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We consider the dilute regime of active suspensions of
liquid crystalline polymers (LCPs), addressing issues
motivated by our kinetic model and simulations in
Forest et al. (Forest et al. 2013 Soft Matter 9, 5207-
5222 (doi:10.1039/c3sm27736d)). In particular, we
report unsteady two-dimensional heterogeneous
flow-orientation attractors for pusher nanorod
swimmers at dilute concentrations where passive
LCP equilibria are isotropic. These numerical limit
cycles are analogous to longwave (homogeneous)
tumbling and kayaking limit cycles and two-
dimensional heterogeneous unsteady attractors
of passive LCPs in weak imposed shear, yet these
states arise exclusively at semi-dilute concentrations
where stable equilibria are nematic. The results in
Forest et al. mentioned above compel two studies in
the dilute regime that complement recent work of
Saintillan & Shelley (Saintillan & Shelley 2013 C. R.
Physique 14, 497-517 (doi:10.1016/j.crhy.2013.04.001)):
linearized stability analysis of the isotropic state for
nanorod pushers and pullers; and an analytical-
numerical study of weakly and strongly sheared
active polar nanorod suspensions to capture how
particle-scale activation affects shear rheology.
We find that weakly sheared dilute puller versus
pusher suspensions exhibit steady versus unsteady
responses, shear thickening versus thinning
and positive versus negative first normal stress
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differences. These results further establish how sheared dilute nanorod pusher suspensions
exhibit many of the characteristic features of sheared semi-dilute passive nanorod suspensions.

1. Introduction

In the last decade, suspensions of active (self-propelled) particles have attracted much attention
and interest due to their relevance in pathology [1], ecology [2,3] and material science [4-6],
yet perhaps mostly because of their remarkable coherent, self-organized behaviour on scales
far removed from the individual particle species. Examples of active suspensions include
swimming microorganisms, such as bacteria and microalgae, and synthetic nanoparticles that
propel themselves via chemical reactions or external imposed magnetic fields. These swimming
mechanisms have the common feature that each self-propelling particle exerts a propulsive force
on the surrounding fluid resulting in fluid disturbances and hydrodynamic particle interactions
that saturate in long-range aggregation and flow behaviour and bulk rheological properties. We
refer the reader to several recent review articles [7-12] for a complete literature discussion.

In [13], we derived a kinetic model for polar active liquid crystalline polymers (ALCPs),
that is, ensembles of polar, large molecular weight, rigid rod ‘swimmers’ in a viscous solvent.
In the model, polarity and particle-activation physics are coupled to the Doi-Hess theory for
passive liquid crystalline polymers (LCPs) [14-18]. It extends the polar hydrodynamic active
liquid crystal model of Giomi, Marchetti and co-workers [9,11,19-23] and the active micro-
rod suspension model of Saintillan & Shelley [24,25] to active large molecular weight rods at
arbitrary equilibrium volume fractions. The resulting Doi-Hess-Smoluchowski equation inherits
contributions due to spatial inhomogeneity and translational diffusion of the rod number density,
rod polarity and self-propulsion, and the hydrodynamic equations inherit additional extra stress
contributions. By suppression of LCP physics, our model recovers kinetic and mesoscopic active
suspension theories of athermal, polar and apolar, micrometre-scale swimmers [7-9,20-22,24-30].
The authors’ full orientation space, two-dimensional physical space, Smoluchowski-Navier—
Stokes solver [31-34] is generalized to the new model and implemented to explore the coupling
of rotational and translational diffusion, nanorod density gradients, polarity and self-propulsion,
and flow feedback through polar and nematic stresses.

As noted in the abstract, the striking observations of unsteady heterogeneous ALCP attractors
at dilute concentrations are strongly reminiscent of weakly sheared passive LCP attractors at
semi-dilute concentrations. It is natural then to explore how dilute ALCPs respond in bulk
imposed shear. There is a rich history of sheared passive liquid crystals and semi-dilute
LCPs, and the remarkable tumbling, wagging, and kayaking limit cycles and pathological
rheological properties that have been explored using dynamical systems tools [18,35,36] in the
longwave, homogeneous (so-called monodomain) limit. Here we extend these analyses to sheared
monodomains of dilute polar ALCPs.

