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Liquid crystal flexoelectric actuation uses an imposed
electric field to create membrane bending, and it
is used by the outer hair cells (OHCs) located
in the inner ear, whose role is to amplify sound
through generation of mechanical power. Oscillations
in the OHC membranes create periodic viscoelastic
flows in the contacting fluid media. A key objective
of this work on flexoelectric actuation relevant to
OHCs is to find the relations and impact of the
electromechanical properties of the membrane, the
rheological properties of the viscoelastic media, and
the frequency response of the generated mechanical
power output. The model developed and used in
this work is based on the integration of: (i) the
flexoelectric membrane shape equation applied to
a circular membrane attached to the inner surface
of a circular capillary and (ii) the coupled capillary
flow of contacting viscoelastic phases, such that the
membrane flexoelectric oscillations drive periodic
viscoelastic capillary flows, as in OHCs. By applying
the Fourier transform formalism to the governing
equation, analytical expressions for the transfer
function associated with the curvature and electrical
field and for the power dissipation of elastic storage
energy were found.

1. Introduction
In nature and physiology, biological liquid crystals
(LCs) play significant roles as multifunctional materials
[1]. This paper presents theory and simulation of a
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Figure 1. Schematic of the processes and mechanisms currently accepted to be involved in the functioning of OHCs. The
oscillating electric field E(t) distorts the membrane through the flexoelectric effect. The membrane elastic Em curvature
distortions are transferred to contacting viscoelastic fluids and deliver mechanical power P. The combination of flexoelectric
actuation and mechanical actuation is flexoelectric mechanics (adapted from [11]).

physiological actuator device whose functioning hinges on unique electromechanical properties
of mesophases and that provides an example of responsive self-organized materials. The
functioning of outer hair cells (OHCs) in the inner ear involves electric field-driven periodic
curvature oscillations of LC elastic membranes that impart momentum and flow to the contacting
viscoelastic fluids; the electric field actuation of the LC membrane is known as flexoelectricity
[1–12]. The key role of OHCs is sound amplification in the presence of viscous dissipation and
elastic storage [10]. Hence, the full description and understanding of OHC functioning has to
include the frequency response of flexoelectric membranes embedded in viscous and viscoelastic
media due to an oscillating E field [11–15]. The field of flexoelectric membranes was pioneered
and developed by Petrov and co-workers [2–4,10].

The generic and key features of the electrical to mechanical energy conversion system in OHCs
are described in figure 1 (figure 3 shows additional details). The input oscillating E field, through
the electromechanical flexoelectric effect, produces curvature oscillations in the elastic membrane
that forms the OHC [11–15] and that is surrounded by viscoelastic media. In turn, the oscillating
elastic membrane displaces the contacting viscoelastic liquids through the mechanical viscoelasto-
elasticity effect [11]. The combined effect that allows the electromechanical energy conversion is
based on the integration of the flexoelectric effect (E field imposed on flexoelectric membrane)
and the mechanical effect (membrane elasticity plus viscoelastic bulk fluid flow) [14,15]. The two
key issues in this energy conversion device are

(i) how much power P is eventually delivered to the contacting viscoelastic fluids from the
imposed oscillating electric field E and how much stored membrane elastic energy Em is
required to deliver that power and

(ii) under which material conditions is a well-localized resonant power peak found (in the
spectrum of P), as physiologically required [11].

As expected, the issues (i) and (ii) identified above depend on (a) the E-frequency ω [11] as
well as on (b) the material properties of the bio-device components discussed below.

(a) Frequency response
The intensity of the linear momentum transfer from the oscillating membrane to the
contacting viscoelastic fluids depends on the imposed frequency [11]. Hence frequency-
dependent viscoelasticity is an essential ingredient of this important biological LC electro-
mechanical oscillator [11]. Viscoelasticity is an important frequency-dependent property of
synthetic and biological materials and processes [16–19]. Biological systems respond differently
to inputs of different frequencies [11]. Some systems may amplify components of certain
frequencies, and attenuate components of other frequencies [19,20], and this property is crucial
to understanding the processes that control the functioning of OHCs [20–25] and hearing
processes [26–28]. The frequency response [29] is the relationship between the system input and
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output in the Fourier domain:

I(jw)FD(jw)=O(jw), (1.1)

where I(jw) is the system input, O(jw) the system output and FD(jw) the frequency response. Since
the frequency response FD(jw) is a complex function, we can convert it to polar notation

FD(jw)=Re[FD(jw)]+ Im[FD(jw)]= |FD(jw)|exp(φj). (1.2)

The magnitude |FD(jw)| represents the system’s tendency to amplify or attenuate the input signal.
For the OHC, we show below in detail (figure 3 and §§2–4) that the inputs are the periodic electric
field E(t) generated by the incoming acoustic waves, and the outputs are the volumetric flow rates
of the contacting fluids and the membrane curvature. The phase angle φ in equation (1.2) is

φ = arctan
Im{FD(jw)}
Re{FD(jw)} , (1.3)

and it represents the tendency to delay the input signal and is intimately related to the memory
of the fluids. Besides the role of fluid viscoelasticity, the functioning of OHCs is based on LC
flexoelectricity [1–4]. Hence, a key to OHC modelling that we have performed in this paper
is to determine and characterize FD(jw) in terms of LC membrane flexoelectric elasticity and
frequency-dependent fluid viscoelasticity. Then, we use these results to compute dissipation and
elastic storage in our OHC model.

(b) Materials
Nematic liquid crystals are multifunctional self-organizing viscoelastic anisotropic materials
whose orientational order responds to external flow, electromagnetic, chemical, optical and
surface fields [11,17–19]; the orientational order is defined by the director n and the elastic
distortions by director gradients ∇n [11,17–19]. A distinguishing and novel property of nematics
is flexoelectricity [1–4,11], which describes the coupling between orientational gradients and
electric polarization, such that an applied electric field creates orientational distortions and
distortions create macroscopic polarization [1–4,11,17–19]. The polar nature of splay S= n∇ · n
and bend B=−n×∇ × n orientational deformations can polarize the nematic LC medium
[11–13]:

Pf = cSS+ cBB, (1.4)

where Pf is the flexoelectric polarization, and where the flexoelectric coefficients for splay
and bend {cS, cB} are of the order of 10 pC m−1. Equation (1.4) describes a sensor or the
direct flexoelectric effect [11–13] where the deformation creates polarization. The actuation or
converse flexoelectric effect [11–13] describes the flexoelectric director torque Γ f due to an electric
field E

Γ f = n× {(cS − cB)[E∇ · n− ∇(n · E)]+ (cS + cB)n · ∇E}, (1.5)

where we note that Γ f depends on E and ∇E. The torque Γ f is given by the sum of a flexoelectric
stress Tf and flexoelectric couple stress Cf:

Γ f =−ε : Tf + ∇ · Cf (1.6)

indicating how an E field creates a mechanical effect. The current potential applications of LC
flexoelectricity include energy harvesting, electromechanical transducers and displays [11,14,15].
The electro-elasticity of synthetic and biological membranes can be efficiently described by LC
models, using an approach denoted by nemato-membranology [11–15]. For example, the elasticity
of biological lipid bilayer membranes is well described by the well-known Helfrich energy EH for
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Figure 2. (a) Flexoelectricity in rod-like and banana-shaped nematic LCs due to slay and bend deformations of the director n.
(b) Flexoelectricity in biological membranes due to bending curvature described by surface gradients of the unit normal k. The
correspondence between nematic flexoelectricity and membrane flexoelectricity is obtained when the director n is identified
with the membrane unit normal k (adapted from [11]). (Online version in colour.)

bending 2kcH2 and torsion k̄cK:

EH = 2kcH2 + k̄cK, (1.7)

where H is the average curvature and K the Gaussian curvature, which follows from the nematic
Frank elastic energy [11–15]:

EF = K1

2
(∇ · n)2 − K24∇ · (n∇ · n+ n× ∇ × n), (1.8)

where K1 is the splay and K24 is the saddle-splay constant; the geometrical quantities and
definitions used in this paper are reported elsewhere [11,17–19]. Nemato-membranology is
applied by identifying the director n with the outer unit normal n= k in equation (1.8), and
considering surface gradient ∇s, we obtain

EF =
(

K1

2
+ 4K24

)
H2 + (−2K24) K, (1.9)

which coincides with EH, and gives 4kc = (K1 + 8K24), k̄c =−2K24; the surface gradient is
given by the tangential projection of the total gradient: ∇s(·)≡ Is · ∇(·), Is = I− kk, since thin
layers and membranes behave like LCs, membranes should also exhibit flexoelectricity or
couplings between polarization and bending [1–4,7,11,17–19]. Figure 2 shows a schematic
of flexoelectric polarization in rod-like and banana-like molecules and the corresponding
membrane flexoelectric polarization; as noted above the physics and modelling are affected by
identifying the director field n with the membrane normal k.

