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Abstract

Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry 

technology for protein identification and quantification that is capable of analyzing multiple 

samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot 

from a pool of all samples, or “masterpool”, in one of the channels as a reference sample standard 

to estimate protein relative abundances in the biological samples and to combine abundance 

estimates from multiple experiments. In this manuscript, we show that using a masterpool is 

counterproductive. We obtain more precise estimates of protein relative abundance by using the 

available biological data instead of the masterpool and do not need to occupy a channel that could 

otherwise be used for another biological sample. In addition, we introduce a simple statistical 

method to associate proteomic data from multiple iTRAQ experiments with a numeric response 

and show that this approach is more powerful than the conventionally employed masterpool-based 

approach. We illustrate our methods using data from four replicate iTRAQ experiments on 
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aliquots of the same pool of plasma samples and from a 406-sample project designed to identify 

plasma proteins that covary with nutrient concentrations in chronically undernourished children 

from South Asia.
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INTRODUCTION

A common reference standard is frequently employed in quantitative proteomic studies to 

quantify differences in protein expression between individual samples. The standard sample 

is typically a pool of an equal amount from each sample in the study and can be referred to 

as the “masterpool”. If the exact protein concentrations in the masterpool were known, then 

in mass tags techniques such as isobaric tags for relative and absolute quantitation 

iTRAQ 1–5 which compares up to eight samples in a single experiment, the masterpool 

protein concentrations could be used to compare protein abundances among the biological 

samples within the experiment and also among experiments. Estimates of protein relative 

abundance could be calculated with reference to the same standard, and the estimates could 

simply be combined across experiments. However, the exact masterpool protein 

concentrations are typically unknown. Because the relative protein concentrations in the 

masterpool have to be estimated from the experimental data, they are subject to variability. 

Although typically ignored, this variability in the masterpool protein concentrations affects 

the precision of the relative abundance estimates within an experiment6 and raises the 

question how to address this source of unwanted variability among experiments.

In multiplexing iTRAQ experiments, differences in a protein’s expression among samples is 

determined from comparing intensities of the eight different iTRAQ reporter ions, 
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representing the eight different samples, in the MS/MS peptide fragmentation spectra.7 

When using masterpools, the reporter ion intensities of the biological samples are divided by 

the reporter ion intensity from the masterpool sample for each peptide spectrum used for 

quantification. The estimate of relative abundance of a particular protein is typically 

calculated as the median of the reporter ion ratios from all peptide spectra belonging to the 

protein, as implemented, for example, in the Proteome Discoverer software (Thermo 

Scientific). Corrections for differences in the amounts of material loaded in the channels or 

differences due to sample processing can also be implemented: dividing each protein 

relative abundance estimate by the channel median relative abundance (the median of all 

relative protein abundances within a channel) normalizes all channels to have median one. 

Equivalently, on the logarithmic scale, subtracting the channel median log2 relative 

abundance from each log2 relative abundance estimate normalizes all channels to have 

median zero. The fact that all estimates stemming from the reference standard channel are 

also subject to experimental noise can result in highly variable estimates when ratios are 

calculated. Denoting the reporter ion intensity of a biological sample by ŶS and the reporter 

ion intensity of the reference sample by ŶR, the variability in the ratio of these intensities 

can be approximated via a first-order Taylor expansion,8 yielding

(1)

This term indicates that the variability in reporter ion intensity ratios is particularly 

susceptible to the variability in the estimates in the denominator (i.e., the reference channel). 

Thus, using less variable references, such as the mean or median of the reporter ion 

intensities observed in the biological samples, can provide more precise estimates of protein 

relative abundances.