2. Kinetic flow-orientation model of polar active liquid crystalline polymers
from [13]

We recall the fundamental aspects of the kinetic flow-orientation model derived and studied in
[13] for polar ALCPs. We denote the axis of symmetry of the nanorod particle by m, physical space
by x and time by t. We set fg, h and c as the characteristic time, length and ALCP concentration
scales, respectively, and define dimensionless variables as follows:

U S . tov ‘L't% - f

X=—-, t=—, Vv=—, T=—5 and f=-, 2.1

h to h oh? f c @1)

where p is the density of the active material system and v is the extra stress tensor. Other
fundamental physical coefficients in nanorod particle suspensions are: D, and D, the rotational
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Table 1. Glossary of model parameters.

parameter description

a shape parameter of the rod
C characteristic nanorod density
M strength of spatial inhomogeneity

N strength of nematic potential
....................... DeDeborahnumber(normallzedrotatlonalrelaxatlonrate)
""""""""""""" D*  nomalied translational diffusion coeffigent
......................... UOselfpropelledorswmmmgspeedofthenanorod
......................... Gnormahzedamsotroplcstresscoefﬁclent
....................... ResolventReynoIdsnumber
....................... ReZRe_a,ReynoldsnumbersassoaatedWlthrod—solventstresses
......................... aostrengthofpolarnematmstress

and translational diffusion coefficients of the rods; 5 the solvent viscosity; ¢1 and ¢, two
rod-solvent friction coefficients; kg the Boltzmann constant; and T the absolute temperature.
Normalization in terms of the characteristic length, time and stress scales yields the dimensionless
groups arising in the model system of Forest et al. [13]:

1 Dst 2 h?
De=——, Di= 520, R€=p—2, R62=/’72/
toDy h ntg s1ckp Tty
(2.2)
72 3ckgT2 . Upt
Re 4 _ BLIp 0= 0t0

3T ;zckBTt%/ B ph? ’ h’
where Re is the solvent Reynolds number, Re; and Res are the Reynolds numbers associated
with the viscous stresses of the particle-solvent interaction, De is the Deborah number (1/De
is the normalized rotational diffusion coefficient), D} is the normalized translational diffusion
coefficient, G is a normalized anisotropic stress coefficient and Uy is the self-propelled or
swimming speed of the nanorod. For simplicity, we drop the tilde on dimensionless variables
in the following. (A glossary of model parameters is given in table 1.)

The dimensionless equation for the number density function (NDF) f(m, x, ) is then given by
the Smoluchowski equation

4V (v + Uomf) = D2V - (VF + VL)
1 0 0 0 a .
+§a;'<a;f+ a;”)‘a;'(mf)' 23)

where V represents the spatial gradient operator, and 3/dm = (I — mm) - Vy, is the orientational
gradient operator. In this paper, we consider thin films of nanorods so we idealize the nanorods
as two-dimensional objects, following most of the literature and consistent with our numerical
results [13] that show all dilute rod suspensions converge to planar orientation. The non-local
intermolecular potential U is given by

U=Nifp —an-m —2NM: mm (2.4)
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with N1, @ and N representing the dimensionless strengths of the potentials for spatial
inhomogeneity, polarity and nematic order, respectively. Using the notation

(e = fj ()f(m, x ) dm, (2.5)
[lm|=1

c

fo,n and M are defined as
fox, t)y= (1), n(x,t)=(m). and M(x,t)= (mm),. (2.6)
The Jeffery orbit m for each rod in presumed local Stokes flow is
m=W. -m+a4[D -m— D:mmm)], (2.7)

where 0 <a<1 is a geometric particle parameter, a = (r> — 1)/(r> + 1), r is the particle aspect
ratio, and D and W are the symmetric and antisymmetric parts of the velocity gradient tensor,
respectively.
To complete the model, the Smoluchowski equation is coupled with the incompressible
Navier-Stokes equations (with D/Dt =9/dt +v -V ):
Dv

Dr =V (—pl+ Tpassive 1 Tactive) — V(Vit)e, V-v=0, (2.8)

where = 8F/8f is the chemical potential of the ALCP system given by
F:JJ[lnf— 1+ U]f dmdx, (2.9)

and y = ct% /h?p is a dimensionless stress coefficient of the model. The constitutive equations for
passive nematic stress Tpassive and the active stress tactive are given by

Tp = Tyisc T Tvisco-nematic T Tnematic + Tpolar-nematic- (2.10)
where
2
Tvisc = ED,
1 1
Tyisco-nematic = =—[D - M + M - D] + — (mmmm). : D,
REZ Re3
1
Tnematic = 4G |:M — EfOI — NM? + NM: (mmmm)c:| ,
1
Tpolar-nematic = —gaG[Znn — ((mmm); - n +n - (mmm).)]
1
and Tactive = Gla (M - EfOI> ’ (2.11)

where ¢, is the stress activation parameter, which controls the degree and type of stress imparted by
the ensemble of swimming nanorods to the fluid. ¢; <0, respectively >0, correspond to pushers
and pullers; the passive LCP limit corresponds to ¢, =0.

In the dilute monodomain regime, we neglect the long-range hydrodynamic interactions
between particles and assume the suspension is spatially homogeneous as in [37,38], so that the
Smolochowski equation (2.3) reduces to

of 1 9 d ad ad .

