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Currently there is an explosive increase of the next-generation sequencing (NGS) projects and related
datasets, which have to be processed by Quality Control (QC) procedures before they could be utilized for
omics analysis. QC procedure usually includes identification and filtration of sequencing artifacts such as
low-quality reads and contaminating reads, which would significantly affect and sometimes mislead
downstream analysis. Quality control of NGS data for microbial communities is especially challenging. In
this work, we have evaluated and compared the performance and effects of various QC pipelines on different
types of metagenomic NGS data and from different angles, based on which general principles of using QC
pipelines were proposed. Results based on both simulated and real metagenomic datasets have shown that:
firstly, QC-Chain is superior in its ability for contamination identification for metagenomic NGS datasets
with different complexities with high sensitivity and specificity. Secondly, the high performance computing
engine enabled QC-Chain to achieve a significant reduction in processing time compared to other pipelines
based on serial computing. Thirdly, QC-Chain could outperform other tools in benefiting downstream
metagenomic data analysis.

ext-generation sequencing (NGS) technologies have become common practice in life science'. Benefited

by NGS technologies, research on microbial communities (also referred to as metagenomics) has been

revolutionized and accelerated to describe the taxonomical and functional analysis of the collective
microbial genomes contained in an environmental sample.

The very first step of NGS data processing is quality control (QC), yet even this step still faces the limitations in
speed as well as difficulties in contamination screening. Metagenomic data, which is composed of NGS data from
multiple genomes (usually unknown in advance), faces a more serious problem if data QC could not be performed
accurately and efficiently.

Raw metagenomic NGS reads might include different types of sequencing artifacts, such as low quality reads
and contaminating reads: (1) Low sequencing-quality reads can significantly compromise downstream analyses.
They are the results from imperfect sequencing instrument property and sample preparation experiments such as
emPCR®. Quality filtering can vastly improve the accuracy of microbial diversity from metagenomic sequencing*
(2) Contaminations caused by impure samples or unsuccessful sample preparation, may introduce genomes other
than microbes in the metagenomic samples. For metagenomic data, high eukaryotic species are usually consid-
ered as contaminations, which have to be identified and filtered before further analyses to prevent the erroneous
results and conclusions. In addition, it is also possible for metagnomic data to contain contaminating sequences
from other microbial communities.

Currently, there are several QC toolkits that could perform metagenomic data quality control. Some repres-
entative QC tools include: (1) FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), which can
evaluate multiple aspects of the raw sequencing data quality, such as per base quality, per base GC content and
sequence length distribution. It provides the user a quick overview of whether the data has any problems, which is
useful for a rough assessment of the data quality. (2) Fastx-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/),
which is a collection of command line tools for short-reads FASTA/FASTQ files preprocessing, including read
length trimming, identical reads collapsing, adapter removing, format converting, etc. (3) PRINSEQ?, which
provides more detailed options for some quality control functions. For example, for the duplication filtration, it
can trim either exact duplicates or 5'/3" duplicates. (4) NGS QC Toolkit®, which is another toolkit for NGS data
quality control, comprised of tools for QC of sequencing data generated using Roche 454 and Illumina platforms.

However, most of current available tools have some functional limitations in the QC process. For example,
FastQC, Fastx-Toolkit, PRINSEQ and NGS QC Toolkit cannot identify de novo contaminating sources, which are
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usually not available in advance. Moreover, the processing speed of
them has become another bottleneck in handling large amounts of
NGS data. We previously reported QC-Chain, a fast and holistic NGS
data QC package, which can perform fast and de novo contamination
screening on NGS genomic data’. Here we compared and evaluated
the QC performance of different QC tools for metagenomic data in
aspects of accuracy, efficiency and functions. The QC effect of these
methods was also assessed on several real and simulated metage-
nomic data.

Methods

QC tools. Several publicly available NGS data QC tools, including QC-Chain,
FastQC, Fastx_Toolkit, NGS QC Toolkit and PRINSEQ were compared in terms of
function, accuracy and speed using simulated and real sequencing data. Their QC
effect was evaluated by downstream analysis, including metagenomic assembly using
IDBA_UD?® and functional annotation using MG-RAST” with default parameters.

Datasets and Experiments. To assess the performance of the QC tools, both real and
simulated metagenomic datasets were used. To generate the simulated data, all
reference genomes were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/)
and all simulated datasets were obtained by DWGSIM 0.1.8 (https://github.com/
nh13/DWGSIM) from the microbial and eukaryotic reference genomes. Pair-ended
sequences were created with an insert-size of 500 bp between two ends, an average
error rate of 1% and read length of 70-100 bp.