In this manuscript, we are mainly concerned with how proteomic measurements covary with 

a numeric response, specifically, plasma micronutrient concentrations. We introduce a 

simple and scalable statistical method to associate quantitative proteomic data from multiple 

iTRAQ experiments with numeric outcomes, but also discuss that case-control data can 

easily be analyzed in this framework assuming proper experimental design. We show that 

our method is more powerful than conventional approaches that rely on masterpool or 

standard reference samples. The method yields more precise estimates of protein relative 

abundance in a single iTRAQ experiment and improves inference when multiple iTRAQ 

experiments are performed. We illustrate the performance of our methods using data from 

four replicate iTRAQ experiments on aliquots of a masterpool sample and from a 406-

sample project designed to identify plasma proteins that covary with nutrient concentrations 

in chronically undernourished children from South Asia.
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MATERIALS AND METHODS

Experimental Parameters

Eight-plex stable isotope masstags (iTRAQ) were employed to identify and quantify plasma 

proteins of 406 Nepalese children by high-throughput tandem mass spectrometry. 

Isotopically resolved masses in MS and MS/MS spectra were extracted with and without 

deconvolution using Thermo Scientific Xtract software. Both data sets were searched 

against the RefSeq 40 database using Mascot (Matrix Science) through Proteome Discoverer 

software (v1.3, Thermo Scientific), producing two mascot scores for each fragmentation 

spectrum. To avoid redundancies in peptide identification, only the highest of these two 

scores was used to identify the peptide and determine if the peptide identification passed the 

5% false discovery rate filter, based on a concatenated decoy database search. To avoid 

redundancies in quantitation, only the reporter ions from the spectrum matched to peptide 

identifications with the highest Mascot score before or after deconvolution by the Xtract 

function were used for quantitation of reporter ion intensities. Only spectra with reporter ion 

intensities observed in all eight channels were used for peptide and protein quantitation. 

More details are given in the section Experimental Parameters in the Supporting 

Information.

Sample Description

The data stem from 1000 early-school-aged children, sampled from a micronutrient-

deficient population typical of the Terai of rural Nepal.9 Parental consent was obtained prior 

to conducting child assessment procedures. The original field trial was registered with 

ClinicalTrials.gov (NCT00115271).10 The study protocol was reviewed and approved by 

institutional review boards at the Johns Hopkins Bloomberg School of Public Health, 

Baltimore, MD, USA, and the Institute of Medicine, Tribhuvan University, Kathmandu, 

Nepal. A total of 20 nutrient indicators (including vitamins A, B6, B12, copper, iron, and 

zinc) and indicators of inflammation (including the C-reactive protein) are the outcomes of 

interest, measured for all 1000 children. To date, proteomic measurements are available for 

individual samples of 406 children and masterpools consisting of an equal amount of plasma 

from all 1000 children. A total of 58 iTRAQ experiments were run, each with seven 

biological samples and one masterpool aliquot randomly allocated to the eight channels, 

defined by isobaric tags, using a randomized block design (see the section Experimental 

Design in the Supporting Information). To assess technical variability, four “masterpool 

iTRAQ experiments” were carried out, each consisting of eight aliquots (technical 

replicates) of the plasma masterpool.

Metrics for Comparison

A logarithmic transformation of the reporter ion intensities is commonly employed because 

systematic effects and variance components are usually assumed to be additive on this 

scale.11,12 Thus, our calculations are carried out on the log2 scale in general, but for ease of 

interpretation, the findings are reported on the fold change scale where possible. Comparing 

different approaches for estimation of relative protein abundance in the four experiments 

with technical replicates of the masterpool, we know that, in truth, all protein abundances 

should be the same, that is, the relative abundances should all be equal to 1 (the log2 relative 
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abundances should all be equal to 0). Thus, we assess the accuracy and precision by 

calculating root mean squared and median absolute fold changes. Specifically, for a set X1 

…, Xn of fold changes, we calculate

(2)

and

(3)

to account for fold changes in both directions and to quantify “typical” deviations from the 

expected value of 1. In the data from the 58 iTRAQ experiments using plasma from 406 

children, we also expect biological variability among the individual samples for any 

particular protein. For these samples, we use the concordance correlation coefficient to 

measure the agreement in relative abundance estimates between two approaches. The 

concordance correlation between two random variables X and Y is defined as

(4)

Unlike the Pearson correlation coefficient, it is not invariant to changes in location and scale 

and assesses the actual agreement between X and Y, rather then their correlation alone.