= | — —Uu)-—- , 2.12

ot _ Deom <3mf+f8m ) pm @) (212)
the characteristic concentration scale becomes ¢ =1, the zeroth moment of the NDF is fy =1,

and the potential strength (in equation (2.4)) for inhomogeneity vanishes, Ny =0. Note « =0
corresponding to apolar passive LCPs.
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Table 2. Zero wavenumber eigenfunctions and their associated eigenvalues of the linearized differential operator.

k eigenfunction eigenvalue
o —2
1 a sin
______________________________________________________________________________________ e e
oa—2
1 by cos
...................................................................................... e
2V —2
2 @ sin(2g) ( )
..................................................................................................................................................................... De o
2 a4, C0s(2¢) -2
______________________________________________________________________________________ e
kZ
>3 ay sink ——
___________________________________________________________________________________ e T
kZ
>3 by cos(ke) -
De

3. Longwave stability of the dilute two-dimensional nanorod isotropic
equilibrium: necessary conditions on nematic (V) and polar (o) potential
strengths

For the quiescent state, the Smoluchowski equation reduces to (where ¢ is the polar angle of the
axis m, measured with respect to the flow axis (x) of the imposed shear introduced below)

af 1 9 d d
R —u
ot  De dm <8mf+f3m )

1 (9% , ofau  _9*U
L (# ou o) -
De \ 392 = 99 d¢ dg?
The normalization condition f(z)” fde =1 gives the isotropic state
1
-, 3.2
= 62)

whose stability we analyse by setting f =1/27 + ¢f; and substituting into (3.1). As a result, the
linearized operator £ at the isotropic state is given by

2 21 27
L(f1) = é% + (ZfI\;e) |:sin(2<p) (J@ f sin(Z(p)dq)) + cos(2¢) ,[0 f1 cos(2¢) d(p:|

21

o 2
+ (@xDe) |:sin((ﬁ) <L f1sin(p) d(p) + cos(p) Jo f COS((p)d(pi| . (3.3)

Because of the orthogonality of the trigonometric function, the eigenfunctions of the operator
L are scalar multiples of sin(ky), or cos(kg), where k is any positive integer. The eigenfunctions
and their corresponding eigenvalues are summarized in table 2. Note that the eigenvalues are
always negative for k > 3. For k =1 and k = 2, the eigenvalues are (« — 2)/(2De) and 2(N — 2)/(De),
respectively. As a result, the isotropic state is stable provided o < 2 and N < 2. This is consistent with
the result in [39] when the polar and nematic order parameters are used to investigate the stability
of isotropic, nematic and polar states.
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Figure 1. Steady shear flow generated by parallel plate shear cells. A nanorod axis m has polar angle ¢ measured with respect
to the flow axis x. (Online version in colour.)

4. Isotropic planar two-dimensional nanorod suspensions with weak-shear
perturbations: explicit asymptotic shear alignment and rheological formulae

We now perform a regular perturbation analysis to characterize the stable, weakly anisotropic
equilibria of ALCPs that persist in weak shear as an extension of our earlier work on passive
LCPs at dilute concentrations [40]. We consider the shear perturbed isotropic nanorod suspension
confined between two parallel plates with the top plate translating at a prescribed uniform
speed while the bottom plate is stationary. The velocities of intermediate layers of the fluid are
assumed to increase linearly in the flow-gradient direction from the bottom to the top (figure 1).
In Cartesian coordinates, the velocity is that of a simple shear

v=y m , 4.1)

from which the forms of the rate-of-strain tensor D and the vorticity tensor W follow:

1.]10 1 1.1]0 1

D= 5V |:1 0:| and W= 57 |:_1 0} : 4.2)
We further normalize the model equations by introducing the non-dimensionalized Peclet
number Pe = ytyDe (ty is the characteristic time), and setting ¢’ = t/De. Then the Smoluchowski
equation (2.12) becomes (recall ¢ is measured with respect to the flow axis x in figure 1)
af 3%f of oU  9%U 1, f
I (2L 2= - 1— 2¢)) + 2afsin(2 43
a7 <8<p2 + 30 90 +f— 352 + 2 ( a.cos(2¢)) + 2af sin( go)> (4.3)

We first construct the distribution function, f, by positing an expansion in the Peclet number, Pe,
presumed to be a small parameter 0 < Pe < 1

1
f=5-+Pefi+ Péfy + Pefs + - - - (4.4)
Substituting (4.4) into (4.3), to the first order in Pe, the steady state satisfies
del 2 27
a9 T x| <COS(</J) JO f1 cos(g) dg + sin(g) JO fisin(p) dw)

2 asin(2¢)

27
+ 4N (cos(Zga)J f1cos(2¢) de + sm(2<p)J f1 sin(2(p)dg0)} + oy = 0. (4.5)
Using the orthogonality of the trigonometric functions, the solution for this integro-differential
equation is

a .
fi= m sin(2¢). (4.6)
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To the second order in Pe, after simplification, the steady-state equation for f, becomes

5 1 2 2
o [a <c05(¢)J0 facostg)dy +sin(p) | * fosinty) dw)

2

21
+ 4N (COS(Z(/)) JO f2 cos(2¢) dg + sin(2¢) Jo

f2sin(2¢) dw)}

a2 cos(4¢) acos(2¢)
_ =0. 4.7
27 (2 — N)? * 47 (2 — N) 0 ®7)

We again have an integro-differential equation, whose solution can be explicitly given

2

f2

cos(2¢) — 3 cos(4).