Using the same approach as above, equation (1.4) gives the membrane polarization P due to
membrane bending (∇s · k):

P= cf(∇s · k)k, (1.10)

where cf is the membrane flexoelectric coefficient, as indeed found experimentally [4]. The
converse flexoelectric effect found from equation (1.5) gives the torque Γ due to an imposed
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electric field
E : Γ = k× {cf[(∇s · k)E// −∇s(k · E)]}, (1.11)

where E// = (I− kk) · E is the tangential field. This equation shows that the converse flexoelectric
effect in membranes exists when cf > 0, and E// �= 0 or ∇s(k · E) �= 0. Both the direct and converse
membrane flexoelectric effects are sensor–actuator properties when membrane curvature and
polarization are coupled as in nematic LCs. Membrane flexoelectricity due to its inherent sensor–
actuator capabilities is an area of current interest in soft matter materials [1,7,8,14–24]. Over
the years, much literature has dealt with the problem of measuring flexoelectric coefficients in
various LCs [11,13]. For typical LC membranes, these coefficients range from 3 to 20 pC m−1,
but recent experiments have reported flexoelectricity coefficients of up to 35 nC m−1 in bent-
core LCs [1–4,11,13]. Such large bend coefficients make bent-core LCs practical materials for
mechano-electric transduction [11–13].

The specific objectives of this paper are

(1) to derive a high-order dynamic linear model for a flexoelectric membrane attached to
a capillary tube that contains viscoelastic liquids and is subjected to a fluctuating small
amplitude electric field of arbitrary frequency;

(2) to compute the frequency response of the electromechanical device, taking into account
the viscoelastic nature of the contacting fluids;

(3) to use the modelling results to characterize the role of membrane flexoelectricity and
contacting fluid viscoelasticity in the transfer function of the device; and

(4) to identify the material properties that lead to electromechanical conversion relevant to
functioning of OHCs.

This paper is organized as follows. Section 2 introduces the generic features of the governing
electro-rheological model of the electric field responsive membrane embedded in viscoelastic
fluids. The governing equation is based on the integration of: (i) the flexoelectric membrane
shape equation applied to a circular membrane attached to the inner surface of a circular
capillary and (ii) the capillary flow of the contacting viscoelastic phases. Section 3 presents
the actuation device model, dimensionless numbers, characteristic modes and the mechanical
model analogue. Section 4 presents the block diagram, transfer functions, Kramers–Kronig
equations and asymptotic values of the total transfer function. Section 5 presents the characteristic
device functions: power output, membrane energy storage and Q-factor. Section 6 presents
selected representative numerical results of the device functions. In §7, results are summarized.
Appendix A presents the dimensionless numbers and appendix B the derivations of the Fourier
transformations of the model and of the transfer functions.

2. Electro-rheological actuator model for flexoelectric membranes
To avoid repetition of lengthy derivations the reader is referred to a previous work [11], where
we describe the fluid viscoelasticity with a Maxwell fluid model, neglect momentum inertia (zero
Deborah number: De= 0) and formulate the model in the time domain. In this work, we model the
system in the frequency domain, include momentum inertia, and develop a generic approach that
can be used in the future with any viscoelastic constitutive equation, as required by experimental
results. The physical set-up and geometry of the flexoelectric membrane tethered to a capillary
tube containing two viscoelastic fluids is depicted in figure 3.

A capillary tube of radius a contains an edge-fixed flexoelectric membrane located at z= 0.
Above and below the membrane there are two viscoelastic fluids with column heights z= L,
viscosities {ηb, ηt}, relaxation times {λb, λt} and densities {ρb, ρt}. The pressure at the top of the
upper layer and at the bottom of the lower layer is equal to a constant, i.e. pt(ξ = 2L, t)= pb(ξ =
0, t)= p0. By imposing a fluctuating electrical field E(t), the membrane oscillates and displaces the
upper and lower incompressible viscoelastic fluids; we emphasize that the Poiseuille flow is only
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Figure 3. Schematic of the geometry and operation of flexoelectric mechanics, defined in figure 2, in a capillary geometry of
radius a and axial length L. The inputEfield distorts the initially flat circularmembrane into a spherical cap of radiusR andheight
h. The flexoelectric actuation creates a capillary viscoelastic flow in the contacting top (t) and bottom (b) fluids of viscosities
{ηt, ηb}, relaxation times {λt, λb} and fluid densities {ρt, ρb} (adapted from [11]). (Online version in colour.)

generated by the flexoelectric effect of the membrane caused by the imposed E(t) field [11,12].
The membrane deformation is described by a spherical dome of height h and radius R [12]. The
shape equation that describes the average curvature H(t) dynamics of the membrane is found
by formulating the normal stress balance equation across the oscillating flexoelectric membrane
[11–13]:

(cf�)E(t)︸ ︷︷ ︸
Input flexoelectric

driving force

= �p(z= L, t)︸ ︷︷ ︸
Bulk viscoelastic

fluids′ stress jump

+ (2γo + (2kc + k̄c)�)H(t)︸ ︷︷ ︸
Restoring membrane elastic force

, (2.1)

where the geometric factor 1/�= a2/8 indicates the characteristic deformation area associated
with the spherical cup shown in figure 3 and E= E · k. The shape equation (2.1) is a balance
among membrane flexoelectric force, bulk viscoelastic liquid stress jump across the membrane
and restoring membrane elastic force [11–13]. The oscillating flexoelectric force FE(t)

FE(t)= (cf�)E(t)= cf

(
8
a2

)
E(t) (2.2)

is proportional to the externally imposed E(t) field and the flexoelectric coefficient cf indicates the
converse effect, through which E(t) creates the membrane vertical displacement [11–13]. As
the membrane fluctuates, the contacting viscoelastic fluids dissipate and store energy through
the oscillating upward and downward capillary flow [11–13]. The net vertical bulk force at the
membrane |kk : �Tb|(t) contains both viscous and elastic contributions and is computed from the
oscillatory viscoelastic capillary flow in a tube of total length z= 2L [11].
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Top fluid layer:

pt(ξ = 2L, t)− pt(ξ = z, t)= p0 − pt(ξ = z, t)=
((

1
r

∂

∂r
r
)

σ
(t)
rz − ρt

∂vz(r, t)
∂t

)
(2L− z). (2.3)

Bottom fluid layer:

pb(ξ = z, t)− pb(ξ = 0, t)= pb(ξ = z, t)− p0 =
((

1
r

∂

∂r
r
)

σ
(b)
rz − ρb

∂vz(r, t)
∂t

)
z. (2.4)

The pressure difference at z= L is

�p(z= L, t)
L

= pb(ξ = L, t)− pt(ξ = L, t)
L

=
(

1
r

∂

∂r
r
)

σrz − (ρt + ρb)
∂vz(r, t)

∂t
, (2.5)

where the total shear stress tensor σrz is the sum of the two viscoelastic phases:

σrz = σ
(t)
rz + σ

(b)
rz =

(
Gtλt

1+ λt∂t
+ Gbλb

1+ λb∂t

)
∂vz(r, t)

∂r
= η(t)

