I/CCBL1 (hGTK) was obtained by the method of Han et al. (33)
and stored in 10 mM potassium phosphate buffer (pH 7.2) at a
protein concentration of 11.2 mg/ml. Recombinant human
KAT II/AAT (hKAT II) was prepared according to the method
of Han et al. (33). The enzyme was stored in 10 mM potassium
phosphate buffer (pH 7.2) at a protein concentration of 11.3
mg/ml. Recombinant mKAT III was obtained by the method of
Han et al. (22) and stored in 10 mM potassium phosphate buffer
(pH 7.2) containing 1 mM DTT at a protein concentration of 3.7
mg/ml. The enzyme is homogeneous as judged by the criterion
of SDS-PAGE followed by staining with Coomassie Blue. A sin-
gle band (Mr � �51,000) was detected. All KAT enzyme solu-
tions were stored at 4 °C. Rat liver cystathionine �-lyase (2.4
units/mg; 1.32 mg/ml) was purified by the method of Pinto et al.
(34). A unit of cystathionine �-lyase activity is defined as the
amount of enzyme that catalyzes the production of 1 �mol of
�-ketobutyrate per minute at 37 °C in a reaction mixture con-

taining 20 mM L-homoserine (an alternate substrate to cys-
tathionine) and 100 mM potassium phosphate buffer (pH
7.4). Aliquots were stored frozen at �20 °C.

The purification procedure for mouse liver GTL was adapted
from that of Cooper and Meister for the purification of rat liver
GTL (6, 8). The following purification steps (from 20 g of liver)
were followed prior to SDS-PAGE separation: 1) heat treat-
ment, 2) acidification with acetic acid, 3) ammonium sulfate
fractionation, 4) fractionation on a DE-52 anion exchange
resin, and 5) fractionation on a hydroxyapatite column.

Standard Assay for GTL Transaminase Activity—L-Albizziin
(a glutamine analog in which the -CH2- in the 4 position is
replaced by -NH-) was used as the standard amino acid sub-
strate of GTL in place of L-glutamine (6, 7, 9). Activity was
measured by a modification of the method of Cooper and Mei-
ster (6 – 8) adapted for a 96-well plate spectrophotometer. The
standard reaction mixture (0.02 ml) contained 40 mM L-albi-
zziin, 20 mM sodium glyoxylate, 40 mM sodium pyrophosphate
buffer (pH 9.0), and enzyme in a small snap top tube. After
incubation for 30 min at 37 °C, the reaction was terminated by
the addition of 0.18 ml of 1 M NaOH. After incubation for a
further 20 min at 37 °C, the absorbance was read at 280 nm
against a blank containing complete assay mixture to which
enzyme was added after addition of base. Under these condi-
tions the �-keto analog of L-albizziin cyclizes to a lactam
followed by dehydration to 2-imidazolinone-4-carboxylate
(�280 nm � 10,000 M�1 cm�1) (6). A unit of GTL enzyme activity
is defined as that amount of enzyme that catalyzes the forma-
tion of 1 �mol of product (2-imidazolinone-4-carboxylate)/
min at 37 °C.

Measurement of Lyase Activities—�-Lyase activity of mGTL/
KAT III and KAT II toward cysteine S-conjugates and �-chloro-
D,L-alanine was measured by a modification of the procedure of
Cooper and Pinto (35). The reaction mixture (0.02 ml) con-
tained 5 mM L-cysteine S-conjugate, 0.1 mM �-keto-�-methiol-
butyrate (or 0.1 mM �-ketoglutarate in the case of AAT/KAT
II), 100 mM potassium phosphate buffer (pH 7.4), and enzyme.
After incubation at 37 °C in a small snap top tube, the reaction
was terminated by addition of 0.01 ml of 5 mM 2,4-dinitrophe-
nylhydrazine in 2 M HCl. After additional incubation of the
mixture for 10 min at room temperature, 0.17 ml of 1 M NaOH
was added, and the increase in absorbance at 430 nm was read
within 2 min against an appropriate blank. The blank was iden-
tical to the assay mixture except that �-lyase substrate was
omitted. The molar extinction coefficient of pyruvate 2,4-dini-
trophenylhydrazone under these conditions is �16,000 M�1

cm�1. A small amount of �-keto acid is included in the reaction
mixture because competition of the �-lyase reaction with a half
transamination reaction with PLP co-factor has the potential to
generate enzyme in the pyridoxamine 5�-phosphate form,
which cannot catalyze a �-lyase reaction. A half transamination
reaction of �-keto with pyridoxamine 5�-phosphate will regen-
erate PLP, allowing the enzyme to continue to support a �-lyase
reaction (24 –26). An identical procedure was used to deter-
mine �-lyase activity toward �-chloro-D,L-alanine, except that
it was not necessary to include an �-keto acid in the reaction
mixture.

FIGURE 1. Structural formulae of selected amino acid substrates of KAT
enzymes and their corresponding �-keto acid derivatives.
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In some experiments, S-allylmercapto-L-cysteine and MSC
were investigated as �-lyase substrates of cystathionine �-lyase.
The pyruvate product was measured as the 2,4-dinitrophenyl-
hydrazone as indicated above. In other cases, L-homoserine,
L-cystathionine, and SM were investigated as �-lyase substrates
of cystathionine-�-lyase. The �-ketobutyrate product was also
measured as the 2,4-dinitrophenylhydrazone (35).

All spectrophotometric measurements were carried out with
a SpectraMax 96-well plate spectrophotometer (Molecular
Devices, Sunnyvale, CA). All protein measurements were
determined using the Bradford protein assay (Bio-Rad) or the
bicinchoninic acid protein assay kit provided by Pierce using
bovine serum albumin as a standard.