_ a a
87(2 — N)? 27 (2 — N)?

Thus, in weak shear, the construction through second order in Pe for the number density
function is

1 a .
f= - + Pe (7471(2 Y sm(2<p)>
2

cos(2¢) — 3271(;7_1\])2 cos(4(p)) . (4.8)

Pé? (ﬂ

87(2 — N)?

Higher order approximations can be calculated in the same manner. Note that m in the

Smoluchowski equation contains only even Fourier modes. Therefore, in the perturbation analysis

above, only even Fourier modes survive. In particular, the polarity vector p (the first moment of f)
vanishes.

We therefore conclude that weakly shear-perturbed two-dimensional polar ALCP suspensions from
the dilute passive isotropic state are apolar and weakly nematic through O(Pe?), with explicit shear-
alignment features from the second moment of f extracted next.

From (4.8), closed-form approximations of alignment and rheological properties follow
immediately. We first consider alignment properties of the shear-perturbed isotropic state. One
convention to measure the orientation is to project f onto the symmetric traceless second-moment
tensor Q given by

Q= (mm) — 3
_ a 0 1 > a 1 0
_P678(2—N) [1 0i|+Pe 6a_NE [0 _1] (4.9)

The eigenvalues of Q through O(Pe?) are

aPe,/Pe? + 4(2 — N)?

Mp==+ 4.10
16(2 — N)? (4.10)
so that the nematic order parameter is given by
aPe,/Pe? + 4(2 — N)?

8(2 — N)?

This explicit formula reveals the weak anistropy of the sheared isotropic state and its scaling behaviour with
a, Pe and N. The major director n; (the principal axis of orientation) is a unit vector parallel to the
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Figure 2. The major director n; (the principal axis of orientation) and the alignment angle 1 for a group of nanorods. The flow
direction is indicated by the x-axis. (Online version in colour.)

eigenvector associated with the largest eigenvalue A;:

n ~ ! (Pe 4/ Pe? + 42 — N)?, 2(2 — N)).
\/ (Pe 4 /Pe? + 42 — N)*)2 + (2(2 — N))?

From this, the shear alignment angle r is also explicit (figure 2):

¥ =tan"! 221N . (4.12)
Pe + /Pe? + 4(2 — N)?

Note that the argument in (4.12) is smaller than 1, thus || < 45°; the positive angles are stable,
whereas the negative angles are unstable, by the stability criterion 2 — N > 0 from above. This
result implies that, being perturbed from the isotropic state by weak shear, the molecules break
their random orientation and align preferentially towards the flow direction at some positive
angle less than 45°. In the weak shear limit, Pe — 0, the stable alignment angle is 45°.

We now derive closure approximations for the apparent shear viscosity oy, and the first normal
stress difference N1, which are given by

712
oy =—, Ni=7111— 10, 4.13
W= P, 1=711 — ™2 (4.13)
where 7 is the stress tensor, defined in equation (2.10). From (4.8), we note that, apart from
molecular and flow parameters, only by, a5 , by and by have non-zero values. Therefore, in weak
steady shear, we arrive at the explicit formulae

GG +4-N) 1 1 1
Oxy = R
W 32(2—N) 2Re; ' 8Re; ' Re
a*GN a? )
P 414
+ (1024(2 NP T 256Re2-N2 ) C (4.14)

and

aG(4¢; +4—N) PR 3GN 4

= - P
M=—50"Ng T _Ni't

(4.15)

We emphasize some immediate consequences of these formulae:

— First, note that polarity again has no influence on rheology through this order in Pe.

— Further, keeping the stability condition N <2 in mind, clearly ¢; must be sufficiently
negative (pusher nanorod swimmers) for A to be negative, signalling anomalous first
normal stress differences that were previously implicated in tumbling and kayaking limit
cycle responses of passive LCPs in imposed steady shear.
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Figure 3. Comparison of scaling behaviour between our explicit asymptotic formula (4.12) (solid lines, theoretical
approximation) of the alignment angle - and numerical results (circles). (Online version in colour.)

In the next section, we confirm these asymptotic alignment formulae and their rheological
counterparts at low Pe, then show numerical results outside the asymptotic regime in §6.