∂vz(r, t)
∂r

, (2.6)

where η(t) can be considered as a time operator viscosity given by

η(t)= Gtλt

1+ λt∂t
+ Gbλb

1+ λb∂t
= Gtλt + Gbλb + (Gt + Gb)λtλb∂t

1+ (λt + λb)∂t + λtλb∂2
t

, (2.7)

and (ρt + pb) is the total density (top and bottom fluids). In equation (2.6), the constitutive
equation for the shear stress is given by the linear viscoelastic Maxwell model. The extension
for higher models and fractional models can simply be done by just changing the mathematical
differential operator given in equation (2.7). Notice that the stress jump is linear with L.
Combining equations (2.5) and (2.6), we have

�p(z= L, t)= L
{
η(t)

(
1
r

∂

∂r
r
)

∂

∂r
− (ρt + ρb)

∂

∂t

}
vz(r, t). (2.8)

The membrane elasticity gives rise to a restoring force proportional to the membrane average
curvature H(t)=−R−1(t) [11–13]

FM(t)= (2γo + (2kc + k̄c)�)H(t)= (4LM)H(t), (2.9)

where 2γo + (2kc + k̄c)�= 4LM is the effective membrane tension that includes the membrane
tension γo, bending kc and torsion k̄c [11–13] from edge effects and M is the effective elastic force.

3. Device model
In this section we: (i) scale the model to elucidate the key parameter combinations that impact
device performance, (ii) show that the mathematical model can be mapped onto a mechanical
spring–dashpot model, (iii) describe the parametric restrictions inherent in the device, and
(iv) classify the possible response modes according to physical properties (inertia, viscosity and
elasticity).

(a) Membrane shape and fluid flow equations
By substituting equations (2.1) and (2.7) into (2.8), the following dimensionless membrane shape–
fluid flow equation is obtained:{(

Ση̄ + λ̄tλ̄b
∂

∂ t̄

)
1
r̄

∂

∂ r̄
r̄

∂

∂ r̄
−De2

(
1+ ∂

∂ t̄
+ λ̄tλ̄b

∂2

∂ t̄2

)
∂

∂ t̄

}
v̄z(r̄, t̄)

= 4

(
1+ ∂

∂ t̄
+ λ̄tλ̄b

∂2

∂ t̄2

)
(a∗0Ē(t̄)− M̄H̄(t̄)). (3.1)
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Scaling details are given in appendix A. The volumetric flow rate is linked by the speed average
membrane curvature through

�(t̄)= 2
∫ 1

0
v̄z(r̄t̄)r̄− 1

2
d
dt̄

H̄(t̄). (3.2)

Equation (3.1) is a linear partial differential dimensionless equation that describes the spatio-
temporal changes of the axial velocity v̄z(r̄, t̄) as a function of the viscoelastic and flexoelectric
material parameters in the system through dimensionless characteristic numbers associated
with each physical mechanism. The first term on the left-hand side of equation (3.1) describes
the viscous force and the second term is the momentum inertia force. The right-hand side is
the flexoelectric force. Key features of this fluid pump device derived from equation (3.1) are:
(i) at zero frequency the solid-like membrane response is a∗0Ē(t̄)− M̄H̄(t̄)= 0 and (ii) at infinite
frequency the solid-like response is given by the balance between De2(∂v̄z/∂ t̄)= 4λ̄tλ̄b(∂2(a∗0Ē(t̄)−
M̄H̄(t̄))/∂ t̄2). Hence membrane solid behaviour at large frequency only exists for De > 0. The
mechanical response and energetic contributions of equation (3.1) were studied in [11], which
now serves as reference to characterize the effects of De, which scales the inertia force I(De, λ̄tλ̄b)
generated by the flow kinematics:

I(De, λ̄tλ̄b)=De2

(
∂

∂ t̄
+ ∂2

∂ t̄2
+ λ̄tλ̄b

∂3

∂ t̄3

)
v̄z(r̄, t̄). (3.3)

(b) Mechanical model
Here, we show that in the inertialess regime the model can be mapped into a standard mechanical
spring–dashpot model. By neglecting the momentum inertia (small Deborah number, i.e. De≥ 0)
in equation (3.1) and using equation (3.2), the following second-order linear differential equation
is obtained:{

b∗2(k, λ̄tλ̄b)
d2

dt2 + b∗1(k, Ση̄)
d
dt
+ 1

}
H̄(t̄)= a∗0

1− k
k

{
kb∗2(k, λ̄tλ̄b)

d2

dt2 +
d
dt
+ 1

}
Ē(t̄), (3.4)

where (1− k)/k is the inverse of the dimensionless effective membrane tension, i.e. (1− k)/k=
1/M̄. The curvature viscous b∗1(k, Ση̄) and curvature inertial b∗2(k, λ̄tλ̄b) material functions are
defined by

b∗1(k, Ση̄)= 1+
(

1− k
k

)
Ση̄ (3.5a)

and

b∗2(k, λ̄tλ̄b)= λ̄tλ̄b

k
. (3.5b)

The electro-rheological model given by equations (3.4) and (3.5) was previously obtained by
Dakka et al. [11] using a different mathematical approach. (See appendix A in [11].)

The device model given by equation (3.4) can be obtained directly by using a mechanical
analogue as shown in figure 4, where curvature is mapped into strain and the electric field
is mapped into stress. This new result provides a basis to incorporate more complex polymer
rheology into the material aspects of the device. The deduction of the mechanical analogue model
involves the derivation of the elastic and viscoelastic operators and its proper configuration.

The total electrical force in equation (3.4) is the sum of two viscoelastic contributions (springs
and dashpots) and the flexoelectric membrane:

a∗0Ē(t̄)= a∗0Ē(t̄)Maxwell−top + a∗0Ē(t̄)membrane + a∗0Ē(t̄)Maxwell−bottom. (3.6)

The viscoelastic relationship between the electrical field and average membrane curvature for a
Maxwell operator is

a∗0Ē(t̄)=
{

Ḡtλ̄t
∂t̄

1+ λ̄t∂t̄
+ M̄+ Ḡbλ̄b

∂t̄

1+ λ̄b∂t̄

}
H̄(t̄). (3.7)
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Figure4. (a) Schematic of linear viscoelastic flexoelectric system representedby twoviscoelastic fluids (red andblue) separated
byanelasticmembrane (green). (b)Mechanical analogue consistingof twoMaxwell elements (topandbottomfluids) inparallel
with an elastic spring (membrane). (Online version in colour.)

Multiplying equation (3.7) by the time linear operator (1+ λ̄t∂t̄)(1+ λ̄b∂t̄) and using (1− k)/k=
1/M̄, the second-order differential equation given by equations (3.4) and (3.5) is obtained. Placing
the corresponding elements in parallel derived in equation (3.6) gives the mechanical model of
figure 4.

In §4, we perform a Fourier analysis of equations (3.1) and (3.2), and establish the connections
between the mathematical model, the mechanical model (figure 4) and the Fourier-based block
diagram.