A total of three simulated datasets and two real sequencing dataset were generated
(Table 1), with details described as below.

Dataset A (simulated dataset). Dataset A contains three simulated metagenomic data,
which were designed to contain fixed diversity of targeting metagenome (involving 10
bacterial genomes) and different number of contaminating species (2, 10 and 15 high
eukaryotic genomes), named 2C/10T, 10C/10T and 15C/10T, respectively (Here C
and T represent “contaminating and targeting genome”, respectively). These datasets
simulated contaminations with different complexity (different number of contam-
inating genomes and different proportions) and were used to evaluate both the
accuracy and efficiency of contamination screening functionality. Specifically, ten
microbial genomes, including Clostridium thermocellum, E.coli, Actinomyces nae-
slundii, Fusobacterium nucleatum, Thermoanaerobacter ethanolius, Porphyromonas
gingivalis, Bacteroides salanitronis, Streptococcus mitis, Streptococcus sanguinis and
Streptococcus oralis were used as microbial genomes in metagenomic sample, together
with some high eukaryotic reference genomes as contaminations. The eukaryotic
genomes were selected randomly and cover various phylogenetic distinct species,
including human, plant, algae, insect, etc. Details of the dataset A are listed in Table S1
in supporting information File S1.

Dataset B (real saliva microbiota dataset). Real data usually have multiple sequencing
artifacts, therefore, dataset B, which contains four real sequencing data was used to
assess the effectiveness of QC-Chain in read-quality assessment and trimming.
Human saliva DNA samples from four persons were sequenced by Illumina Hiseq
2000 with average read length of 100 bp and pair end insert size of 400 bp. Details of
the dataset B are listed in Table S2 in supporting information File S1.

Dataset C (real dataset with different sizes). Dataset C contains three real sequencing
data (c1, c2 and c3) with different data size 0of 2.2 G, 5.9 G and 14.0 G, respectively. The
DNA was sampled from human saliva and the dataset was used to compare the speed
of different QC tools in read quality trimming. Details of the dataset C are listed in
Table S3 in supporting information File S1.

Dataset D (simulated dataset with genomic data as contamination). Dataset D was
generated to simulate human oral community with 13 bacterial genomes at the
sequencing coverage of 20X. Reads simulated from human genome were integrated as
contaminations. It was used to evaluate the QC effect based on downstream

functional analysis. Details of the dataset D are listed in Table S4 in supporting
information File S1.

Dataset E (simulated meta-meta dataset). For metagenomic samples, in addition to
contaminating genomes from high eukaryotic species, sequences from other
microbial community is another possible contamination (also referred to as
“meta-meta contamination”). Dataset E contains three simulated data (el, e2
and e3) by mixing contaminating metagenomic data into targeting metagenomic
data (the metagenomic data as research objective). The targeting data used the
same simulated human oral community as dataset D at different sequencing
coverage of 20X, 14X and 6X, respectively, and the contaminating data simulated
human gut environment with 12 bacterial genomes at the sequencing coverage
of 2X. Details of the dataset E are listed in Table S5 in supporting information
File S1.

All of the experiments were performed on a rack server with Intel dual Xeon E5-
2650 CPU (2.0 GHz, 16 cores in total, supporting 32 threads), 64 GB DDR3 ECC
RAM and 2 TB HDD (Hard Disk Drive).

Measurements: Sensitivity and Specificity of contamination screening. For
metagenomic data, high eukaryotic species are usually identified as contaminations.
We measured the sensitivity (True Positive Rate, TPR) and specificity to evaluate the
classification performance of QC tools in contaminating species (Formula 1 and
Formula 2). Here, species that were classified to those involved in the simulated data
were considered as true positive (TP). Species that were identified by QC tool, but not
involved in the simulated data were considered as false positive (FP). All eukaryotic
species involved in the designed simulated data were considered as ground truth
(GT).

TP
Sensitivity(TPR) = e x 100% (1)

P
Specificity = TP EP % 100% (2)

Specifically, among the assessed QC tool, only QC-Chain could provide the
functionality of contamination identification and genomic contaminating species is
identified based on 18S rRNA sequences. The proportion of aligned 18S reads to a
species was closely associated with the identity of this species: larger proportion of
aligned 18S reads would usually indicate better identification of the species. However,
false identifications might arise from the erroneous 18S alignment. Therefore, we set
different threshold of “alignment proportion” (defined as the proportion of 18S reads
identified from a specific species out of all identified 18S reads by QC-Chain) to test
the accuracy of contamination identification. The sensitivity and specificity were
calculated with alignment proportion threshold of 0.5%, 1%, 2%, 3% and 4%,
respectively.