HPLC Quantitation of Sulfur- and Selenium-containing Com-
pounds in Transaminase Assays—Transamination between the
selenium-containing amino acids (MSC, SM) and �-keto-�-me-
thiolbutyrate was measured by HPLC with CoulArray (electro-
chemical) detection (30, 34 –36). The advantage of this tech-
nique is that redox-active compounds can be quantitated
without prior derivatization. Moreover, analytes can be charac-
terized, not only by elution time but also by the voltage required
for maximal oxidation. When �-keto-�-methiolbutyrate is
used as the �-keto acid co-substrate, disappearance of the sele-
nium-containing amino acids correlates with appearance of
L-methionine and with concomitant appearance of the selenium-
containing �-keto acid. The reaction mixture (0.25 ml) con-
tained 1 mM MSC (or 1 mM SM), 2 mM �-keto-�-methiolbu-
tyrate, and 50 mM potassium phosphate buffer, pH 7.4, and
enzyme. The reaction mixture was incubated at 37 °C, and at
15-min intervals, 0.05 ml was withdrawn, and the reaction was
quenched by addition of 0.015 ml of 25% (w/v) metaphosphoric
acid. The samples were placed on ice for 15 min and centrifuged
for 5 min at 21,100 	 g in an Eppendorf tube. The supernatant
fraction was analyzed by HPLC. The seleno-�-keto acids gener-
ated via transamination of MSC and SM are �-methylselenopyru-
vate (MSP) and �-keto-�-methylselenobutyrate (KMSB), respec-
tively. Standard solutions of these seleno-�-keto acids were
generated in situ from the corresponding L-amino acids with Cro-
talus adamanteus L-amino acid oxidase (30).

The HPLC system consisted of a liquid chromatograph
equipped with an eight-channel CoulArray detector (ESA, Inc.,
Chelmsford, MA) (35, 36). Sample aliquots are injected directly
onto a Bio-Sil ODS-5S, 5-�m particle size, 4.0 	 250 mm, C18
column (Bio-Rad Life Science Research Group) and eluted with
a mobile phase consisting of 50 mM NaH2PO4, 50 �M octane
sulfonic acid, and 3% (v/v) acetonitrile (pH 2.62) at a flow rate of 1
ml/min. All buffers following preparation are routinely degassed
and filtered through a 0.2-�m Millipore nylon filter, and the pH
was adjusted, if necessary. PEEKTM (polyetheretherketone) tubing
was used throughout the HPLC system, and a 0.2-�m PEEKTM

filter was placed pre- and post-column to protect both column
and flow cells, respectively, from any particulate matter. A
Rheodyne injection valve with a 5-�l sample loop was used to
manually introduce samples. The eight channels of the Coul-
Array detector were set at 350, 450, 550, 700, 750, 800, 850, and
900 mV, respectively. Retention times and detection potential
ranges are: MSC (4.11 min, 700 – 850 mV); MSP (4.56 min,
700 – 850 mV); L-methionine (5.32 min, 750 – 850 mV), �-keto-

�-methiolbutyrate (5.93 min, 700 – 850 mV); SM (6.58 min,
550 –750 mV); and KMSB (7.65 min, 550 –750 mV). Peak areas
under the concentration curves of chromatograms for each
reaction mixture were compared against standards of the
amino and �-keto acids from 2 to 200 nmol/ml for each com-
pound mentioned above. Except where noted, all enzyme activ-
ity measurements were carried out at least in triplicate and are
reported as the means 
 S.E.

SDS-PAGE—Samples were mixed with complete 2	 SDS-
denaturing electrophoresis sample buffer (Bio-Rad) and boiled
for 6 min. Solubilized proteins were processed to remove inter-
fering substances with a Compat-Able protein assay prepara-
tion reagent (Thermo-Scientific). Equal amounts (20 �g) of
protein were loaded onto each lane of a commercially available
pre-cast gel (Criterion TGX, 4 –15% gradient; Bio-Rad) with
Kaleidoscope molecular weight standards (Bio-Rad). The gel
was stained with 0.25% Coomassie Blue R-250 in 50% trichlo-
roacetic acid, followed by destaining with 25% methanol, 7%
acetic acid. The stained band corresponding to the position of
GTL based on its known Mr was excised for MS analysis.

Mass Spectrometry—The excised band was reduced, alky-
lated, and digested with trypsin. The resulting peptides were
extracted and analyzed by reversed phase chromatography
using an Eksigent nano HPLC, equipped with a Famos
autosampler, connected to a linear trap quadropole-Fourier
transform mass spectrometer. The peptides were loaded onto a
peptide trap column (3 cm 	 0.1 �m) packed in-house with
C18 reversed phase material (Magic C18, 5 Å, 200 �m), the
peptides were desalted for 10 min using 0.1% formic acid at a
flow rate of 3 �l/min. Following desalting the peptide trap col-
umn was connected to an analytical reversed phase column (12
cm 	 75 �m) packed in house with the same material. The
peptides were eluted by means of a 0.1% formic acid (solvent A)
and 0.1% formic acid in acetonitrile (solvent B) mixture, using
the following gradient: 5–15% B in B � A for 5 min, 15–50% B
in B � A over the next 175 min, followed by an 80% B wash for
10 min at a flow rate of 250 nl/min.

The mass spectrometer was operated in automatic mode
using Xcalibur software (version 3.0) programmed to perform
one parent mass scan on the Fourier transform spectrometer at
50,000 resolution (for an ion with an m/z of 400), followed by six
tandem MS scans on the most intense ions, using a repeat of
two in 0.5 min and an exclusion list of 1.5 min. Tandem mass
spectra were extracted, and the charge state was deconvoluted
by Xcalibur software (version 3.0).