(c) Dimensionless numbers
The governing equation (3.1) contains five dimensionless numbers {λ̄tλ̄b, Ση̄, k, De, a∗0} (see
equations (A 1)–(A 10)) which are associated with the following mechanisms. (i) Memory (λ̄tλ̄b):
product of the viscoelastic dimensionless times λ̄t and λ̄b, it obeys λ̄t + λ̄b = 1 and defines the
elastic asymmetry of the fluids. When λ̄tλ̄b	 1 (highly asymmetric case) one of the fluids is
nearly inelastic and when λ̄tλ̄b = 1/4 (highly symmetric case) both fluids are equally elastic.
(ii) Bulk viscosity (Ση̄ = η̄t + η̄b = Ḡtλ̄t + Ḡbλ̄b): total viscosity in the system, where the elastic
dimensionless moduli satisfy Ḡt + Ḡb = 1. The numerical value of this number is controlled by
the product between the two dimensionless Maxwell time numbers λ̄tλ̄b, Ση̄ =Ση̄(λ̄tλ̄b). (iii)
Elastic ratio (k): dimensionless ratio between the membrane and the total system elasticity:
0 < k= (1+ 1/M̄)−1 < 1. A floppy (soft) and stiff (rigid) membrane corresponds to k	 1 and k∼= 1,
respectively. The elastic ratio, k= k(M̄) is determined by the dimensionless elastic membrane
modulus. (iv) and (v) The Deborah De and flexoelectric a∗0 numbers given by

De= ti

tve
= a

√
(ρt + ρb)/(Gt + Gb)

λt + λb
(3.8a)

and

a∗0 =
cf�E0a/4L

M
. (3.8b)

De is the ratio between the two time scales associated with inertia (ti) and viscoelasticity (tve), and
a∗0 is the dimensionless conversion of electric to elastic energy or equivalently the static transfer
function at zero frequency.
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Figure 5. Prismaticmaterial space for the six possiblemodes of equation (3.5), shown in table 1. The vertical axis is thememory
of thefluids, the horizontal axis is the elasticity ratio k, and the axis into the page is the total viscosity of thefluids. The six vertices
correspond to the six modes in table 1. (Online version in colour.)

Table 1. Device response modes. λ̄tλ̄b, memory;Ση̄ , viscosity; k, elasticity ratio; ε≈ O(10−4).

system’s modes λ̄tλ̄b Ση̄ =Ση̄(λ̄tλ̄b) k

(I) low symmetry, low viscosity, floppy membrane {LS, LV, FM} ε ε
k	 1

k∼= ε
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(II) low symmetry, low viscosity, stiff membrane {LS, LV, SM} ε ε 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(III) low symmetry, high viscosity, floppy membrane {LS, HV, FM} ε 1− ε
k	 1

k∼= ε
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(IV) low symmetry, high viscosity, stiff membrane {LS, HV, SM} ε 1− ε 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(V) high symmetry, intermediate viscosity, floppy membrane {HS, IV, FM} 1/4 1/2 k	 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(VI) high symmetry, intermediate viscosity, stiff membrane {HS, IV, SM} 1/4 1/2 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) Response mode classification
To satisfy equations (3.1)–(3.5), besides the restrictions noted above, the maxima and minima
values of the total dimensionless bulk viscosity number (Ση̄min , Ση̄max ) must be bounded by
the values of the Maxwell relaxation times in the bottom and the top fluids. Under perfect
symmetry (identical elasticity in top and bottom fluids) λ̄tλ̄b = 1/4, and the total viscosity is fixed
at Ση̄max =Ση̄min = 0.5, while under nearly total asymmetry λ̄tλ̄b ≈ ε	 1, the total viscosity can
vary between Ση̄max = 1, Ση̄min = ε	 1. According to the magnitudes of the three dimensionless
numbers {λ̄tλ̄b, Ση̄, k}, the system (equation (3.2)) displays six distinct modes, summarized in
table 1. These six modes arise since the memory symmetry can be high (HS) or low (LS), the total
viscosity high (HV), intermediate (IV) or low (LV), and the membrane can be floppy (FM) or stiff
(SM). For example, in table 1 the third row mode {LS, LV, FM} corresponds to low symmetry, low
viscosity and floppy membrane. This effective mode classification narrows down the parametric
envelope of biological significance.

The specific numerical values in table 1 are selected as to be characteristic of each mode. The
six modes in table 1 can be represented by the vertices of a prismatic three-dimensional material
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Figure 6. The dynamic control process for the flexoelectric membrane embedded in the two viscoelastic media. Notice that the
negative feedback control eliminates the pressure gradient. (Online version in colour.)

space shown in figure 5, spanned by fluid memory {λ̄tλ̄b}, membrane elasticity {k} and total fluid
viscosity {Ση̄}. The front edge of the prism, defined by the line λ̄tλ̄b = 10−4, Ση̄ = 1, 0 < k < 1. In
§4, we will report the role of De. Earlier, we worked without inertia [11] and we have established
that mode III is the most relevant to the functioning of OHCs.

Flow field characterization and visualization of importance to biophysical applications is left
to future work.

4. Transfer functions and block diagram
In this section, we derive the energy conversion device block diagram and the transfer functions
involved in converting the E-field into viscoelastic flow. The derivations involve using the Fourier
transform to solve the governing equations (3.1) and (3.2) and details are shown in appendix B.
We also demonstrate that the total transfer function follows from the Kramers–Kronig relations.

Block diagrams are useful tools to characterize complex dynamical systems. Taking the Fourier
transform of equations (2.9)–(3.2) and (3.4) yields the block diagram shown in figure 6. The
membrane shape–fluid flow coupling is a negative feedback loop in the block diagram of the
device. Appendix B shows derivation details and symbol definitions. The diagram shows how
the input Ē(ω̄) creates the output H̄(ω̄) by the action of a negative feedback that emerges because
as the membrane fluctuates it creates both membrane curvature and fluid flow �̄(ω̄) which exactly
balances the pressure drop ((1− k)/k)(�p/L)/4 across the membrane. Next, we discuss the three
elements shown in the block diagram (figure 6): (i) flexoelectric transfer function (a∗0(1− k)/k),
(ii) time operator (−(jω̄)/2), and (iii) rheological transfer function (2(1− k)Π̄(ω̄)/k).

(a) Flexoelectric transfer function
The flexoelectric transfer function a∗0(1− k)/k converts the Ē input into membrane curvature H̄
and a pressure drop ((1− k)/k)(�p/L)/4

Ē(ω̄)︸︷︷︸
Input

{
a∗0

1− k
k

}
= H̄(ω̄)+ 1

4
1− k

k
�p
L

(ω̄)︸ ︷︷ ︸
Output

. (4.1)
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This transfer function is the product of the bare flexoelectric coefficient a∗0 and the elasticity of the
fluids (1− k)/k since conversion depends on the effective elasticity.

(b) Differential operator
The speed of membrane curvature is the volumetric flow rate

−1
2

(jω̄)H̄(ω̄)︸ ︷︷ ︸
Membrane speed

= �̄(ω̄)︸︷︷︸
Flow rate

, (4.2)

as per equation (3.2). This block is a derivative operator which converts the kinetics of the
membrane into a capillary flow and is the first component of the feedback loop.

(c) Rheological transfer function
The second component of the feedback loop is the rheological transfer function. The evolution
of the membrane curvature causes a volumetric flow, which is regulated by the viscoelastic
mechanism through a material viscosity function:

�̄(ω̄)︸︷︷︸
Input

{
2

1− k
k

Π̄ (ω̄)
}

︸ ︷︷ ︸
Rheological

transfer function

=
(
−1

4
1− k

k
�p
L

(ω̄)

)
︸ ︷︷ ︸

Output

, (4.3a)

where the viscosity functional Π̄ is given by (see equation (B 6b))

Π̄ (ω̄, β)=−De2(jω̄)
/

32
(

1− 2
J1(β)/β

J0(β)

)
, (4.3b)

where J0 and J1 are Bessel functions. Combining equations (4.1)–(4.3), the relation between the
average membrane curvature as a function of the applied electrical field is found to be

H̄(ω̄)=
{

(1− k)/k
1+ (1− k)/kΠ̄ (ω̄, β) · (jω̄)

}
Ē(ω̄). (4.4)

(d) Total transfer function
From equation (4.4), the total transfer function FD(ω̄) is found to be (appendix B)

FD(ω̄)=Re[FD(ω̄)]+ jIm[FD(ω̄)]= H̄(ω̄)

Ē(ω̄)
= a∗0

((1− k)/k)X(ω̄; β)
((1− k)/k)+ X(ω̄; β)

= FS
X(ω̄; β)

((1− k)/k)+ X(ω̄; β)
,

(4.5)

where FS = a∗0((1− k)/k) is the static transfer function. X(ω̄; β)= Π̄ (ω̄; β) · (jω̄) is a complex
function of the Deborah number, the frequency, and the real and imaginary parts of the fluidities
(inverse of the viscosities), and can expressed in terms of a power series:

X(ω̄; β)=Re[X(ω̄; β)]+ jIm[X(ω̄; β)]=
N∑

k=1

δk(De2)k−1 · (ω̄)k−2(j3)k(ϕ(ω̄))k. (4.6)

Combining equations (4.5) and (4.6), the following compact form of the transfer function FD(ω̄) is
obtained:

FD(ω̄)= FS

∑N
k=1 δk(De2)k−1(ω̄)k−2(j3)k(ϕ(ω̄))k

((1− k)/k)+∑N
k=1 δk(De2)k−1(ω̄)k−2(j3)k(ϕ(ω̄))k

, (4.7)



13

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20130369

.........................................................

electrical field

equivalent
transfer function

average membrane
curvature

outputinput

H(w)E(w)

1 +

a0
*

· jww, De, Sh, ltlbP*1 – k
k

1 – k
k

Figure 7. Effective block diagram for the flexoelectric membrane embedded in two viscoelastic media. The total transfer
function integrates the flexoelectric and rheological transfer functions shown in figure 6 and its format reflects the negative
feedback loop in figure 5. (Online version in colour.)

where the coefficients δk are real negative numbers (see appendix B). The convergence of the
power series of equation (4.7) is slow; however, we are interested in a small contribution of the
inertial mechanisms, so for N= 2, the system exhibits a resonance effect.

The total transfer function given by equation (4.5) can now be represented in an equivalent
simpler block diagram shown in figure 7.

In equations (4.6) and (4.7), the complex fluidity ϕ(ω̄)=Re[ϕ(ω̄)]+ jIm[ϕ(ω̄)] is given by

ϕ(ω̄)= 1+ (jω̄)+ λ̄tλ̄b(jω̄)2

Ση̄ + λ̄tλ̄b(jω̄)
= Ση̄ + (1−Ση̄)λ̄tλ̄bω̄2

(Ση̄)2 + (λ̄tλ̄bω̄)2
+ j

(
Ση̄ − λ̄tλ̄b + (λ̄tλ̄bω̄)2

(Ση̄)2 + (λ̄tλ̄bω̄)2

)
ω̄. (4.8)

The real and imaginary parts of the fluidity are positive {Re[ϕ(ω̄)] > 0, Im[ϕ(ω̄) > 0]}.
Equations (4.7) and (4.8) are new findings of this work, and the starting point to characterize
OHCs. The flexoelectric transfer function FD(ω̄) depends on the elastic ratio k, Deborah number
De, and the real and imaginary parts of the fluidity ϕ(ω̄) which is determined by specific physical
mechanisms through the dimensionless numbers defined in §2.

(e) Kramers–Kronig relations
In this section, we show that equations (4.5) and (4.6) obey the well-known Kramers–Kronig
dispersion relations, which have significant applicability in real systems since they relate real and
imaginary components of the transfer function. Thus the real and imaginary parts of the transfer
function given by equation (4.5) are given by

Re[FD(ω̄)]= 2
π

P
∫+∞

0

ω̄′Im[FD(ω̄′)]

ω̄′2 − ω̄2
dω̄′

= FS

{
1+ ((1− k)/k)Re[X(ω̄; β)]

(1+ ((1− k)/k)Re[X(ω̄; β)])2 + (((1− k)/k)Im[X(ω̄; β)])2

}
(4.9)

Im[FD(ω̄′)]= 2ω̄

π
P

∫+∞
0

ω̄′Re[FD(ω̄′)]

ω̄′2 − ω̄2
dω̄′

= FS

{
((1− k)/k)Im[X(ω̄; β)]

(1+ ((1− k)/k)Re[X(ω̄; β)])2 + (((1− k)/k)Im[X(ω̄; β)])2

}
. (4.10)

In equations (4.9) and (4.10), P is the Cauchy principal value. These two equations are the
dispersion relations for FD(ω̄). For this system, the real and imaginary parts of the transfer
function are analytical and can be expressed through equations (4.9) and (4.10).

We note the following limiting regimes:
Large Deborah numbers: when the inertia mechanisms are larger (De
 1) the transfer function

has the following asymptotic expression: LimDe→∞FD(ω̄)→ FS = a∗0((1− k)/k).
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Small Deborah numbers: the complex function Π̄ (ω̄, β) reduces to the total viscoelastic
function, i.e. Lim

De→0
Π̄ (ω̄, β)→ η̄(ω̄)= 1/ϕ̄(ω̄) given by equation (4.8). The feedback loop system

given by equations (4.4)–(4.7) and figure 7 can be simplified to a simpler system given in terms of
the electrical field (input) and average membrane curvature (output) and its equivalent transfer
function given by

FD(ω̄)= a∗0(1− k)/k

1+ (1− k)/kη̄∗(ω̄) · (jω̄)
= a∗0(1− k)/k

1+ (1− k)/kḠ∗(ω̄)
. (4.11)

In equation (4.11), Ḡ∗(ω̄)= η̄∗(ω̄) · (jω̄) is the complex modulus. At small elastic ratio, k	 1, and
without inertial effects, equation (4.11) takes the following asymptotic form:

lim
k→0

FD(ω̄)= lim
k→0

a∗0(1− k)/k

1+ ((1− k)/k)Ḡ∗(ω̄)
∼= a∗0

Ḡ∗(ω̄)
= 1

Ḡ∗(ω̄)
∼= a∗0J∗(ω̄), (4.12)

where is J∗(ω̄) the compliance. The last equation implies that in the modes (I, III, V: floppy
membrane) the response function is given by the product between the flexoelectric and flow-
rheology mechanism (compliance) FD(ω̄)≡ a∗0J∗(ω̄).

5. Device characterizing functions: curvature, power and Q-factor
In this section, we use the transfer functions derived in §4 to express the equations that govern
the membrane curvature, the fluid power and the Q-factor.

(a) Membrane curvature
The membrane shape H̄(ω̄∗) responds to a complex exponential oscillatory electric field Ē(t̄, ω̄∗)=
exp(jω̄∗ t̄). The Fourier transform Ē(t̄, ω̄∗)= exp(jω̄∗ t̄) can be expressed as a delta Dirac function,
i.e. Ē(ω̄∗)= δ(ω̄ − ω̄∗), so the average membrane curvature in the Fourier domain is given by
H̄(ω̄∗)= FD(ω̄∗)δ(ω̄ − ω̄∗). Finally, taking the inverse Fourier transform of the average membrane
curvature, we have

H̄(t̄, ω̄)=Re[H̄(t̄, ω̄)]+ jIm[H̄(t̄, ω̄)]= FD(ω̄)exp(jω̄t̄). (5.1)

The curvature moduli can be calculated from equation (4.5), so the real and imaginary parts of
the membrane curvature are given as follows:

Re[H̄(t̄, ω̄)]=Re[FD(ω̄)]cos(ω̄t̄)+ Im[FD(ω̄)] sin(ω̄t̄) (5.2)

and

Im[H̄(t̄, ω̄)]= Im[FD(ω̄)]cos(ω̄t̄)− Re[FD(ω̄)]sin(ω̄t̄). (5.3)

For physical reasons, we are interested only in the real part of the average curvature function
H̄(t̄, ω̄), so for the rest of the paper, the imaginary part of equation (5.2) is not taken into account.