Measurements: Efficiency. The assessment of QC efficiency consisted of two aspects:
(1) the efficiency of quality assessment and trimming, which was performed on real
sequencing data (Dataset B) and (2) the efficiency of contamination screening, which
was performed on simulated data (Dataset A). Speed of the tested QC tools was
compared based on Dataset C, which includes three data with different data sizes.
Parameters for the efficiency assessment included base trim to read length of 90 bp,
quality filtration to only keep reads that contain 90% of high quality bases (quality
score is greater than 20 in Sanger scale), duplication trim, tag sequences filtration and
pair-end information retrieval.

To evaluate the detailed efficiency of QC-Chain on different number of CPU cores,
we configured the number of thread to be 1, 4, 8, 16, 24 and 32, respectively.

Pilot experiment of meta-meta contamination screening. For metagenomic data,
sequence from other microbial community could be possible contamination as well
(meta-meta contamination). For meta-meta contamination screening, QC-Chain
identified the species in the mixed data based on 165/18S rRNA by BLAST

Table 1 | Summary of metagenomic datasets used in this study

Dataset Type # data Feature Purpose of test

Dataset A Simulated 3 Data with different number of contaminating  Accuracy and efficiency of QC-Chain in

high eukaryotic species contamination screening

Dataset B Real 4 Data with sequencing artifacts Efficiency of QC-Chain in read-quality assessment
and trimming

Dataset C Real 3 Data with different data sizes Comparison of the speed of different QC tools in read
quality assessment and trimming

Dataset D Simulated 1 Data for functional analysis Comparison of the QC effect of different QC tools
based on downstream analysis

Dataset E Simulated 3 Data with metagenomic contaminations Evaluation of QC-Chain in meta-meta contamination
screening
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Figure 1 | Accuracy of contamination screening by QC-Chain. (A) Sensitivity. (B) Specificity. (C) ROC curve. Simulated Dataset A with 2, 10 and 15
contaminating species (2C/10T, 10C/10T and 15C/10T, refer to Table S1 in supporting information File S1) was used as the testing data.

(http://blast.ncbi.nlm.nih.gov/) based read alignment. Since the coverage of the
targeting genomes was usually significantly higher than contaminating genomes, QC
could remove the reads identified from low coverage genomes by BLAST, which had
high possibility for being contaminating sequences.

Results and Discussion

In this section we have firstly evaluated the performance of QC-
Chain, including accuracy and efficiency. Then we have compared
the functions and features of different QC tools. The effects of QC on

downstream analyses have then been evaluated. Finally the results on
screening and removal of meta-meta contaminations have been
assessed.

1. Evaluation of the performance of QC-Chain. (1) Accuracy for
contamination screening. Here as QC function of contamination
screening is only provided in QC-Chain, we have assessed the
contamination screening accuracy and efficiency of QC-Chain.
The assessments were performed using simulated data (Dataset A),

Table 2 | Comparison of the main features of the Next Generation Sequencing data quality control tools
QC-Chain PRINSEQ NGS QC Toolkit Fastx_Toolkit FastQC
Availablility Scripts Scripts; Web-based Scripts Scripts; Web-based  Scripts
Language C++ Perl Perl C++ Java
Input file FastQ, FastA FastQ, FastA FastQ, FastA FastQ, FastA FastQ, SAM, BAM
Output file Text; graph Text; graph Text, graph, HTMLfile  Text; graph Graph, HTML file
Operating system Linux Linux, Windows, Linux; Windows Linux, MacOS, BSD,  Linux; Windows;
MacOS, BSD, Solaris Solaris MacOS
Parallel computing multithread and No multi-thread and multi No No
multi CPU based CPU based

Read-quality Yes Yes Yes Yes Only read- quality

assessment and assessment

trimming
Contamination screening  de novo identification No No No No
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Figure 2 | Running time of read-quality assessment and trimming by QC-
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since the background information of simulated datasets, such as the
source species of simulated genomes, read length, coverage, and
proportion of reads from each source genome is clear.