5. Numerical simulations of dilute, two-dimensional polar nanorod
suspensions: confirmation of the asymptotic weak shear formulae

We now confirm the asymptotic scaling formulae derived in §4 for weakly sheared steady states
when « <2 and N < 2. To do so, we implement direct numerical simulations of the model (the
numerical method will be described in §6). In these simulations, the polarity strength parameter
is fixed at « = 1. The aspect ratio parameter is a =1 for this simulation (and for all simulations
below). Then we vary the parameter nematic strength parameter N for several discrete fixed
Pe« 1 and the shear rate Pe for several discrete fixed N <2, showing strong agreement
between the numerical simulations and the asymptotic scaling formulae. We further confirm the
asymptotic predictions of the apparent shear viscosity and the first normal stress difference.

Our first observation is that, even though the polar strength parameter « # 0, all odd moments
in the Fourier expansion of the PDF vanish in all simulations. This confirms the asymptotic
prediction: weakly sheared two-dimensional polar ALCP suspensions from the dilute isotropic
state are apolar.

Figure 3 shows the nematic alignment angle versus weak shear, 0 < Pe < 0.3, with five different
dilute regime values of nematic strength, 0.25 < N < 1.5. The solid line is the predicted angle given
by (4.12), whereas the dots represent the results from numerical simulations. The asymptotics
and numerics confirm that, as the shear rate increases, the nematic director tilts towards the flow
direction. The weak shear asymptotic prediction is extremely accurate at low nematic strength
and degrades as N approaches the critical isotropic-nematic transition value, N = 2.

For the order parameter s, we again plot the explicit formula (4.11) together with the numerical
results in figure 4, revealing the scaling behaviour of the degree of alignment versus nematic
strength 0 < N < 1.5. The parameters chosen are @ =1 and Pe = 0.1. Again, the asymptotic results
are accurate at low nematic strength and weak shear, showing increased focusing of the weakly
sheared orientational distribution with increasing N.

In figure 5, the apparent shear viscosity (4.13) is plotted as a function of nematic strength,
0 <N < 1.5, for suspensions of pullers (¢, > 0), pushers (¢, <0) and passive particles (f; =0).
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Figure 4. The comparison between the explicit asymptotic formula (4.11) (solid line, theoretical approximation) and the
numerical results (circles) of the degree of orientational nanorod alignment, s (the nematic order parameter). (Online version
in colour.)

Table 3. Parameter values used in figures 5 and 6 for comparison between theoretical approximations of rheological properties
and numerical results.

a 1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L
............................................................... B
............................................................... s
............................................................... s
.............................................................. N11
............................................................... i
............................................................... Re215
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Re315
............................................................... a01

All parameters chosen are shown in table 3. Again, our asymptotic results are consistent with
numerical results given sufficiently low nematic strength. As nematic strength increases, the
apparent shear viscosity of the suspension increases (i.e. shear thickens) with puller-type particles
yet decreases (shear thins) with pusher-type particles. These results simply confirm previously
reported results in [37,41], and experimental results from Sokolov & Aranson [28] in which they
concluded that the combined action of swimming bacteria (pushers) can reduce the viscosity of a
liquid by up to a factor of seven. The experiments for puller particles are reported by Rafai et al.
[42] in which they observed a significant increase in viscosity as a result of the swimming activity
of microalgae.

One of the anomalous signatures of passive LCPs is the observance of negative first normal
stress differences in steady imposed shear. This property in shear cells translates to the confining
plates being pulled towards one another. Indeed, the kinetic theory of Doi and Hess successfully
predicted this behaviour, and furthermore showed that it was associated with limit cycle
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Figure 5. The comparison between theoretical approximations (solid lines) of the apparent shear viscosity, oy, and the
numerical results (circles) over a range of dilute nematic potential strengths, 0 < N < 1.5. The stress activation parameter,
Cq, varies from —3 to —1.5 for pushers, 0 for passive particles, and 1.5 to 3 for pullers. Other parameters are listed in table 3.
(Online version in colour.)

0.03F
0.02F

0.01F

JI

—0.01F

-0.02F

0 02 04 06 08 10 12 14
N

Figure 6. The comparison between theoretical approximations (solid lines) and direct numerical simulations (circles) of the
normalized first normal stress difference, ;. The stress activation parameter, £,, varies as in figure 5 from —3 to —1.5 for
pushers, 0 for passive particles, and 1.5 to 3 for pullers. Other parameters are listed in table 3. (Online version in colour.)