Database Searching and Protein Identification—All MS/MS
spectra were analyzed using SequestHT (Thermo Fisher Scien-
tific, San Jose, CA; version 1.4.0.288) to search a mouse protein
database derived from the National Center for Biotechnology
Information repository (2014 04 11; 377,628 entries) assuming
the digestion enzyme trypsin, using a fragment ion mass toler-
ance of 0.60 Da and a parent ion tolerance of 20 ppm. Iodo-
acetamide was used to alkylate cysteine that results in the
covalent addition of a carbamidomethyl group (57.07 Da). Car-
bamidomethylation of cysteine was specified as a fixed modifi-
cation. Deamidation of asparagine and glutamine, cyclization
of glutamine and glutamate to pyroglutamate (5-oxoproline),
oxidation of methionine, and acetylation of the N terminus
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were specified as variable modifications. For protein identifica-
tion, a minimum of two unique peptides was required. Peptides
were accepted using a local false discovery rate (FDR) of �1.0%,
as calculated by Proteome Discoverer (version 1.4; Thermo
Fisher Scientific, San Jose, CA) from SequestHT by using a
decoy protein database (reversed).

Criteria for Protein Identification—Scaffold (version Scaffold
4.3.2, Proteome Software Inc., Portland, OR) was used to vali-
date MS/MS-based peptide and protein identifications. Peptide
identifications were accepted if they could be established at
�30.0% probability to achieve a FDR of �0.1%. Peptide proba-
bilities from X!Tandem were assigned by the Peptide Prophet
algorithm (37) with Scaffold delta-mass correction. Peptide
probabilities from Sequest were assigned by the Scaffold Local
FDR algorithm. Protein identifications were accepted if they
could be established at �78.0% probability to achieve an FDR of
�1.0% and contained at least two identified peptides. Protein
probabilities were assigned by the Protein Prophet algorithm
(38). Proteins that contained similar peptides and could not be
differentiated based on MS/MS analysis alone were grouped to
satisfy the principles of parsimony.

RESULTS

Identification of GTL as KAT III/CCBL2—The glutamine
analog, L-albizziin, is a better substrate of GTL than of GTK,
and L-albizziin has been used to distinguish rat liver GTL from
rat kidney GTK (6, 7, 9, 39). Thus, if, as we suspected from a
comparison of the enzymatic properties and subunit composi-
tion of purified rat liver GTL (5) with those of purified recom-
binant mKAT III (22), the enzymes are products of homologous
genes, then highly purified recombinant mKAT III should have
considerable L-albizziin-glyoxylate transaminase activity. This
was found to be the case. The recombinant purified mKAT III
has a specific activity with this substrate pair of 1.85 units/mg.

To obtain further evidence that GTL is identical to KAT III,
GTL was purified from mouse liver homogenates, and the specific
activity of the enzyme using the L-albizziin-glyoxylate transami-
nase assay was compared with that of authentic highly purified
recombinant mKAT III. The purification procedure employed
was adapted from that of Cooper and Meister for the purifica-
tion of GTL from rat liver (39). A summary of the purification
procedure, specific activity, and yield is shown in Table 1.

The purified enzyme was subjected to SDS-PAGE and stained
with Coomassie Blue (“Experimental Procedures”). Two major
bands (Mr �51,000 and �37,000) and several smaller bands in the
region Mr 40,000 to 50,000 were detected (data not shown).
The Mr of mKAT III monomer is �51,000 (22). Therefore, the
upper band is consistent with the known Mr of mKAT III mon-
omer. The pattern of bands indicated that the preparation of
GTL purified from mouse liver was �25% pure. The specific
activity of this preparation was found to be 0.43 mmol/min/mg
(units/mg). This value, assuming 25% purity, is consistent with
the specific activity of the enzyme (L-albizziin-glyoxylate trans-
aminase assay) found for the homogeneous recombinant
mKAT III (1.85 units/mg).

Additional evidence that mGTL is identical to mKAT III was
obtained by MS analysis. After SDS-PAGE, the stained band of
Mr of �51,000 (the calculated Mr of mKAT III monomer) was
excised from the gel and processed for MS analyses as described
under “Experimental Procedures.”

MS analysis revealed many peptides in the excised band
assigned to 29 proteins (data not shown). Five proteins in the
gel sample with the highest overall p value for likely correct
identification were: 1) mitochondrial acetyl-CoA acetyltrans-
ferase, 2) 6-phosphogluconate dehydrogenase (decarboxylat-
ing), 3) cytosolic acetyl-CoA acetyltransferase, 4) aspartate
aminotransferase 1 (cytosolic isozyme), and 5) KAT III. The
sequences of the peptides found to highly correlate with mouse
KAT III are listed in Table 2. KAT III was identified with 21
peptides, 19 of them unique to this protein ( score of 1) with a
54.15% amino acid sequence coverage.

Although our estimate that the glutamine transaminase
isolated from mouse liver is only �25% pure, it is highly
likely that the L-albizziin/glyoxylate-, SM/�-keto-�-methiol-
butyrate-, and MSC/�-keto-�-methiolbutyrate-transaminase
activities (Table 3) associated with the preparation are due to
KAT III and not to any other protein in the preparation.
Enzymes 1, 2, and 3 (cited above) detected in the preparation do
not possess aminotransferase activity. Enzyme 4 is an amino-
transferase (cytosolic aspartate aminotransferase), but this
enzyme is not known to have activity with glutamine or methi-
onine. In fact, methionine is a very poor inhibitor of cytosolic
aspartate aminotransferase with Ki of �60 mM (40). Thus, it is

TABLE 1
Co-purification from mouse liver of L-albizziin/glyoxylate transaminase activity with SM/�-keto-�-methiolbutyrate transaminase activity, but
not with MSC/�-keto-�-methiolbutyrate transaminase activity
The purification steps (from 20 g of mouse liver) were as follows: 1) heat treatment, 2) acidification with acetic acid, 3) ammonium sulfate fractionation, 4) fractionation on
a DE-52 anion exchange resin, and 5) fractionation on a hydroxyapatite column. All enzyme activity and protein measurements were carried out in duplicate or triplicate.
For reaction mixtures containing SM/�-keto-�-methiolbutyrate, HPLC separation of both methionine and KMSB equimolar concentrations were determined within time
points from 10 to 60 min. In a similar fashion, for reaction mixtures containing MSC/�-keto-�-methiolbutyrate, HPLC separation of both methionine and MSP revealed
equimolar concentrations within time points from 10 to 60 min. The percentage yield at step 1 was arbitrarily set at 100%.