Estimable Parameters and Statistical Inference

Consider one particular protein, and let μ be the population mean for the log2 abundance 

(log2 absolute concentration) of this protein. If we select a random subset of eight subjects 

from this population, the average concentration in this sample will differ from the 

population mean, with a magnitude that depends on the biological variability across subjects 

in this population (i.e., a random effect). For this sample, denote Δ to be the shift from the 

population mean μ . In other words, the true sample mean is μ + Δ, and we assume that Δ ~ 

N(0, σΔ
2). Further, let δ = (δ1, …, δ8) be the vector that indicates the deviation for each 

subject from this sample mean. Note that this implies Σk δk = 0. Thus, the true absolute 

protein abundance for subject k ∈ {1, …, 8} is ak = μ + Δ + δk. However, for each spectrum, 

s ∈ {1, …, S} of log2 reporter ion intensities, we observe only Ysk = Δ s + δk + εsk. Here, Δs 

is the average log2 ion intensity across all eight channels (the outcome of a random process, 

but considered fixed for any particular experiment), and we assume that ε ~ N(0, σ2) is 

random Gaussian noise. This implies that the absolute protein abundances ak are not 

estimable, as the observed data do not contain information about either μ or Δ.

Denote the average of the eight log2 reporter ion intensities for spectrum s as Ȳs = ∑k Ysk/8, 

with E[ȲS] = Δs (since ∑k δk= 0). Thus, for the “de-meaned” log2 reporter ion intensities Zsk 

= Ysk−Ȳs, we have E[Zsk] = E[Ysk] − E[ȲS] = δk. This implies that the relative abundances δk 

are estimable in each iTRAQ experiment. Also note that strictly speaking, the errors εsk − ε̄
s 

for the demeaned reporter ion intensities Zsk are not independent (because they sum to 0), 
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but instead can be described by an exchangeable variance-covariance matrix for the error 

term.

The question arises how relative abundance estimates from multiple iTRAQ runs can be 

combined. Assume that for each iTRAQ experiment, r ∈ {1, …, R}, we have estimates for 

δr = (δr1, …, δr8). The true log2 protein abundance for subject k in experiment r is given by 

ark = μ + Δ r + δrk; however, the among experiment variance component Δ r is not estimable 

from the proteomic data, so simply augmenting the δr across experiments as a surrogate for 

absolute abundance fails to take the variance component Δ r into account. Note that 

randomization of subjects to experiments helps to avoid systematic biases but does not 

eliminate the random mean shift Δ r expected among experiments. In other words, 

randomization cannot eliminate the variance component due to differences in mean 

abundances among experiments and thus cannot avoid a reduction in power to detect the 

association with an outcome of interest, unless Δ r is accounted for in the statistical 

inference.

Since Δ r cannot be estimated and eliminated using the proteomic data alone, the question 

arises whether the information in the outcome data (in our example, the micronutrient 

concentrations) can help to account for this unwanted variance component. Assume that in 

truth we have E[Nrk] = β0 + β1 × ark, where Nrk is a numeric outcome for the sample in 

experiment r channel k, and ark is the corresponding log2 absolute protein abundances. 

Substituting μ + Δ r + δrk for ark, we can rewrite this equation as

(5)

where r indicates the experiment and k the channel. Thus, eq 5 represents a linear mixed 

effects model with intercept γ0 = β0 + β1 μ , a random shift Br ~ N(0, (β1σΔ)2) that accounts 

for differences in means seen among experiments, and the slope β1 as the actual parameter 

of interest, assessing the relationship between protein and nutrient concentrations.

The statistical significance for this protein–nutrient association can be derived by testing the 

hypothesis β1 = 0. Note that the normality assumption for the random intercept is not very 

strong: if the responses are normally distributed, then so are the means of the samples 

chosen for an iTRAQ experiment, implying normality of the random effect. Also note that if 

more than one protein is linearly related to the nutrient concentration, the above equation 

can be extended to

(6)

Thus, even though we have multiple proteins, the resulting linear mixed effects model still 

has only one random effect, B͂r, that jointly summarizes the among experiment differences.