behaviour under steady shear forcing; this was a signature achievement of the Doi—-Hess theory
to confirm this experimental result of sheared passive LCPs. In figure 6 (parameters shown in
table 3), we find that dilute suspensions of pusher nanorod dispersions in weak shear indeed induce
negative N7! Thus, the anomalous negative N7 behaviour of semi-dilute passive LCPs is predicted
to arise at dilute concentrations for sufficiently active pusher ALCPs. In the next section, we move
out of the regime of asymptotic validity and investigate the steady versus unsteady nature of the
states that produce these properties. Given the history above, we anticipate that pusher ALCPs at
dilute concentrations must likewise undergo an unsteady transition to limit cycle monodomain
behaviour at some threshold condition to be determined.
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6. Numerical kinetic simulations of dilute polar active liquid crystalline
polymers at arbitrary Pe: shear-induced transitions to limit cycle behaviour
associated with negative

Now we numerically investigate the monodomain responses of polar ALCPs in imposed steady
shear of arbitrary normalized shear rate (Peclet number). The numerical method is described in
the first subsection. Then we present three types of attractors: stationary steady states, tumbling
limit cycles (where the major director rotates monotonically) and wagging limit cycles (where the
major director oscillates without full rotations through 27 radians), and indicate the parameter
variations that induce transitions between these diverse sheared, dilute, monodomain ALCP
attractors. We further show how the polarity vector behaves with respect to the nematic director.
Surprisingly (to us), the polarity vector always tumbles, even when the nematic director oscillates.

(@) Numerical method

For numerical simulations of planar ALCP monodomains, we approximate the number density
function by a truncated Fourier series

K

1
flm, )~ 5 43 (ay() sin(ke) + be(t) cos(ky)). (6.1)
k=1

Substituting (6.1) into (4.3), we obtain a system of ordinary differential equations

db
L — by + Z@N(aa(ar — a3) + ba(by — b3))
dt 2
Pe
— a(ayaz + by (b2 — 2bp))) + Z((lZ +2)ay — aaz),
db
5 = 42 — (@1 +a3) + bi(03 — b))
Pe
+ 2N(azaq + ba(by — 2bg))) + 7(2&12 —aay),
db wk
cTtk =— Kb — 7(06(011(@—1 +agq1) + b1(bgg1 — br—1))
+ 2N(az(ax—2 + ax12) + ba(bxy2 — b—2)))
— AlikPe(a(ak,z + agip) —2a;), where3 <k<K,
da b4
ditl =—a1+ E(a(ﬂl(Zbo + bo) —azby)
Pe
+ 2N(az2(b1 + b3) — (a1 + a3)b2)) + Z((ﬁZ — 2)by + abz),
d
% = —4ay + 7 (a(ax(2b1 + b3) — azb1) + 2N(ax(2bg + by) — asby))
P
+ ;(Za(bo + by) — 2by)
da wk
and dT%k = — K+ ?(a(bl(ak—l — ay1) +a1(bgg1 + be-1))

+ 2N(b2(ax—2 — ak42) + a2(bk—2 + br12)))
1
+ ikPe(a(bk,z + byo) — 2by), where3 <k <K. 6.2)

(We impose ax =0, by =0 for k> K.) In our numerical simulations, we impose K=20 which
corresponds to a 40-dimensional dynamical system; our studies show this resolution is sufficient
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Figure 7. Stable steady-state values of (a) the order parameter s and (b) the alignment angle v versus PeforN =1, o« =1.

to get converged results. Using the software AUTO [43], we produce comprehensive stable and
unstable branches of steady and unsteady solutions across the multi-parameter space.

To produce rheological properties of active suspensions, the numerical data from solutions of
the above system are projected onto the first and second moment tensors of the NDF. The formula
for the polarity director p is easily obtained

p=(m)=rx [bl} : (6.3)

a1

From this, we can get the magnitude ||n|| (degree of polarity) and the angle ¢ of the polarity vector.
The second moment tensor takes the form

_ Lozl m
Q - (mm) - 21 - 2 |:a2 —b2:| ’ (64)

which yields the order parameter s and the nematic orientation angle

s=mya?2 +b? and ¥ =tan"! (az) . (6.5)
by + /422 + b2

These formulae are plotted for steady states, whereas for limit cycles we depict averages over a
temporal period.

(b) Case 1: steady-state attractors for dilute, polar active liquid crystalline polymers
at sufficiently low and high Pe

Figure 7 shows the nematic order parameter s and alignment angle  versus Pe for N=1,
a = 1. Here, only one stable stationary solution branch is detected; the asymptotic results already
indicate a corresponding unstable branch of steady states with negative values of ¥, which we do
not plot. Increasing the flow strength (Pe) results in increasing the degree of alignment. This is true for
all cases below (figure 11). As predicted previously, the alignment angle ¥ tends to 45° in the limit
of vanishing shear rate. The ordered state for Pe =4 is shown in figure 8, where the NDF attains
its maximum when ¢ ~ 0.23 rad ~ 13.18° and ¢ ~ 3.38 rad ~ 193.18° (head—tail symmetric).