L-Albizziin/glyoxylate transaminase
SM/�-keto-�-methiolbutyrate

transaminase

MSC/�-keto-�-
methiolbutyrate

transaminase
Step Volume Protein Activity (A) Yield Specific activity Fold purification Activity (B) Specific activity B/A Activity (C) C/A

ml mg milliunit % milliunit/mg milliunit milliunit/mg milliunit
1 100 1060 5133 100 4.84 1 4683 4.42 0.91 2532 0.49
2 73 542 4185 82 7.72 1.58 2976 5.49 0.71 1079 0.26
3 8.3 125 2977 24 23.8 3.79 2892 23.1 0.97 508 0.17
4 5.3 18.9 641 12.5 33.9 12.5 639 33.8 1.0 71 0.11
5 1.8 0.752 322 6.3 428 88.5 293 389 1.1 27 0.08
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unlikely that cytosolic aspartate aminotransferase in the prep-
aration contributed to the transamination of L-albizziin (a glu-
tamine analog) or to the transamination of SM/MSC (methio-
nine analogs). Of the other proteins in the preparation
identified on the basis of peptide fragments, only one other
aminotransferase was identified, namely mitochondrial GABA
aminotransferase (data not shown). However, because of the
relatively strict substrate specificity, it is unlikely that this
enzyme contributed to the transamination of L-albizziin, SM,
and MSC. It is of note that the protein most closely related to
KAT III (i.e. GTK/KAT I/CCBL1) was not detected in the KAT
III preparation obtained from mouse liver.

Cysteine S-Conjugate �-Lyase Activity of Recombinant mKAT
III and hKAT II—TFEC (5 mM) was shown to be a �-lyase sub-
strate of highly purified recombinant mGTL/KAT III in the
presence of 0.1 mM �-keto-�-methiolbutyrate, indicating that
this enzyme catalyzes a cysteine S-conjugate �-lyase reaction,
as suggested by the gene designation CCBL2 (Table 3). Because
rates differ depending upon which substrate is used, both incu-

bation times and enzyme concentrations had to be varied.
Despite differences in substrate, incubation times, and protein
concentrations, the rate of formation of pyruvate in the pres-
ence of enzyme was linear for at least an hour under the condi-
tions of the assay. This finding is important for two reasons.
First, it permits enzyme rates to be calculated from fixed point
determinations. Second, two reactive fragments (aminoacry-
late and HSCF2CF2H) are produced from the �-lyase reaction
with TFEC that can potentially lead to syncatalytic inactivation,
i.e. occurring synchronously during catalysis. For example, rat
liver mitAspAT catalyzes a �-lyase reaction with TFEC and is
syncatalytically inactivated in the process (41). Covalent adduc-
tion of both aminoacrylate and reactive fluorine-containing
fragments to the enzyme can be detected by mass spectroscopy
(26). Although TFEC was not used, Stevens et al. (25) showed
that rat GTK is not syncatalytically inactivated by DCVC during
�-lyase turnover of this amino acid. Our studies show that
human GTK is not inactivated by either DCVC or TFEC (27).

The present data suggest that the closely related mGTL is
also not syncatalytically inactivated by TFEC during �-lyase
reactions even after turnover of tens of thousands of substrate
molecules in the lyase reaction. This contrasts with “suscepti-
ble” enzymes such as mitAspAT (41) and branched chain ami-
notransferase (42) that are inactivated on average following 50
to a few thousand turnover events (reviewed in Ref. 26).

Table 3 shows that, in addition to TFEC, recombinant mGTL/
KAT III/CCBL2 possesses �-lyase activity toward DCVC,
�-chloro-D,L-alanine, and MSC. Under the conditions of the assay,
�-lyase activity toward the various substrates is in the order:
TFEC � DCVC � �-chloro-D,L-alanine � MSC. Activity with
BTC could not be detected. The specific activity with TFEC as a
�-lyase substrate (�1.05 �mol/min/mg; pH 7.4) calculated

TABLE 2
Identification of mKAT III peptides in the GTL preparation purified from mouse liver
Modified residues are as follows: c, carbamidomethylcysteine; m, oxidized methionine (addition of one O); n, deamidated asparagine (Asn3Asp); q, deamidated glutamine
(Gln3Glu). PSM, peptide spectrum match. A  score of 1.0 indicates that the peptide is unique to mKAT III. The XCorr value is the cross-correlation value obtained from
the search; a value of �2.0 indicates a good correlation. M is the m/z difference between the designated peak and an adjacent peak. Missed cleavages are those “missed”
during trypsin digestion.

Sequence
No.