Sensitivity (TPR). TPR measured the proportion of actual positives,
which were correctly identified as such. Generally, under the lowest
alignment proportion of 0.5%, the sensitivities for contamination
identification of QC-Chain for all the three simulated datasets were
as high as 100% (Figure 1(A)). For 2C/10T, which involved two
eukaryotic contaminating species, the identification sensitivity
remained high at 100% from threshold 0.5% to 3%. For the simulated
data with more contaminating species (10C/10T and 15C/10T), all
the contaminating species can be identified (TPR=100%) under a
relatively low threshold (0.5 ~ 1% for 10C/10T and 0.5% for 15C/
10T) (Figure 1(A)). Therefore, QC-Chain was able to identify all true
contamination species in datasets with both few (such as 2C/10T)
and many (such as 10C/10T and 15C/10T) of eukaryotic species as
contaminations. However, with the increase of alignment proportion
threshold, the sensitivity decreased yet showed different decreasing
patterns (with turning points at 1% or 3% alignment proportion)
based on different simulated datasets (Figure 1(A)).

The varying sensitivity was rational. When generating the simu-
lated datasets, the contaminating species with different genome size
were randomly selected. For example, in 2C/10T, the genome size of
Chlamydomonas reinhardtii is approximately 120 Mbp, while that
of the Homo sapiens is as large as 3 Gbp. Therefore, even when
generating the simulated reads from each genome using different

coverage (0.3X for human and 2X for Chlamydomonas), the abso-
lute number of both the total reads and 18S reads for each species
would significantly differ (Table S1 in supporting information File
S1). The larger genome size, the fewer 18S reads in the simulated
data. Consequently, when the alignment proportion was higher than
the proportion of 18S reads of a species, species was filtered and
cannot be successfully identified as contaminating species. In 2C/
10T, the proportion of 18S reads from Chlamydomonas was approxi-
mately 3%. Therefore, when the alignment proportion was set to be
4%, the algae cannot be identified. Similarly, for 10C/10T and 15C/
10T, species whose 18S reads proportion was lower than the align-
ment proportion was filtered, which lead to the decrease of TPR with
the increase of alignment proportion.
Specificity. Specificity was used to measure the proportion of the
number of true positives out of all the number of identified species
by QC-Chain. Generally, the specificity increased with the improve-
ment of alignment proportion. Specifically, for an alignment propor-
tion of 2%, the specificity was 100% for 15C/10T and 88.9% for 10C/
10T, respectively. When the alignment proportion was equal to or
higher than 3%, the 18S reads were 100% correctly identified with no
false positive (Figure 1(B)). In 2C/10T, under the same alignment
proportion, the specificity was lower than that of 10C/10T and 15C/
10T. Nevertheless, 100% specificity was observed when the align-
ment proportion was set to 4% (Figure 1(B)).

The primary reason for the lower (than 100%) specificity under
certain alignment proportions was the false identifications for 18S
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was used as the testing data.

reads. It was possible that some of the 18S reads were randomly
classified to species sharing similarity on 18S sequences.
Theoretically, the false identified species could be filtered by
alignment proportion threshold. Therefore, 100% specificity was
observed with the alignment proportion of 4% for all the three
simulated datasets. However, when the 18S sequences of different
species were in high identity, due to the limitation of currently
available alignment algorithm that could be employed by QC-
Chain, some reads were misclassified. Under certain conditions,
the users have to manually exclude some species with highly
identical 18S sequence to that of the plausible contaminating
species. For example, it was difficult to exactly distinguish human
and mouse by 18S sequences alignment, since they have 99%
identity in 18S sequences. Therefore, to reduce false identifica-
tion, we excluded mouse 18S sequences from the reference data-
base and thus removed the interferences from mouse genome. In
real case, such discrimination relies on the users’ information on
both sample background and sequencing experiment envir-
onment, under which circumstances contaminations might be
induced.

Receiver operating characteristic (ROC) curve. To further evaluate the accu-
racy of QC-Chain in discrimination of contaminating species, ROC
curves were plotted based on the sensitivity and (1-specificity) of the
three simulated datasets (Figure 1(C)). The area under the ROC

curve (AUC) is an important index for measuring the perform-
ance of a classification. The larger the AUC, the better was overall
performance of the test to correctly discriminate the contaminat-
ing and targeting sequencing species'’. For 10C/10T, the AUC was
approximately 0.89, indicating well and close to excellent discrim-
ination of contaminating species (Figure 1(C)). For 2C/10T and
15C/10T, both the AUC were approximately 0.75 (Figure 1(C)),
which suggested a less accurate discrimination than that for 10C/
10T, but was still rational for identification of contaminating spe-
cies. These results were also consistent with those sensitivity and
specificity analyses.