(b) Fluid power dissipation and membrane elastic storage
The key quantities for the device are the mechanical power delivered to the viscoelastic fluids
P̄(ω̄), the stored membrane elastic energy Ēm(ω̄) due to curvature and the ratio of these two
quantities, known as the Q-factor. The average power delivered to the viscoelastic fluids P̄(ω̄)
by the oscillating membrane is the period average of the product of the input force Ē(t̄, ω̄) times
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the flow rate �̄(t̄, ω̄)=−2−1dH̄(t̄, ω̄)/dt̄ and is proportional to Im[FD(ω̄)]:

P̄(ω̄)= 〈Re
[
Ē(t̄, ω̄)

] · Re
[�̄(t̄, ω̄)

]〉= 1
2
ω̄ |Im [FD(ω̄)]| . (5.4)

The period average elastic membrane energy Ēm(ω̄)= 〈Re[H̄(t̄, ω̄)] · Re[H̄(t̄, ω̄)]〉 indicates the
amount of energy stored by bending and is proportional to |FD(ω̄)|2:

Ēm(ω̄)= 〈(Re[H̄(t̄, ω̄)])2〉 = 1
2
{(Re[FD(ω̄)])2 + (Im[FD(ω̄)])2}. (5.5)

The Q-factor is the ratio between stored elastic membrane energy Ē(ω̄) and the power delivered to
the viscoelastic fluids P̄(ω̄) by the oscillating membrane and is proportional to Re[FD(ω̄)] · cot φ +
Im[FD(ω̄)]:

Q(ω̄)= Ēm(ω̄)

P̄(ω̄)
= 1

ω̄
{Re[FD(ω̄)] cot φ + Im[FD(ω̄)]}, (5.6)

where the phase angle φ is defined in equation (1.3). The Q-factor is a measure of the relative
importance of dissipative and storage processes, and depends on the inertia, memory of the
two viscoelastic phases, bulk viscosity, elastic ratio and flexoelectric mechanisms, through the
dimensionless numbers {λ̄tλ̄b, Ση̄, k, a∗0, De}. The magnitude of the Q-factor defines two important
regimes {Q(ω̄) > 1; Q(ω̄) < 1}:

Q(ω̄)=

⎧⎪⎪⎨
⎪⎪⎩

Q(ω̄) > 1 : membrane elastic storage > fluid power

Q(ω̄)= 1 : membrane elastic storage= fluid power

Q(ω̄) < 1 : membrane elastic storage < fluid power (biological zone).

(5.7)

In [11], it was shown that the Q(ω̄) < 1 biological zone relevant to the functioning of OHCs
was found in mode III (table 1) associated with maximum viscosity, high contrast between the
viscoelastic contacting phases and small elastic ratio. In the next section, the membratodynamic
model is extended taking into account the inertial mechanism using the transfer function
approach.

6. Numerical results
This section presents the mechanical response (computed using equations (4.7), (4.8), (5.1)–(5.6)),
fluid dissipation, membrane elastic storage and Q-factor as a function of the dimensionless
frequency. The main objective is to identify material conditions that lead to a biologically relevant
power spectrum with a well-defined resonant peak and Q-factor less than one (Q(ω̄) < 1), using
the transfer function methodology of §§4 and 5.

Table 2 presents a summary of the main features of the frequency response of
Re[FD(ω̄)], Im[FD(ω̄)], P̄(ω̄), Ēm(ω̄), Q(ω̄), under zero inertia (De= 0) and with inertia (De > 0) for
the modes {I, III, V} identified in figure 5; the other modes {II, IV, VI} corresponding to stiff
(large k) membranes are not biologically relevant [18] either because they do not form power
peaks or because Q(ω̄) > 1 (store more membrane elastic energy than inject momentum into
the fluids). In the case when the inertial mechanisms are neglected, De	 1, the real Re[FD(ω̄)]
and imaginary Im[FD(ω̄)] parts of the transfer function behave as would be expected for a
simple viscoelastic system displaying a single peak and two asymptotic plateaus separated by
a power-law region (PLR). On the other hand, the power dissipation P̄(ω̄) shows a monotonically
increasing behaviour followed by a plateau. It will be shown that under no inertia (De= 0) the
power P̄(ω̄) only shows a well-formed peak for mode III {LS, HV, FM} while all the other modes
(I, V) do not. The elastic energy Ēm(ω̄) shows a solid behaviour (whose range and magnitude
depends on k) at low frequency and then a power-law behaviour with frequency for all modes.
The Q-factor which is an index of merit for power delivery, decreases with frequency and
eventually achieves a plateau in all cases, except again for mode III {LS, HV, FM}, where it
eventually increases with dimensionless frequency. This tabular summary of generic dissipated
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Figure 8. Mechanical response: Re[FD(ω̄)], Im[FD(ω̄)], P̄(ω̄), Ēm(ω̄), Q(ω̄) as a function of dimensionless frequency ω̄, for
mode I in table 1 {LS, LV, FM} and De= 0. The response is elastic at low frequency, viscous at high frequency and viscoelastic at
intermediate frequencies. The black dot corresponds to the cross-over frequency.

power and stored energy features proves most useful to narrow the parametric envelopes relevant
to the biological performance of this device.

Figure 8 shows the mechanical response as a function of frequency for mode I, for De= 0. The
transfer function behaves as a classical viscoelastic system, with the real part displaying low- and
high-frequency plateaus and with a pulse in the imaginary part. The membrane behaves as a solid
at low frequency and the power increases with frequency and fails to display a resonant plateau.

Figure 9 shows the frequency response when the inertial mechanisms are present. The real
part of the transfer function shows a single broad well. The imaginary part of the transfer function
shows a classical resonance behaviour with two single peaks. It is found that inertia (De > 0) leads
to a resonance behaviour in modes {I, III, V}, while table 2 shows that for De= 0 only mode III
displays a well-formed power peak.

The power shows a single peak at high dimensionless frequency, and the elastic energy shows
a single sharp peak profile.

(a) Fluid power dissipation and membrane energy storage
Figure 10 shows the power dissipation P̄(ω̄) as a function of the dimensionless frequency ω̄

for the modes {I, III, V}, with inertia De �= 0 (figure 10a) and without inertia De= 0 (figure 10b).
Inertia generates well-localized resonant peaks in the three modes (I, II, III). Inertialess conditions
generate a broader power peak only in mode III (large viscosity) since dissipative modes persist
with higher frequencies. These facts follow from the fact that the power is proportional to the
imaginary part of the transfer function P̄(ω̄)= |Im[FD(ω̄)]|/2 (see equation (4.9)) and according
to the asymptotic results of appendix C, only under finite inertia Im[FD(ω̄)] converges at large
frequency to its static value. Hence, except for mode III, inertialess conditions do not generate
power pulses.
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Figure 9. Mechanical response: Re[FD(ω̄)], Im[FD(ω̄)], P̄(ω̄), Ēm(ω̄), Q(ω̄) as a function of dimensionless frequency ω̄ for
mode I in table 1 {LS, LV, FM}, when inertia is finite (cf. figure 8). (Online version in colour.)

Figure 11 shows the power dissipation P̄(ω̄) as a function of dimensionless frequency ω̄ for
mode III, and for De= 10−i, i= {1, 2, 3, 4} and De= 0 (inset).

It is clear that inertia plays a crucial role in the amplitude and location of the power peak. At
finite Deborah number (De= 10−i; {i= 4, 3, 2, 1}), the system displays power peaks whose values
are determined by the contrast of the viscoelastic phases, total bulk viscosity and membrane
elastic ratio. The inset shows the inertialess case De= 0 with only a broad power plateau.

Figure 12 shows the power dissipation as a function of dimensionless frequency for De= 10−4,
De= 0 and for several membrane elasticity ratios. The material properties used in the simulation
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Figure 10. Power dissipation P̄(ω̄) as a function of the dimensionless frequency ω̄ for the mode {I, III, V} in the cases where
the inertial mechanisms are present (a) and absent (b). Inertia promotes the formation of localized power pulses. Intertialess
conditions generate a wide plateau and only for mode III. (Online version in colour.)

correspond to mode III {LS, HV, FM}. It is clear that the elastic ratio k plays an important role in
the amplitude, and affects the symmetry and frequency bandwidth of the resonance. As expected
more floppy membranes will result in higher dissipation as they store more energy.