PSMs � score XCorr Charge MH� �M
No. missed
cleavages

Da ppm
HDTLcISDEVYEWLVYTGHTHVK 2 1.00 5.36 3 2802.34458 9.03 0
LAADPSVVNLGQGFPDISPPSYVK 13 1.00 5.22 2 2471.32622 17.98 0
MDDPEcYFNSLPK 14 1.00 4.76 2 1615.70195 15.58 0
RIEGLDSNVWVEFTK 3 1.00 4.71 2 1792.90752 �8.59 1
IEGLDSnVWVEFTKLAADPSVVnLGQGFPDISPPSYVK 2 0.02 4.68 3 4091.13352 19.49 1
KLTAIPVSAFcDSK 3 1.00 4.66 2 1536.83599 17.48 1
LAADPSVVnLGQGFPDISPPSYVK 2 0.03 4.57 2 2472.28325 7.06 0
KDSTLDAAEEIFR 2 1.00 4.52 3 1494.76783 16.25 1
mDDPEcYFNSLPK 16 1.00 4.47 2 1631.69792 16.08 0
LAADPSVVNLGQGFPDISPPSYVKEELSK 4 1.00 4.43 3 3057.60239 7.96 1
IEGLDSNVWVEFTK 11 1.00 4.42 2 1636.85405 19.71 0
LTAIPVSAFcDSK 32 1.00 4.30 2 1408.73467 14.57 0
LLnSVGLKPIVPDGGYFIIADVSSLGADLSDmnSDEPYDYK 1 1.00 4.18 3 4406.10532 �2.46 0
AAFIDNMNqYTR 12 0.02 3.97 2 1444.68059 19.38 0
AAFIDNmNQYTR 18 1.00 3.95 2 1459.68987 18.07 0
AAFIDNMNQYTR 27 1.00 3.94 2 1443.69011 14.91 0
AAFIDNmNqYTR 6 0.01 3.83 2 1460.67583 19.39 0
LGWSIGPAHLIK 1 1.00 3.80 3 1291.76630 10.93 0
QELQVIADLcVK 20 1.00 3.70 2 1415.78435 19.78 0
AIILNTPHNPLGK 5 1.00 3.40 2 1387.83098 18.24 0
TKAIILNTPHNPLGK 1 1.00 3.33 2 1616.97991 19.53 1
MAGAVPVFIPLR 1 1.00 3.27 2 1270.75688 17.92 0
DSTLDAAEEIFR 2 1.00 3.24 2 1366.66594 12.71 0
WTSSDWTFDPR 4 1.00 3.24 2 1397.63555 16.77 0
IEGLDSnVWVEFTK 1 1.00 3.22 2 1637

TABLE 3
�-Lyase activity of highly purified recombinant mGTL/KAT III toward
various cysteine S-conjugates and �-chloro-D,L-alanine
Except in the case of �-chloro-D,L-alanine, the assay mixture (0.02 ml) contained 5
mM amino acid, 0.1 mM �-keto-�-methiolbutyrate, and 100 mM potassium phos-
phate (pH 7.4). In the case of �-chloro-D,L-alanine, no �-keto-�-methiolbutyrate
was present in the assay mixture. After incubation at 37 °C for the time indicated,
pyruvate was measured as indicated in the text. One unit of activity represents 1
�mol of pyruvate formed per min (n � 3).

�-Lyase substrate
Incubation

time
Enzyme
added

Pyruvate
formed

min �g nmol units/mg
TFEC 60 0.185 11.6 
 0.8 1.045 
 0.072
DCVC 60 0.185 6.00 
 0.02 0.541 
 0.002
BTC 120 0.74 �0.1 �0.001
Se-Methyl-L-selenocysteine 120 0.74 1.68 
 0.30 0.019 
 0.003
�-Chloro-D,L-alanine 60 0.185 5.13 
 0.01 0.462 
 0.001
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from the data in Table 3 is only slightly less than that exhibited
with L-albizziin as a transaminase substrate at pH 9.0 (1.85
�mol/min/mg). Thus, the enzyme coded by the gene CCBL2/
KAT III possesses considerable cysteine S-conjugate �-lyase
activity that, with a suitable �-lyase substrate (e.g. TFEC), is at
least as comparable to its ability to catalyze transamination.

Experiments were performed to determine whether highly
purified recombinant hAAT/KAT II can also catalyze �-lyase
reactions similar to those catalyzed by mGTL/KAT III. Table 4
shows that this is indeed the case. The �-lyase activity of hKAT
II toward various substrates is in the order: �-chloro-D,L-alanine �
TFEC � DCVC � MSC. As noted for mGTL/KAT III, no activity
could be detected with BTC. By contrast, some slow syncatalytic
inactivation occurs with hKAT II, particularly when levels of pyru-
vate production in the assay mix exceed �10 nmol.

Identification of GTL/KAT III as a Major SM Aminotrans-
ferase in Mouse Liver—SM/�-keto-�-methiolbutyrate trans-
aminase activity from mouse liver was found to co-purify with
L-albizziin-glyoxylate transaminase activity at an essentially
constant ratio of specific activities (Table 1). Inasmuch as L-
albizziin transamination with glyoxylate and �-keto-�-methio-
lbutyrate is catalyzed by GTL (6, 9, 39), the current findings are
fully consistent with the hypothesis that GTL/KAT III in liver is
a major enzyme responsible for catalyzing transamination of
SM. On the other hand, the ratio of the rate of L-albizziin-
glyoxylate transamination to that of MSC-glyoxylate transam-
ination decreased by more than 90% during the purification
(Table 1). This finding is consistent with GTK/KAT I also pres-
ent in the liver that is a more effective catalyst for the transam-
ination of MSC than it is for SM (Table 5).

Comparison of the Ability of Various KAT Enzymes to Cata-
lyze Transamination of Seleno-Amino Acids—The ability of the
various KAT enzymes to catalyze transamination between SM
(and MSC) using �-keto-�-methiolbutyrate as the co-substrate
is shown in Table 5. Note that under the conditions of the assay,
SM is a better substrate of highly purified recombinant mKAT
III (GTL) than it is of KAT I (GTK), KAT II (AAT), and KAT IV
(mitAspAT).

�- and �-Elimination Reactions Catalyzed by Highly Purified
Rat Liver Cystathionine �-Lyase—Table 6 shows that rat liver
cystathionine �-lyase catalyzes a number of �- and �-elimina-
tion reactions. Note that because of widely different relative
activities, varying amounts of enzymes were used, and the time
of incubation was also varied. The data illustrated in Table 6
show that the reaction is linear for the substrates investigated.
Note also that L-homoserine is typically used in routine assays
of cystathionine �-lyase in place of L-cystathionine, because it is
less expensive than the “natural” substrate L-cystathionine and,
at saturating concentrations, is a more active substrate. It was
previously reported that the Km values exhibited by highly puri-
fied crystalline rat liver cystathionine �-lyase toward L-homo-
serine and L-cystathionine are 20 and 3 mM, respectively (43).
Moreover, the Vmax was reported to be three times higher with
L-homoserine than with L-cystathionine (43). The present find-
ings with L-homoserine and L-cystathionine (Table 6) are con-
sistent with this earlier report. In addition, we have verified the
previous findings by Okuno et al. (29) that SM is a �-lyase sub-
strate of cystathionine �-lyase.