(2) Efficiency analysis
High performance computing for read-quality assessment and trimming by QC-
Chain. Generally, real sequencing data may encounter various read
quality issues, such as low quality bases, poor quality reads and tag
sequences. Besides, the information about potential contaminating
species is usually not available. Therefore, we evaluated the efficiency
of QC-Chain in read-quality assessment and trimming with real
sequencing data. All real data of Dataset B (Table S2 in supporting
information File S1) were processed for read-quality assessment and
trimming.

From the analysis of total running times, we observed that for an
input data with size of 30 GB, QC-Chain could complete all quality
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assessment and trimming process within 30 minutes (exact running
time was 28m30.14 s). The speed up (>4 times) of parallel computa-
tion using 16 threads compared to the time cost based on single
thread was very significant (Figure 2(A)); However, speed up based
on using more threads seemed to have little boost compared to
thread number of 16.

Since the quality control computation was both computation-
intensive and data-intensive, we focused on two different types of
computation: (a) data computing in RAM, and (b) I/O operations for
data loading and writing between RAM and HDD. Then we focused
on the running time of these two different processes separately.

QC-Chain

Fastx_Toolkit

NGS QC Toolkit

Prinseq

Speed up of parallel computing in RAM: Firstly we analyzed the
speed up of parallel computing of the quality assessment and trim-
ming (Figure 2(B)). From the results we found that there was a turn-
ing point in the average speed-up curve across the 4 datasets
(indicated by yellow curve in Figure 2(B)) at thread-number of 16,
where the speed up tended to be slowed-down. This was largely due
to the reason that our CPU had 16 physical cores, and threads more
than 16 will be rotated for scheduling thus would not significantly
improve efficiency.

In the quality assessment and trimming steps, processes of base
trimming, quality trimming and tag sequence trimming could all be

W quality filtered
M duplications
W tag sequences

® high quality reads

o
[
o

Number of reads (M)

Figure 5 | Comparison of read-quality assessment and trimming using different QC tools. Real sequencing Dataset c2 (refer to Table S3 in supporting

information File S1) was used as the testing data.
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completely in parallel, while duplication trimming could only be
computed serially. Therefore, an average speed up of 5.2 times using
32 threads compared to the serial computing was observed among
the 4 samples.

Efficient of I/O operations: We also checked the time consumption
of I/O operations in this process. Considering that the time cost of I/
O operations was same among different threads number, we only
evaluated the 1/O efficient of 32 threads computing and normalized
the bar chart of 32 threads in Figure 2(B), and analyzed the ratio of
computing and I/O operations compared to total running time
(Figure 2(C)). Yellow curve indicated the I/O bandwidth between
RAM and HDD, which was calculated by the average of input band-
width (input data size/loading time) and output bandwidth (output

data size/saving time), and the overall average I/O bandwidth of the 4
real datasets was 58.6 MB/s. From these results, we observed that the
I/O operations cost more than 50 percent (also referred to as “I/O
rate”, exact I/O rate is 52.91%) of the total computational time on
average, indicating that I/O bandwidth limited the computing
throughput for massive data.

High performance computing for contamination screening by QC-Chain. In the
contamination screening part, 185 rRNA reads of each simulated
data in Dataset A (Table S1 in supporting information File S1) were
extracted and mapped to Silva 18S database' to detect the contam-
inating species, respectively. The contamination screening on the
simulated data 15C/10T (with 20 GB size) can be completed within
25 minutes (running time is 22m4.24s) (Figure 3(A)). We also sepa-
rately tracked the time cost of data computing and I/O operations
similar to those in the previous section.

Speed up of parallel computing in RAM: For the computing time
cost, the inflection point also appeared at the thread-number of 16 in
the speed up rate curve (Figure 3(B), indicated by yellow) due to the
same reason as the read-quality assessment and trimming. In the
computing part of the contamination screening, all tasks can be
parallelized to fully utilize the computing resources of multi-core
CPU; therefore we got an average speed up of 14.3 on a 16 core
CPU compared to the serial computing of contamination screening
process with the 3 simulated datasets.

Efficient of 1/0 operations: Similar to the read-quality assessment
and trimming, we evaluated the I/O efficient of 32 threads and showed
the percentage of computing and I/O operations in Figure 3(C).
Yellow curve showed the average I/O bandwidth was 58.2 M/s among
the 3 datasets of Table S1 in supporting information File S1.