The upshot is that for 0 < Pe and sufficiently weak activation parameter ¢;, the polar ALCP
distribution shear aligns in the shear plane with the nematic director in the range 45° <y,
where Y converges to 0° as Pe increases, and the nematic order parameter s is an increasing
function of Pe.

The values of ¥ and s in the weak shear limit scale precisely as captured by the asymptotic
formulae, followed by the numerical scaling in figure 6. We also find that flow-aligning always
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Figure 8. Stable steady state of the number density function f versus ¢ forN =1, « =1,Pe = 4.
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Figure 9. (a) Apparent shear viscosity oy, versus shear rate Pe for dilute polar ALCPs. (b) The first normal stress difference
N;/Pe versus shear rate Pe. The main parameters are N =1, @ = 1. Solid line, non-stress-activated swimmers; dashed lines,
puller; dotted lines, pusher.

occurs at sufficiently strong imposed shear flow (high Pe) regardless of the nematic strength, N,
and the strength of polarity, « (figure 11).

The apparent shear viscosity o for several ¢, (stress activation) values is plotted versus Peclet
number Pe in figure 9a. Both suspensions of pullers, ¢, > 0, and suspensions of passive particles,
¢a =0, exhibit shear thinning behaviour, whereas suspensions of pushers, ¢, <0, shear thicken.
It can be seen that the effect of particle activation and swimming is strongest in weak flows
and vanishes in strong flows (high Pe). Enhancements of o in puller-type suspensions, and the
opposite in pusher-type suspensions, in weak flows (low Pe) have been mentioned in a previous
section. This phenomenon is also observed experimentally in [28,42], and obtained from the
model in [37]. Figure 10a shows the boundary in the parameter plane (Pe-¢,;) between positive
and negative shear stress.

Figure 9b shows the first normal stress difference, A/Pe, as a function of shear rate, Pe, for
pullers, pushers and passive particles. The effect of the stress activation parameter ¢, increases as
the shear rate increases for smaller Pe and is strongest at Pe ~ 0.5. After that, similar to viscosity,
the stress activation effect diminishes to nearly zero in strong flows. For suspensions of pullers
and passive particles, A7 is an increasing function for Pe < 0.5, and then a decreasing function
for Pe > 0.5. This behaviour is reversed for suspensions of pushers. The boundary for pusher
nanorods between two regions with positive and negative first normal stress difference is shown
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Figure 10. (a)Boundary in the parameter plane Pe—¢, that separates the regions with positive or negative stress. (b) Boundary
in the parameter plane Pe—¢, that separates the regions with positive and negative first normal stress difference. Parameter
values are the same as in figure 7.
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Figure 11. Bifurcation diagram of (a) the order parameter s and (b) the alignment angle v versus shear rate Pe for N =1,
o = 4. Thick solid line, stable periodic branch; thin solid line, stable steady branch; dashed line, unstable steady branch.

in figure 10b. It is clear from the figure that the negative A7 always occurs in weak flows for
¢ < —0.75.

(c) Case 2: dilute, moderately polar liquid crystalline polymers: onset of limit cycles
at critical Pe (N =1, ¢ = 4)

Recall the weak shear analysis only describes steady states. We now present evidence of a Hopf
bifurcation (HB) at critical Pe that reveals conditions for instability of isotropic steady states at the
onset of shear, and the emergence of stable limit cycles in their place. This situation is completely
analogous to the situation for stable nematic equilibria (at semi-dilute concentrations) that exhibit
limit cycle responses at the onset of weak steady shear.

Figure 11 presents the bifurcation diagram for the same dilute nematic strength N =1, but
larger polarity strength o = 4. The steady states at low shear, 0 < Pe < 1.84, are now unstable, and
the unique stable responses are periodic limit cycles over this entire range of Pe. The limit cycles are
detected by a HB at Pe ~ 1.84 where the steady aligned state stabilizes for larger Pe, and the stable
limit cycle branch continues back at lower Pe. The mean values of s and ¢ are shown in figure 11,
where it is evident that this polar ALCP limit cycle has finite, non-zero degree of alignment for arbitrarily
weak Pe. We can see that both periodic and steady solutions arise, which are represented by thick
and ordinary solid lines, respectively. Figure 12 is a phase diagram showing the boundary in the
(Pe—x) parameter plane that separates the stable limit cycles and steady states.
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Figure 13. Four snapshots of the number density function f versus ¢ for N =1, =4, Pe =1.

We now look more carefully at the oscillatory state when o =4 and Pe =1. Several snapshots
of the NDF f are shown in figure 13. The peak of the NDF moves leftwards as time evolves. This
means the active particles rotate clockwise.