TABLE 4
�-Lyase activity of AAT/hKAT II toward various cysteine S-conjugates
and �-chloro-D,L-alanine
Except in the case of �-chloro-D,L-alanine, the assay mixture (0.02 ml) contained 5
mM amino acid, 0.1 mM �-ketoglutarate, 0.1 �g of hKAT II, and 100 mM potassium
phosphate (pH 7.4). In the case of �-chloro-D,L-alanine, no �-ketoglutarate was
present in the assay mixture. After incubation at 37 °C for the time indicated, pyru-
vate was measured as indicated in the text. One unit of activity represents 1 �mol of
pyruvate formed per min (n � 3).

�-Lyase substrate Incubation time Pyruvate formed

min nmol units/mg
TFEC 30 26.5 
 1.2 8.833 
 0.4
DCVC 30 4.66 
 0.18 1.553 
 0.006
BTC 120 �0.1 �0.008
Se-Methyl-L-selenocysteine 60 3.05 
 0.10 0.508 
 0.017
�-Chloro-D,L-alanine 15 15.0 
 0.8 10 
 0.053

TABLE 5
Comparison of substrate specificity of KAT enzymes and partially puri-
fied mouse liver GTL to transaminate L-selenomethionine and
Se-methyl-L-selenocysteine to methionine
The reaction mixture (0.25 ml) contained 1 mM seleno-amino acid, 2 mM �-keto-
�-methiolbutyrate in 50 mM potassium phosphate buffer (pH 7.2). Each reaction
mixture contained between 1 and 6 �g of the recombinant enzyme, and the reaction
was incubated at 37 °C. At 15-min intervals, 0.05-ml aliquots were withdrawn, and
the reaction was stopped with 0.015 ml of 25% metaphosphoric acid and cooled in
ice for 10 min. L-Methionine was determined by HPLC with CoulArray detection.
The values are the averages of four determinations.

Specific activity
L-Selenomethionine Se-Methyl-L-selenocysteine

nmol/min/mg protein
hKAT I/GTK/CCBL1 45 
 3 179 
 19
hKAT II/AAT 15 
 1 14 
 1
mKAT III/GTL/CCBL2 2153 
 259 163 
 11
Rat liver KAT IV/mitAspAT �1 �1
GTL partially purified from

mouse liver
389 
 15 36 
 6

TABLE 6
�- and �-elimination reactions catalyzed by cystathionine �-lyase
The reaction mixture (0.05 ml) contained amino acid substrate, enzyme, and 100 mM potassium phosphate buffer (pH 7.4). After incubation at 37 °C for the times shown,
�-keto acid formation was determined by the 2,4-dinitrophenylhydrazone procedure.

Substrate Concentration
Enzyme in

assay mixture
Incubation

time
Product

measured Product formed

mM milliunits min nmol milliunits/mg
L-Cystathionine 2 2.5 30 �-Ketobutyrate 8.40 
 0.12 269 
 4
L-Homoserine 50 0.1 20 �-Ketobutyrate 1.83 
 0.05 2179 
 60

40 4.52 
 0.13 2690 
 77
SM 20 2.5 90 �-Ketobutyrate 4.73 
 0.10 50 
 1

180 9.58 
 0.20 51 
 1
MSC 10 2.5 10 Pyruvate 1.63 
 0.05 23 
 1

20 2.83 
 0.10 27 
 1
S-Allylmercapto-L-cysteine 2 2.5 90 Pyruvate 2.20 
 0.05 156 
 5

180 4.98 
 0.05 136 
 2
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It has long been known that cystathionine �-lyase can cata-
lyze �-elimination reactions with suitable substrates (e.g. cys-
teine, cystine) (44). We used S-allylmercapto-L-cysteine as a
model �-lyase substrate of cystathionine �-lyase. The relatively
low, but easily detectable activity with S-allylmercapto-L-cys-
teine (Table 6) is consistent with our previous findings (34). We
then determined whether MSC is a �-lyase substrate of cystathi-
onine �-lyase. Table 6 shows that MSC is indeed a �-lyase sub-
strate of cystathionine �-lyase. Although cystathionine �-lyase is
ostensibly a �-lyase, it has activity with MSC as a �-lyase substrate
under conditions of the assay (Table 6).

DISCUSSION

The present work describes some catalytic properties of
mammalian KAT enzymes obtained from readily available
sources. Despite the fact that these enzymes are derived from
three different mammalian species, the present work has iden-
tified interesting findings applicable to mammals (including
humans) in general.

Identification of GTL as KAT III/CCBL2—Several lines of evi-
dence are presented here that GTL is identical to KAT III/
CCBL2. The evidence includes previously published data on
substrate specificity, pH optimum, subunit composition, and
Mr. In the present work, we show that highly purified recombi-
nant mKAT III has considerable activity with the glutamine
analog L-albizziin, a previously known substrate of rat liver GTL
(6, 8, 9, 39). Finally, mass spectral analysis provided additional
evidence that GTL purified from mouse liver using L-albizziin
as a substrate is identical to KAT III/CCBL2.