Moreover, since the I/O operations took high proportion of total
running time in both the read-quality assessment and trimming
(average “I/O rate” was 52.91%, Figure 2(C)), while the contamina-
tion screening (average “I/O rate” was 52.68%, Figure 3(C)), I/O
operations was considered as the bottle-neck of QC-Chain due to
the low bandwidth, which could be significantly improved up to
300 M/s by replacing HDD to SSD (Solid State Disk) to accelerate
the I/O operation more than 5 times.

W QC-Chain with 100% reads
H RRS with 0.01% reads
1 RRS with 0.1% reads

M RRS with 1% reads

1000000 -
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L 10000 -
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Figure 7 | Comparison of the speed of contamination screening. The Y-axes was in 10-based-log scale. Simulated Dataset A (2C/10T, 10C/10T and 15C/
10T, refer to Table S1 in supporting information File S1) was used as the testing data.
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2. Comparison of several QC tools. (1) Comparison of functionalities.
QC-Chain, FastQC, Fastx_Toolkit, NGS QC Toolkit and PRINSEQ
were compared in terms of functions. Most of the QC tools are
easily configurable and can export the results in summary graphs
and tables. However, they have some differences and limitations in
functionalities.

FastQCis a classic and early publicly available QC tool, which aims
to provide a QC report that can spot problems that originate either in
the sequencer or in the starting library material. However, it lacks
read/base processing functions such as length trimming, quality fil-
tration and duplication filtration, thus compromises the QC effect on
downstream analysis.

Fastx_Toolkit includes basic QC modules such as read length
trimming, format converting, and they are easy-to-install and use.
However, it lacks contamination screening functionality, and it has
not released new updated version since Feb 2010.

NGS QC Toolkit is suitable for Roche 454 and Illumina platforms.
However, similar to Fastx_Toolkit, it lacks contamination screening
functionality, and it is complicated to use several scripts in this pack-
age when multiple QC procedures are required.

PRINSEQ provides more detailed options for some quality control
functions. However, PRINSEQ lacks some essential QC functions
such as tag sequence removal.

For another critical QC function of contamination screening, nei-
ther of FastQC, Fastx_Toolkit or NGS QC Toolkit can give the pos-
sible contaminating information'>. PRINSEQ wuses principal
component analysis (PCA) to group metagenome samples based
on dinucleotide abundances, thus it can help to investigate whether
the correct metagenomic sample was sequenced from similar envir-
onments. However, as samples might be processed using different
protocols or sequenced using different techniques, this feature
should be used with caution. Moreover, it cannot provide accurate
and detailed information of the contaminating species and thus
cannot be used to identify genomic contamination. More compar-
ison on function of these QC tools was shown in Table 2.

(2) Comparison of contamination screening. Due to huge data size
and complex contamination scenario for high-throughput sequen-
cing experiments, to our knowledge, there is no contamination
screening function included in contemporary QC methods other
than QC-Chain. A potential comparable contamination screening
method is the brute-force approach: to annotate the reads by align-

ment method such as BLAST search, but it is very time-consuming.
Currently, random reads selection (RRS) is widely used for contam-
ination screening. The RRS method selects sequences from the ori-
ginal input file randomly with a set rate, and then maps those selected
sequences to a reference database for contamination identification.
Here we compared the contamination screening accuracy of RRS
with QC-Chain. We set the RRS rate to be 0.01%, 0.1% and 1%,
and used the NCBI NT (database date: May 07, 2014) as the reference
database.

RRS method could also identify the contamination species with
high sensitivity when the threshold was set to 0.5% and 1% in all
samples (Figure S1 (A-C)). However, the false positive rate of RRS
method were quite high, which made the specificity were signifi-
cantly lower than QC-Chain (at threshold of 2%, the average specifi-
city of 2C/10T was 18.28%, 10C/10T was 65.56% and 15C/10T was,
77.78%), and no 100% specificity was observed in all samples with
any RRS rate and threshold of “alignment proportion” (Figure S1
(D-F)). We also calculated the AUC of RRS method with the 3
samples and compared to QC-Chain (Figure 4(A-D)). The average
AUC of 3 RRS rate for 2C/10T, 10C/10T and 15C/10T was 0.66,
0.69 and 0.69, respectively (Figure 4), which indicated the much
lower performance of contamination screening than QC-Chain
(Figure 4(E)).