Figure 13 shows the elastic membrane energy as a function of dimensionless frequency under
weak inertia for modes {I, III, IV}, for De= 10−4 and De= 0. Inertia generates an asymmetric well,
indicating storage and solid-like behaviour in the terminal and large frequency zones, as noted
in equation (5.5). Inertialess conditions lead to an energy storage step, with little storage at large
frequency since no solid behaviour exists at high frequency when De= 0. For brevity, we discuss
only the key effects of fluid inertia (De) and membrane elasticity k on elastic storage (E). Increasing
De decreases the width of the energy well and increasing k decreases its depth; the energy well is
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Figure 11. Power dissipation as a function of dimensionless frequency, for mode III (table 1) and increasing inertia (De). The
material properties used in the simulation correspond to mode III {LS, HV, FM}. The inset shows the intertialess case (De= 0).
Inertia generates well-localized narrow peaks. Absence of inertia generates at best (mode III) a broad plateau. (Online version
in colour.)

shown in figure 13a. As noted above inertia introduces solid response in the terminal and large
frequency zones because both the input and output have second time derivatives and hence
increasing De narrows the well. Increasing k increases the role of membrane elasticity at any
frequency and hence the well is shallower at larger k.

Figure 14 shows the Q-factor as a function of the dimensionless frequency for modes {I, III, V}.
For figure 14a (De= 10−4) the Q-factors are V-shaped with a superposed vertex blunting that
increases with viscosity. Only modes I and III penetrate the important Q(ω̄) < 1 dissipation zone;
small localized resonances are seen just prior to the increase of Q(ω̄). For figure 14b (De= 0), the
Q-factors are J-shaped for mode I and III and blunted V-shaped for mode V. All modes penetrate
into the important Q(ω̄) < 1 dissipation zone, but mode V renters the Q(ω̄) > 1 elastic zone at
high frequency.

By combining the results from figures 8 to 14 and equations (4.9)–(4.11), we arrive at a
qualitative picture of power delivery P̄(ω̄) and of the Q(ω̄) factor of the device as a function of
the elastic ratio k, presented in figure 15 in terms of the membrane stiffness. The region k > 1/2 is
not relevant as the membrane is too stiff to absorb and release elastic energy. Since we demand
Q(ω̄) < 1 and a power peak, only the lower left quadrant is relevant. Both conditions can be met
only with mode I and De	 1, and with mode III and De= 0; all other modes and conditions
do not fulfil these criteria. The key requirements are: (i) asymmetric fluid elasticity (λ̄tλ̄b	 1),
(ii) membrane flexibility (k < 1/2), and (iii) either large viscosity and no inertia (III), or inertia and
low viscosity (I).

The material parameters of importance are: (i) density of the two viscoelastic phases, (ii) elastic
membrane stiffness, (iii) elasticity of the two viscoelastic phases, and (iv) Maxwell relaxation
times. The specific ways to adapt these parameters are by changing the concentration and the
molecular weight distribution of dissolved polymer chains. To increase power amplitude, one
of the liquid phases must be weakly elastic and the other one completely viscoelastic (phase
asymmetry). To shift the position of the localized power plateau and width of the power plateau,
the elasticity of the membrane with respect to the bulk (viscoelastic phases) must be tuned.
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To widen the power plateau, the Maxwell relaxation times, elasticity of the membrane and
viscoelastic phases must be modified.

7. Conclusion
Membrane flexoelectricity is a novel electromechanical coupling effect that occurs in polarizable
media under geometric curvature. The sensor effect is performed by bending induced electric
polarization, whereas the converse actuation effect is performed by the membrane curvature
induced by an imposed electric field. Membrane flexoelectricity is relevant to the biological
functioning of the OHCs which act as amplifiers to counteract viscous dissipation through



22

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20130369

.........................................................

10–10
10–2

10–1

1

10

102

103

104

105

106

107

108

109

(a)
1010

10–7 10–4 10–1 102

dimensionless frequency

el
as

tic
 e

ne
rg

y

10–2

10–1

1

10

102

103

104

105

106

107

108

109

(b)

1010

el
as

tic
 e

ne
rg

y

inertial mechanisms

no inertial mechanisms

V III I

V III I

105 108

10–10 10–7 10–4 10–1 102

dimensionless frequency

105 108

De = 10–4, a0
* = 1

De = 0, a0
* = 1

III: {LS, HV, FM}

V: {HS, IV, FM}

I: {LS, LV, FM} =

ltlb = 10–4

Sh = 10–4

k = 10–4

I: {LS, LV, FM}=

ltlb = 10–4

Sh = 10–4

k = 10–4

=

ltlb = 10–4

Sh = 1

k = 10–4

III: {LS, HV, FM}=

ltlb = 10–4

Sh = 1

k = 10–4

=

ltlb = 0.25

Sh = 0.5

k = 10–4

V: {HS, IV, FM}=

ltlb = 0.25

Sh = 0.5

k = 10–4

– –

– –

– –

– –

– –

– –

–

–

–

–

–

–

Figure 13. Elastic energy as a function of the dimensionless frequency for the three modes {I, III, V} for (a) De= 10−4 and (b)
De= 0. Inertia generates a well at intermediate frequencies. (Online version in colour.)

mechanic transduction and thus allowing hearing [11–13,20–28]. The key challenge is to
understand the coupling of oscillatory flexoelectric actuation and the viscoelastic phenomena
of the fluids that are in contact with the oscillating membrane [11–13]. An efficient method
to describe membrane flexoelectricity is to use the LC analogy that follows by identifying the
director field of a nematic with the unit normal to the membrane [11] (figure 2). A key parameter
is the flexoelectric coefficient which for biological membranes is of the order of 3–20 pC m−1

[11]. In this paper, we explored the dynamics of the actuation flexoelectric mode taking into
account the inertial mechanism. An integrated dynamical model for the average curvature of
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flexoelectric membranes oscillating in viscoelastic fluid media under capillary confinement was
formulated using a previously presented shape equation based on the LC approach [11–13].
The membrane curvature dynamics is given by a balance among the viscoelastic stress jump
from the contacting bulk liquids, the restoring membrane effective tension, and the driving
flexoelectric force (equations (2.1), (2.2), (2.5) and (2.9)) [11–13]. By using the flexoelectric shape
equation in conjunction with a viscoelastic capillary flow model for the contacting phases
(equation (2.8)), we obtained a new average curvature dynamic equation (equations (3.1)
and (3.4)) [11]. By applying the Fourier transform to the governing partial linear differential
equation (equation (3.1)) and using the relation between the speed of the average curvature
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and volumetric flow (equation (3.2)), a relationship between the average curvature and applied
electrical field was found (equations (3.4) and (3.7)). The corresponding complex transfer function
(equation (4.4)) is a function of the inertia, asymmetry of the viscoelastic phases, total bulk
viscosity and membrane elasticity, through characteristic dimensionless numbers associated with
each mechanisms (equations (3.5a,b) and (3.8a,b)). At small Deborah number, the complex transfer
function reduces to a previous viscous model (equation (3.4)) studied at length in [11].

A thorough parametric study was performed to identify the conditions that lead to the
emergence of a power pulse (table 1). It was found that the inertial mechanisms play an important
role in the resonance curves associated with the power dissipation in the relevant modes {I, III, V},
which corresponds to the cases of low and high symmetries of the viscoelastic phases, low and
sufficiently large total bulk viscosity and small elastic ratio indicating that less elasticity is stored
in the membrane (table 2 and figures 8–10).

An evaluation of the present model predictions based on power profile indicates that the
Helfrich–flexoelectric–Maxwell fluid model possesses the necessary physics to qualitatively
capture electromechanical power conversion [11] (figures 9–14). The linear model presented here
is valid only for electric fields of sufficiently small amplitude, high dimensionless frequencies and
small deformations [11] (equations (3.1) and (4.4)).

The present theory, model and computations contribute to the evolving fundamental
understanding of biological shape actuation through electromechanical couplings [5–9,11–13].
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Appendix A
In order to non-dimensionalize equations (3.1)–(3.3), the following dimensionless variables are
defined for the electrical field, curvature, time, frequency, viscoelastic properties and power:

Ē= E
E0

; H̄= aH; r̄= r
a

; z̄= z
a

; t̄= t
Σλ

; ω̄=Σλω; Ḡb =
Gb

ΣG
; λ̄b =

λb

Σλ
;

M̄= M
ΣG

; Q̄= Q
πa3/Σλ

; P̄= P
2πa2L (ΣG/Σλ)

; Ēm= Em
2πa2LΣG

. (A1)–(A10)

Notice that for equations (A 1)–(A 10), the following restrictions are satisfied: X̄b + X̄t = 1; X=
{G, λ}.