The broad specificity of many aminotransferases has created
some confusion in nomenclature. For example, many workers
refer to GTK as KAT I, despite the fact that glutamine is a much
better substrate than is kynurenine (16). Moreover, glutamine
is present in tissues in concentrations orders of magnitude
higher than that of kynurenine. For example, the concentration
of glutamine in most tissues, including the liver, is in the milli-
molar range, whereas the concentration of kynurenine in liver
has been reported to be �0.4 �M (45). GTL was first described
more than 40 years ago (5, 6, 8). By contrast, KAT III was first
described only relatively recently (22, 23). Moreover, glutamine
is a better substrate of KAT III than is kynurenine. Under con-
ditions of the assays employed by Han et al. (22), the kcat/Km
values for glutamine and kynurenine are 194 and 92 min�1

mM�1, respectively.
mGTL/KAT III/CCBL2 Is a Cysteine S-Conjugate �-Lyase—

The present results show that, as inferred from the gene nota-
tion CCBL2, the mouse gene product (mGTL/KAT III/CCBL2)
catalyzes effective �-lyase reactions with cysteine S-conjugates
that contain a good nucleofuge in the � position. The enzyme
also catalyzes a �-lyase reaction with �-chloro-D,L-alanine. The
order of �-lyase reactivity (TFEC � DCVC � �-chloro-D,L-
alanine � MSC; Table 3) is similar to that noted previously for
its close homologs rat and human GTK (26). Rat kidney GTK
(rGTK) exhibits little or no �-lyase activity toward BTC (Ref. 26
and references quoted therein). Similarly, the present work
shows that mGTL/KAT III has no detectable �-lyase activity
toward BTC. Additionally, we also showed that hKAT II/AAT
has appreciable cysteine S-conjugate �-lyase activity with

TFEC, DCVC, �-chloro-D,L-alanine, and MSC but not with
BTC (Table 4). Previously, we showed that BTC is a �-lyase
substrate of rat liver mitAspAT, although it is less effective than
is TFEC and DCVC (41). In vivo metabolites of BTC have pre-
viously been suggested to be markers of cysteine S-conjugate
�-lyase activity (46). Although this suggestion is undoubtedly
correct, the present study and previous work (47) show that the
ability of BTC, compared with that of TFEC and DCVC, to act
as a substrate of cysteine S-conjugate �-lyases may be limited
especially with the KAT enzymes.

An interesting observation is that unlike some other PLP-
containing enzymes that catalyze �-elimination reactions with
TFEC and DCVC (e.g. mitAspAT), mGTL/KAT III/CCBL2 is
not syncatalytically inactivated by these cysteine S-conjugates.
hGTK/KAT I is also not syncatalytically inactivated by TFEC
(26). This resistance of hGTK/KAT I and mGTL/KAT III/
CCDL2 to inactivation may be due to the fact that there are no
residues within the active site of either enzyme (e.g. cysteine or
lysine; other than the lysine residue bound to PLP co-factor)
susceptible to attack by aminoacrylate or by the eliminated sul-
fur-containing fragment.

The Scope of Cysteine S-Conjugate �-Lyases in Mammalian
Tissues—Ten mammalian PLP-containing enzymes were pre-
viously shown to catalyze �-elimination reactions with cysteine
S-conjugates derived from halogenated alkenes (26). Two of
these enzymes are cystathionine �-lyase and kynureninase.
Eight of these enzymes are aminotransferases. Two other ami-
notransferases, namely GTL/KAT III (Table 3) and AAT/KAT
II (Table 4) may now be added to this list. A �-elimination
reaction with cysteine S-conjugates (or with �-chloro-D,L-ala-
nine) is not a “natural” reaction catalyzed by these enzymes.
These enzymes catalyze a �-elimination reaction when an
amino acid with a strong leaving group in the � position binds
to the active site and reacts with the PLP co-factor. In that case,
electrons will be drawn toward the electronegative moiety (-SX
in XSCH2CH(NH3

�)CO2
�; Equation 4), facilitating a �-elimina-

tion reaction that will compete with the transamination reac-
tion. When the moiety in the � position is a strong electrophile,
as is the case with �-chloro-D,L-alanine, � elimination predom-
inates at the active site of mGTL/KAT III (and AAT-KAT II),
and transamination cannot be detected. On the other hand, if
-SX has weak electron-withdrawing properties, then transami-
nation will predominate over � elimination. Thus, S-methyl-L-
cysteine is a transaminase substrate of rGTK, but not a �-lyase
substrate (24, 27). On the other hand, rGTK and hGTK (24, 27)
catalyze both transamination and �-elimination reactions
approximately equally effectively with MSC. These findings are
in accord with the fact that, because of the weaker nature of the
Se-C bond relative to the S-C bond (48), -SeR(Ar) is a better
nucleofuge than is -SR(Ar). The present work shows that
mGTL/KAT III (and hKAT II), as noted for rGTK and hGTK,
catalyzes competing transaminase and �-lyase reactions with
MSC. The extent to which these current reactions occur in vivo
will depend upon the tissue distribution or cellular content of
cysteine S-conjugate �-lyases/aminotransferases.

Role of KAT Enzymes in Toxification of Halogenated Alkenes—
A pathway for the metabolism of halogenated alkenes (e.g. tri-
chloroethylene) involves conjugation with glutathione and sub-
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sequent conversion of the glutathione S-conjugate to the
corresponding cysteine S-conjugate (49 –51). The cysteine
S-conjugate �-lyase reaction bypasses the normal detoxifica-
tion of the cysteine S-conjugate to the mercapturate and gen-
erates nephrotoxic thiol metabolites (50 –54). Interestingly, not
only are the cysteine S-conjugates of halogenated alkenes neph-
rotoxic, but even their precursor glutathione S-conjugates and
corresponding mercapturates cause severe renal injury (55).
The present work has extended the number of recognized
mammalian cysteine S-conjugate �-lyases to include the KAT
enzymes GTL/KAT III and AAT/KAT II.

Role of GTL/KAT III and GTK/KAT I in the Metabolism of
Selenium-containing Amino Acids—Considerable epidemio-
logical evidence suggests that diets rich in organoselenium
compounds are chemoprotective (56, 57). In 1999, the SELECT
study was undertaken to evaluate the effects of a selenium-
enriched diet on human prostate cancer. Because vitamin E was
included in one arm of the study, the acronym SELECT (Sele-
nium and Vitamin E Cancer Prevention Trial) was chosen for
the name of the trial. 32,000 men, �55 years of age were to be
studied for a period of 12 years, and the results were originally
scheduled for release in 2011. Early results (as of October 2008),
however, were not encouraging (58). In 2008, the trial’s data
safety and monitoring committee recommended that partici-
pants discontinue taking the study supplements based on an
interim finding of no preventive benefit (59). Because consid-
erable epidemiological evidence suggests that organoselenium
in the diet is chemopreventive, what could account for the con-
tradictory findings of the SELECT study?