(3) Comparison of read-quality assessment and trimming. The per-
formance of read-quality assessment and trimming by different tools
was compared using the simulated dataset c2. Three general read-
quality trimming procedures, including quality filtration, duplica-
tion removal and tag sequences filtration were selected to assess
the effects of the tested QC tools (Figure 5). Both QC-Chain and
Fastx_Toolkit completed all the three functions. NGS QC Toolkit
removed low sequencing quality reads and tag sequences, but cannot
filter duplications. PRINSEQ can remove duplications, but lacked
the other two filtering functions. For different QC tools, there was
slight difference in the number of removed reads of each step,
because they applied different computational algorithm.

(4) Comparison of processing speed. With the rapid increase in
sequencing instrument throughput and data size, processing speed
of bioinformatics tools has become another bottleneck for the meta-
genmoic data analysis. We compared the speed of different QC tools
using Dataset C (Table S3 in supporting information File S1). QC-
Chain was the fastest one among the testing tools, showing an aver-
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Simulated Dataset E (el, e2 and e3, refer to Table S5 in supporting information File S1) was used as the testing data.

age of 11.7 times faster than PRINSEQ, 6.2 times faster than NGS QC
Toolkit and 5.0 times faster than Fastx_Toolkit (Figure 6).

As the processing of each read (or read pairs) was independent,
QC-Chain appointed weighted and balanced tasks, each including a
suitable number of reads (which was dependent on both the total
read number and the assigned CPU core number), to different
threads, which were then processed on different CPU cores simulta-
neously and in parallel. In addition, all procedures were conducted
with only one disk I/O operation, which significantly improved the
efficiency of analysis, especially for huge dataset. Therefore, QC-
Chain could serve as an efficient computational tool to enable fast
NGS data QC. NGS QC Toolkit applies multiprocessing and multi-
threaded approaches as the parallel computing technology. However,
similar to Fastx_Toolkit, NGS QC Toolkit realizes different QC func-
tions using several separate scripts, therefore, the I/O operation took
place in every step which may significantly prolong the whole run-
ning time. PRINSEQ did not apply parallel computing technology,
therefore, its speed was very slow, especially when processing data
with huge size. By FastQC, although only data quality evaluation (no
read processing) procedure was executed, it was still slower than QC-

Chain. In addition, only QC-Chain included contamination screen-
ing function. Therefore, considering the multiple QC functions, both
the speed and efficiency of QC-Chain was apparently superior to
other tools.

We also compared the running time of QC-Chain with random
reads selection (RRS) for contamination screening with Dataset A
(Table S1 in supporting information File S1). For the RRS method we
used the same selection rate (which are 0.01%, 0.1% and 1%, respect-
ively) and reference database as in the accuracy test, and also set the
thread number to 16. From the results in Figure 7 we can observe that
the RRS cost 60.15 hours to finish the contamination screening of
data 15C10T with selection rate of 1%, while QC-Chain took less
than 25 minutes. Thus QC-Chain was 1.87 times faster than the RRS
with selection rate of 0.01% on average, 16.20 times faster than RRS
with selection rate of 0.1% and 167.55 times faster than RRS when the
selection rate was set to 1%.

(5) Comparison of QC effects based on downstream analysis.
Contamination is a frequently occurring and serious problem for
NGS metagenomic data. For microbial community from human
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body or other species, it is common that reads from host could be
sequenced in the sample. For metagenome from open environment,
such as soil metagnome, the sample is easy to be contaminated by
genomes from eukaryotic species that shares the living environment
with them. In addition, contamination could also be induced during
the metagenomic sample and sequencing library preparation pro-
cesses. In most instances, people are not aware of whether there is
contamination and what the contamination could be. Therefore, the
de novo contamination screening is an absolutely necessary proced-
ure of quality control. Unfortunately, none of the tested QC tools can
help to give us such information, except QC-Chain. Dataset D (Table
S$4 in supporting information File S1), which simulated the human
oral metagenomic data with some contaminating reads from human
genome, was used to evaluate the effect of QC tools based on down-
stream analysis results. QC-Chain identified human as the main
possible contaminating source by 18S rRNA classification, and
removed the contaminating reads as many as possible.

Downstream analyses were performed with the simulated dataset
D (pre-QC data, including simulated oral metagenomic and simu-
lated human genomic sequences) and the post-QC data (data pro-
cessed by QC tool). As a groundtruth, the pure simulated oral
metagenomic data (referred to as “pure metagenomic data”) was also
analyzed and compared. Notice that as only QC-Chain could per-
form contamination screening, results based on pre-QC data could
be considered as the results from QC tools other than QC-Chain;
results based on post-QC data were only produced by QC-Chain;
while results based on “pure metagenomic data” could be considered
as the control results.