As shown in figure 14, the order parameter s (figure 14a) and the polarity magnitude |p|
(figure 14c) periodically fluctuate (with period ~ 9.6 in normalized time units; the period of the
NDF is doubled, ~19.2). They attain maxima and minima almost at the same time, indicating
positive correlations. Figure 14b shows the nematic orientation angle ¥ in time, which is only
defined mod 7, so the plot corresponds to continuous anticlockwise rotation with a mod = reset,
i.e. shear tumbling of the nematic director. Figure 14d shows tumbling of the polarity vector, which is
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Figure 14. Time evolution of (a) the order parameter s, (b) the alignment angle v/, (c) the polarity magnitude |p| and (d) the
polarity angle ¢ during the tumbling state (o« = 4, Pe =1). Note both the polarity and nematic director angles continuously
rotate, yet are phase shifted relative to one another.
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Figure 15. (a) Apparent shear viscosity o, and (b) the normal stress difference A3 / Pe for the tumbling state of figure 14. Solid
line, non-stress-activated swimmers; dashed lines, puller; dotted lines, pusher.

defined mod 27, for the polarity angle as a function of time. Closer observation of the dynamics
reveals the nematic and polar axes rotate slowest when they are near the flow direction and fastest
when near the flow-gradient direction. The time series of effective viscosity and the first normal
stress difference are plotted in figure 15 for several ¢, values. The most striking result of figure 15
is an affirmation that pusher limit cycles are associated with negative N for most of the oscillation
period, with brief intervals of positive N7. Puller limit cycles likewise exist, yet their time-averaged
N1 is positive, with only brief intervals with N7 < 0. In all limit cycles, at least some intervals of
negative A are observed!

With respect to the results for the effective viscosity, we find that pusher suspensions shear
thin for most of the limit cycle and briefly shear thicken; on average, these states shear thin
relative to passive polar LCPs. The opposite result obtains for pullers, which shear thicken over
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Figure 16. Time evolution of (a) the order parameter s, (b) the alignment angle v/, (c) the polarity magnitude |p| and (d) the
polarity angle ¢ during the wagging state (o« = 8, Pe = 6). Note the polarity angle ¢ continuously rotates while the nematic
director angle v oscillates between 1° and 15°.
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Figure 17. Snapshots of the number density function f versus ¢ for N =1, = 8, Pe = 6.

most of the limit cycle period, and shear thin over a brief interval. These results are the nanorod
analogue of rigorous effective viscosity analyses in [44,45], whereas similar unsteady behaviour
of microscopic suspensions is shown in [46].

(d) Case 3:a hybrid polar-tumbling, nematic-wagging state

Another oscillatory state with higher frequency is shown in figures 16, 17 and 18 when « =8 and
Pe =6, still for dilute nematic strength N = 1. For passive liquid crystals and LCPs, this nematic
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Figure18. (a) Apparent shear viscosity o, and (b) the first normal stress difference A/ /Pein the tumbling state (o« = 8, Pe =
6). Solid line, non-stress-activated swimmers; dashed lines, puller; dotted lines, pusher.

director oscillation between 0.6° and 16° is called a wagging orbit. However, the corresponding
time series of the polarity vector angle shows continuous clockwise rotation, or tumbling. If we
look at snapshots of the NDF f in figure 17 more carefully, then there is a second maximum
that is almost at the opposite direction to where the global maximum occurs. These two maxima
switch roles in time (global maximum becomes second maximum, and vice versa). As shown in
figure 18, the sheared active suspensions exhibit (for all times) shear thickening oscillations for
pullers and shear thinning oscillations for pushers, relative to the passive polar LCP dispersion.
This is distinct from figure 15 with tumbling states for both director and polarity vector, where
the apparent shear viscosity fluctuates above and below that of the passive polar LCP dispersion.

7. Conclusion

This study is motivated by remarkably similar phenomena in kinetic theory modelling of two
distinct nanorod dispersions: (i) two-dimensional heterogeneous unsteady attractors of active
LCPs at dilute concentrations and (ii) homogeneous (monodomain) unsteady attractors of
weakly sheared passive LCPs at semi-dilute concentrations. It is natural then to explore sheared,
homogeneous active LCPs at dilute concentrations, the focus of this paper. We find that, indeed,
particle activation physics shifts the onset of monodomain tumbling of the nanorod ensemble
from the semi-dilute, nematic equilibrium regime to the dilute, isotropic equilibrium regime.
Furthermore, the rheological signature of negative first normal stress differences for tumbling
passive semi-dilute LCPs persists for tumbling dilute active LCPs. Additional sheared passive
nematic LCP phenomena, such as the transition from director tumbling to finite oscillations
(wagging) at a critical shear threshold, are shown to persist for active dilute LCPs. The polarity
vector of dilute sheared active LCPs is shown to tumble for both tumbling and wagging nematic
director limit cycles.
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