Major sources of organoselenium in the human diet include
SM and more importantly MSC (60). Early in the SELECT

study, “selenized” yeast was chosen as the source of organose-
lenium. This dietary source is prepared by growing yeast in a
broth containing inorganic selenite which organifies sele-
nium into metabolites previously dominated by sulfur such
as glutathione, methionine, cystine, and cysteine. Later in
the SELECT study, this mixture of organoselenium was
switched directly to SM.

Our studies suggest that use of SM as the sole dietary source
of organoselenium rather than MSC could account for the
apparent discrepancy in findings of the SELECT study versus
that of other clinical trials which used selenium enriched food
sources (61). We previously showed that the seleno-�-keto acid
analogs of both SM (i.e. KMSB) and MSC (i.e. MSP) are HDAC
inhibitors (Ki � 10 –20 �M) in human prostate and colon can-
cer cells in culture (30, 62, 63). However, MSC, but not SM,
elicited HDAC inhibition in these cells. We have found that
extracts of human prostate cancer cells have no detectable abil-
ity to transaminate SM to KMSB (62). Nor do they exhibit the
ability to convert SM to �-ketobutyrate (and by inference, no
ability to form methylselenol from this amino acid). Because
GTL/KAT III exhibits strong activity toward SM (Table 5), the
finding that the presence of SM does not elicit an HDAC inhib-
itory response in cultures of human cancerous prostate cells
and in cancerous colon cells may be explained by the absence of
GTL/KAT III in these cells. On the other hand, we have shown
that several human cancer cell lines, including prostate and
colon cancers, have GTK/KAT I activity (62, 63). Thus, these
cells are able to convert MSC to the HDAC inhibitor, MSP.

One other factor possibly contributing to the negative find-
ings of the SELECT study should be mentioned. As discussed
above, Okuno et al. (29) have shown that SM is a substrate of

FIGURE 2. Mechanisms for the chemopreventive properties of the major dietary seleno-amino acids. GTK converts MSC to MSP, and GTL converts SM to
KMSB. Both MSP and KMSB are potentially chemopreventive as HDAC inhibitors. In addition, methylselenol (CH3SeH) and its oxidized form (methylseleninic
acid, CH3Se(O)OH) are potentially chemopreventive via redox interactions with redox responsive signal proteins. Methylselenol is generated by a �-lyase
reaction catalyzed by cystathionine �-lyase on SM. Methylselenol is also readily generated from MSC, because this amino acid is a �-lyase substrate of both
cystathionine �-lyase and GTL (and AAT). Cystathionine �-lyase is present in mammalian tissues in high levels in liver and to a lesser extent in kidney and to a
much smaller extent in other tissues. Moreover, we found that GTK activity was more prominent than that of GTL in various human prostate and colon cancer
cell lines. Thus, MSC may serve as a better source of seleno-�-keto acids and methylselenol than does SM in certain human cancers. The use of SM as a dietary
source of organoselenium rather than MSC may explain the failure of the SELECT study (see the text) (modified from Ref. 62).
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mouse liver cystathionine �-lyase. The products of this reaction
are �-ketobutyrate, ammonia, and methylselenol. However,
Suzuki et al. (64) were unable to detect �-elimination of SM
from a rat liver homogenate (a rich source of cystathionine-�-
lyase). Nevertheless, in terms of �-ketobutyrate production, we
have verified the findings of Okuno et al. for the rat enzyme
(Table 6). Interestingly, Suzuki et al. were able to show that rat
liver homogenates efficiently convert MSC to pyruvate, ammo-
nia, and selenite (presumably arising from the demethylation of
methylselenol) (65). Suzuki and colleagues have provided a
strong case that methylselenol and its oxidized form, methyl-
seleninic acid, are chemopreventive by altering the status of
redox responsive signal proteins (64 – 66). These authors have
concluded that MSC is not only a selenium supplement but also
a more promising precursor of the antitumor form of organose-
lenium than is SM, which is currently used in over the counter
selenium supplements (66).

Based on the present findings, the �-lyase activity toward
MSC is catalyzed in rat liver by GTL/KAT III and GTK/KAT I,
both of which are present in relatively high amounts in this
organ (8). We have shown that, under the conditions of our
assay, MSC is a relatively good �-lyase substrate of purified rat
liver cystathionine �-lyase (Table 6). The specific activity of
cystathionine �-lyase in the rat is highest in the liver followed by
the kidney (43). There is little activity in other tissues (43).
Thus, in vivo, the liver is expected to be especially active in
converting MSC to methylselenol and MSP. Similarly, SM was
also shown to be a �-lyase substrate of cystathionine �-lyase,
although less effective than MSC as a �-lyase substrate (Table
6). SM is also a good substrate of GTL. Thus, the liver is
expected to be able to effectively convert SM to methylselenol
and KMSB.

We have investigated the enzymatic profiles of several pros-
tate and colon cancer cell types (62, 63). In all cases, GTK/KAT
I activity could be detected, but not cystathionine �-lyase or
only marginally, GTL/KAT III activity. Thus, MSC, and not
SM, may provide a more promising source of chemopreventive
efficacy associated with methylselenol and the seleno-�-keto
acid, MSP. This enzyme profile provides an explanation for the
apparent lack of effect of SM in the SELECT study and provides
a rational basis for the statement from the Suzuki group that
MSC may be a better chemopreventive agent than is SM. How-
ever, it is possible that SM will be chemopreventive in tumors
derived from the liver or splanchnic tissues, if they retain GTL
and cystathionine �-lyase activities. Fig. 2 summarizes meta-
bolic conversions of both MSC and SM into metabolites that
exhibit promise for cancer prevention and control.
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