These three sets of data were assembled and then annotated by
MG-RAST using the same pipeline, respectively. Significant differ-
ences of the assembled sequences, predicted rRNA features, iden-
tified protein features and identified functional categories were
observed between pre-QC and post-QC data (t-test p-value =
0.030), as well as between pre-QC data and pure metagenomic data
(t-test p-value = 0.028) by statistics analysis, while the difference
between the post-QC data and pure metagenomic data were not
significant (t-test p-value = 0.393) (Figure 8). Apparently, the QC
process, specifically the contamination identification and removing
process remarkably benefited the downstream analysis, ensuring a
reliable analysis result obtained from the post-QC data. On the other
hand, the results indicated that the metagneomic data, which may
involve contaminating reads from high eukaryotic species cannot be
directly used and must be checked by the contamination screening
procedure to confirm its purity before further analysis.

(6) Advanced functionality: Metagenomic contamination screening
and filtration in metagenomic data. For metagenomic samples, con-
tamination from metagenomic data (meta-meta contamination) is
also a serious concern to the data quality, since they could directly
affect the taxonomy analysis results and cause erroneous conclu-
sions. Few QC tools provide meta-meta contamination screening
function. PRINSEQ tries to identify microbial community contam-
ination by PCA plots based on dinucleotide abundances, however the
accuracy and efficiency are very limited®.

The situation of meta-meta contamination could be very complex,
for example, the number of bacterial species in the targeting and
contaminating community may vary, and the number of contam-
inating community could also be different. Here we just try to use
QC-Chain to do some preliminary tests based on the most simple
simulated meta-meta contaminating dataset with the assumption
that the coverage of contaminating metagenome is remarkably lower
than that of the targeting metgenome.

Among the three simulated data in Dataset E, rate of targeting
reads was raised up to 96.3% on average by QC-Chain in the post-QC
data (Figure 9(A)). We further evaluated the effect of the QC process
by downstream comparison analysis. We used Parallel-META" to
generate the microbial community structures, and then calculated

the similarity of structures based on Meta-Storms'* with mixed data
and post-QC data to the targeting data, respectively. Compared to
the similarity between mixed data and targeting data, the post-QC
data showed a much higher similarity to the targeting data (Figure
9(B)), which indicated that the quality control processes provided by
QC-Chain improved the purity of the input meta-meta data for
downstream analysis.

3. General principles of using QC pipelines for metagenomic data.
The NGS techniques have significantly advanced metagenome
research these years. The very first processing step of NGS data,
including metagenomic data, is quality control, which requires
performing in an efficient and automatic manner. Traits for a high
performance QC tool includes (1) high efficiency, which indicates a
fast data processing and computation; (2) the ability to identify
contaminations with high accuracy, which can identify
contaminations from multiple sources and types; (3) holistic
solution, that could cover the QC processes from raw reads to
ready-to-be-used clean reads.

Conclusion

NGS data quality control is a critical step for follow-up meaningful
analyses for metagenomic data. Quality control procedure usually
includes identification and filtration of sequencing artifacts such as
low-quality reads and contaminating reads. Quality control of meta-
genomic data for microbial communities is especially challenging.

In this study, the function, accuracy and efficiency of several QC
tools and methods were assessed and compared. Among the tested
QC tools, QC-Chain could provide a de novo, parallel-computing
and extendable solution for quality assessment and contamination
screening of metagenomic NGS data. Results on simulated and real
metagenomic datasets have shown that QC-Chain is accurate and
fast for metagenomic data QC. In addition, it could significantly
improve the accuracy of downstream metagenomic taxonomy and
function analysis. Therefore, it can serve as a highly efficient QC
method for metagenomic data QC.

Current QC tools could be further improved in efficiency, accu-
racy and compatibility: firstly, the efficiency could be improved for
users having advanced machines with GPU or high-performance
cluster. Secondly, the accuracy could be improved by analyzing the
per-base or per-read quality distribution, and by considering more
complex source of contaminations such as viruses (those without
general biomarkers). Thirdly, the compatibility could be further
improved by smart detection of input file formats or combinations.
All these improvements will be important for metagenomic data QC
that has been facing with NGS “big data”, and these improved func-
tions are desirable to be implemented in the updated version of QC
tools.
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