In equations (A 1)–(A 10), the characteristic macroscopic force, length, time, elastic force power
and membrane elasticity are: (i) amplitude of the external electrical field, (ii) radius of the pipe, (iii)
sum of the viscoelastic times in the bottom and the top fluids, and (iv) sum of the elastic moduli
in the bottom and the top fluids . The energy (power) is scaled by the ratio between the sum of
the elastic moduli and the viscoelastic time multiplied by characteristic axial and radial length
scales (radius of the pipe and axial length). The selection of these characteristic times allows the
comparison with the other internal (inertial, viscoelastic times) and external characteristic times
(frequency).

Appendix B
The purpose of this appendix is to show the key derivation steps needed to perform a Fourier
analysis of the model (equations (3.1) and (3.2)), derive the block diagram (figures 6 and
7), transfer functions (equations (4.5)–(4.8), (4.11) and (4.12)) and Kramers–Kroning relations
(equations (4.9) and (4.10)).

(a) Flexoelectric momentum equation
The Fourier transform of {v̄z, p̄, Ē, H̄, Q̄} is

X̄(r̄, ω̄)= 1√
2π

∫∞
−∞

dt̄e−jω̄¯̄tx̄(r̄, t̄); x̄(r̄, t̄)= {v̄z, p̄, Ē, H̄, Q̄}, (B 1)

where e−iω̄t̄ is the complex kernel. Applying the Fourier transform to the electro-rheological
model given in equations (3.1) and (3.2) we get{

(Ση̄ + λ̄tλ̄b(jω̄))
1
r̄

∂

∂ r̄
r̄

∂

∂ r̄
−De2(1+ (jω̄)+ λ̄tλ̄b(jω̄)2)(jω̄)

}
v̄z(r̄, ω̄)

= (1+ (jω̄)+ λ̄tλ̄b(jω̄)2)4
(

a∗0Ē(ω̄)−
(

k
1− k

)
H̄(ω̄)

)
. (B 2)

∫ 1

0
r̄v̄z(r̄, ω̄)dr̄=−1

4
(j, ω̄)H̄(ω̄). (B 3)

Equation (B 2) is a parametric Bessel differential equation. The general solution of (B 2) is the sum
of the homogeneous and particular solutions:

v̄z(r̄, ω̄)=− 4
De2(jω̄)

(
1− J0(β r̄)

J0(β)

)(
a∗0Ē(ω̄)−

(
k

1− k

)
H̄(ω̄)

)
, (B 4)

where J0(β r̄) are the first and second kind Bessel functions of order zero, respectively. In
equation (B 4), we used the non-slip condition v̄z(r̄= 1, ω̄)= 0 and bounded the axial velocity in
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all the domain, i.e. |v̄z(r̄, ω̄)| ≤M. The parameter β2 ∈C is given by

β2 =−De2ϕ(ω̄) · (jω̄)=−De2

(
1+ (jω̄)+ λ̄tλ̄b(jω̄)2

Ση̄ + λ̄tλ̄b(jω̄)

)
· (jω̄). (B 5)

In equation (B 4), ϕ(ω̄) ∈C can be interpreted as a total complex fluidity of the two viscoelastic
phases (inverse of the viscosity function, ϕ(ω̄)≡ η−1(ω̄)). The volume flow rate in cylindrical
coordinates can be calculated using the standard formula:

�(ξ̄ )= 2
∫ 1

0
v̄z(r̄, ω̄)r̄ dr̄=− 1

8Π̄(ω̄, β))

(
a∗0Ē(ω̄)−

(
k

1− k

)
H̄(ω̄)

)
, (B 6a)

where the generalized viscosity function is given by

Π̄(ω̄, β)=De2(jω̄)
/

64
(

1− 2
J1(β)/β

J0(β)

)
. (B 6b)

In equations (B 6), the property of the Bessel functions d[zJ1(z)]/dz= zJ0(z) and the change of
variable z= β r̄ were used. In equation (B 6) the Bessel function of the first kind J1(β) was defined.

(b) Dynamic response
Equations (B 3) and (B 6) can be solved for the average membrane curvature, and by defining the
ratio between the input (electrical field Ē(ω̄)) and output (curvature of the membrane), the transfer
function is given by

FD(ω̄)= H̄(ω̄)

Ē(ω̄)
= FS

{−(8/De2ω̄2)(1− 2((J1(β)/β)/J0(β)))
}

((1− k)/k)+ {−(8/De2ω̄2)(1− 2((J1(β)/β)/J0(β)))} = FS
X(ω̄; β)

((1− k)/k)+ X(ω̄; β)
.

(B 7)
In equation (B 7), FS = a∗0 is the static transfer function. The complex function X(ω̄; β) is

defined as

X(ω̄; β)= 1
De2ω̄2

(
β2 + 1

6
β4 + 11

384
β6 + 19

3840
β8 + 473

552960
β10 +O [β]11

)

= 1
De2ω̄2 (δ1β

2(1) + δ2β
2(2) + δ3β

2(3) + δ4β
2(4) + δ5β

2(5) + · · · + δkβ
2(k)). (B 8)

In equation (B 8), the power expansion of the Bessel functions was used. The coefficients
{δk}Nk=1 are real negative numbers, i.e. {δk}Nk=1 ∈R+ with δk < δk+1. Substituting the parameter
β2 =−De2(jω̄)ϕ(ω̄) into equation (B 8), the transfer function in terms of an infinity power series is
given by

FD(ω̄)= FS
((1− k)/k)

∑N
k=1 δk(De2)k−1 · (ω̄)k−2(j3)k(ϕ(ω̄))k

((1− k)/k)+∑N
k=1 δk(De2)k−1 · (ω̄)k−2(j3)k(ϕ(ω̄))k

; k ∈N, (B 9)

showing how De and the fluidity ϕ(ω̄) affect the response.

(c) Small Deborah numbers
At small values of the Deborah number, i.e. De	 1, the transfer function (equation (B 9)) can be
developed up to the first term and using the fluidity function given by equation (B 5), the transfer
function is given by:

LimDe→0FD(ω̄)≈ FS
1− kb∗2(k, λ̄tλ̄b)ω̄2 + jω̄

1− b∗2(k, λ̄tλ̄b)ω̄2 + b∗1(k, Ση̄)jω̄
=Re[FD(ω̄)]+ jIm[FD(ω̄)]. (B 10)

Notice that equation (B 10) is the transfer function of equation (3.4). Taking the conjugate of the
above expression we find

Re[FD(ω̄)]= FS
1+ (b∗1(k, Ση̄)− (1+ k)b∗2(k, λ̄tλ̄b))ω̄2 + k(b∗2(k, λ̄tλ̄b)ω̄2)2

(1− b∗2(k, λ̄tλ̄b)ω̄2)2 + (b∗1(k, Ση̄)ω̄)2
(B 11)
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and

Im[FD(ω̄)]= FS
(1− b∗1(k, Ση̄))ω̄ + (1− kb∗1(k, Ση̄))b∗2ω̄

3

(1− b∗2ω̄2)2 + (b∗1ω̄)2 . (B 12)

Equations (B 11) and (B 12) represent the real and imaginary parts of the transfer function
FD(ω̄). Making the following identifications, we have:

Hi0(ω̄; λ̄tλ̄b, Ση̄, k, a∗0)=Re[FD(ω̄)] (B 13)

and
H0i(ω̄; λ̄tλ̄b, Ση̄, k, a∗0)= |Im[FD(ω̄)]|. (B 14)

Notice that the real and imaginary parts of the transfer function are the same as the average
curvature moduli studied previously [18], and can be generalized for higher rheological linear
models such as the well-known Jeffrey and Burgers models.
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