Estimation of Relative Protein Abundances

For a single iTRAQ experiment, denote Ysij = (Ysij1, …, Ysij8) to be the log2 reporter ion 

intensities for spectrum s belonging to peptide j of protein i, and let Zsij = (Zsij1,…, Zsij8) be 
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the mean or median-polished log2 reporter ion intensities; that is, the residuals of the log2 

reporter ion intensities after subtracting the sample mean or sample median from each of the 

eight log2 intensities. The estimates of relative abundance of a particular protein can be 

calculated, for example, as the mean or the median of the derived values from all reporter 

ion intensity spectra belonging to this protein. Alternatively, an approach that incorporates 

the hierarchical structure of the data can be employed. That is, the information from all 

spectra belonging to the same peptide is combined first (via means or medians), and then 

these values are combined by a mean or median to derive the log2 relative protein 

abundances. A weighted summary can also be used in case a strong inverse relationship 

exists between the ion counts across all channels and the variance in the respective 

expression ratios;6 however, we do not see that phenomenon in our data (see the section 

Variance Heterogeneity in the Supporting Information). Corrections for differences in 

amounts of material loaded in the channels or sample processing should be considered by 

subtracting the channel mean or median from the relative abundance estimate, normalizing 

all channels to have mean or median 0 (Figure 1).

An alternative approach is to employ linear mixed effects models for protein relative 

abundance estimation as well. For a single iTRAQ experiment, these estimates for the 

relative protein abundances can be derived from the protein-sample interaction term in a 

mixed effects model; for example,

(7)

where Z denotes the mean-polished reporter log2 ion intensities in channel k, for spectrum s 

from peptide j of protein i. C denotes the channel, Π denotes the protein, π denotes the 

peptide, and ε denotes the residuals of the observed data after accounting for the systematic 

effects. In the above model, Ck is the loading effect, a random effect that models systematic 

deviation of the log2 reporter ion intensities from zero in the respective channels. Since the 

average for each mean-polished log2 reporter ion intensities spectrum is 0, it is not necessary 

to specify the main effects for spectrum, peptide, and protein. The term {C:Π}ik is the 

sample by protein interaction, a fixed effect that determines the deviation (up or down 

regulation) of protein i in channel k. The term {C:π}kij is a random effect that models the 

variability of the relative peptide abundances (indexed by j) around the relative protein 

abundance of protein i in channel k; that is, potential differences between relative peptide 

abundances that contribute to the estimate of the relative protein abundance. Finally, the last 

variance component is the residual error εsijk assumed to have mean 0 and a constant 

variance.

When violations of model assumptions are a concern, simpler, more robust approaches can 

possibly yield better results. For example, if the assumption of a normally distributed 

random effect for peptide nested within protein does not hold, the above model could be 

simplified to

(8)
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omitting the peptide random effect. Note that the correction for differences in loadings or 

sample processing could also be carried out after estimating the protein abundances by 

subtracting the mean or median from all protein abundances within each channel. In 

particular, omitting the term Ck in eq 8 simply yields the log2 reporter ion intensity average 

for each protein as the initial abundance estimate in each channel because only fixed effects 

are present.

In this manuscript, we consider a total of seven approaches to quantify protein relative 

abundances from a single iTRAQ experiment. In particular, we compare methods with and 

without masterpool normalization, linear models with and without random effects, and 

simple summaries of log-transformed reporter ion intensities. We also investigate whether 

means or medians in general perform better for data summaries. For all methods, we remove 

the loading effect after abundance estimation (a significant source of variability; see the 

section Loading Effects in the Supporting Information). We note that missing data patterns 

can substantially affect parameter estimates, such as the estimated loading effects, in 

particular when the missingness cannot be ignored. It is often assumed or observed that 

missingness is related to protein concentration (for example, due to instrument detection 

limits);13 however, we did not observe such patterns in our 8-plex iTRAQ data (manuscript 

in preparation).

As defined above, let Zsij = (Zsij1, …, Zsij8) denote the mean-polished log2 reporter ion 

intensities for spectrum s (that is, the residuals of the log2 reporter ion intensities after 

removing the sample mean across the eight channels), belonging to peptide j of protein i. In 

addition, let Z͂sij = (Zsij1, …, Z͂sij8) denote the median-polished reporter log ion intensities. 

Without loss of generality, assume that a masterpool has been run in channel 1. We 

compared the following approaches: (1) Masterpool-based normalization using means; that 

is, calculating Zsijk − Zsij1 for k ∈ 2,…, 8, and then averaging those numbers across all 

spectra s, for each protein i in each channel k, ignoring peptides. (2) Masterpool-based 

normalization using medians; that is, calculating Zs͂ijk − Z͂sij1 for k ∈ 2, …, 8, and then 

calculating the median of those numbers across all spectra s, for each protein i in each 

channel k. (3) Linear mixed effects models as considered above, where we model the 

peptides nested within a protein as random effects. (4) Linear models as considered above, 

ignoring the hierarchical structure, averaging the demeaned log2 reporter ion intensities Zsijk 

across all spectra s, for each protein i in each channel k. (5) A “median sweep” ignoring 

peptides; that is, simply calculating the median of all Zsijk, across all spectra s, for each 

protein i in each channel k. (6) A “mean sweep” taking the hierarchical data structure into 

account; that is, calculating Zijk = means{Zsijk}, the average of all Zsijk across all spectra s, 

for each protein i and peptide j in each channel k, and then averaging the resulting means 

over the peptides; that is, calculating Zik = meanj{Zijk}. (7) A “median sweep” taking the 

hierarchical data structure into account, calculating Z͂ijk = medians{Z ͂sijk} for each protein i 

and peptide j in each channel k, and then Z͂ik = medianj{Z ͂ijk}.

Under the assumption that specific variance components are the same in each experiment 

(such as the peptide variability around the respective protein estimates, the model error 

variability, etc), more efficient estimates might be derived by estimating protein quantities 
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simultaneously across multiple iTRAQ experiments. For example, protein abundances might 

be derived from the mixed effects model,

(9)

where Z denotes the mean-polished reporter log ion intensities in iTRAQ experiment r, 

channel k, for spectrum s from peptide j of protein i. Again, C denotes the channel, Π 

denotes the protein, π denotes the peptide, and ε denotes the residuals of the observed data 

after accounting for the systematic effects. As before, the term {C:Π}ikr denotes a sample by 

protein interaction, a fixed effect that determines the deviation (up or down regulation) of 

protein i in the sample loaded in channel k of iTRAQ experiment r. Note that omitting the 

term {C:π}kijr, the random effect that models the variability of the relative peptide 

abundances around the relative protein abundance, leads to a fixed effects model. 

Combining multiple iTRAQ experiments in this setting yields a design matrix with 

orthogonal components, thus resulting in the same protein relative abundance estimates as 

the ones derived separately from each single experiment. In this manuscript, we also 

delineate relative abundance estimates simultaneously from multiple iTRAQ experiments 

using mixed effects models and investigate whether the increase in computing complexity is 

warranted.

RESULTS

The relative abundance estimates for our data derived by simultaneously analyzing multiple 

iTRAQ experiments are virtually identical to those derived separately from each iTRAQ 

experiment. Using the 406 samples from 58 separate iTRAQ experiments (seven biological 

samples plus one masterpool, the latter being omitted for this part of the analysis), we 

compared linear models (ignoring the hierarchical data structure of peptides nested in 

proteins) and linear mixed effects model (using peptide as a random effect). For each of 

those two methods, we compared the results by deriving the relative abundance estimates 

jointly for the samples in all experiments, and derived separately for the samples in each 

experiment. The fixed effects linear model generates a design matrix with orthogonal entries 

when all experiments are assessed simultaneously, and thus yields estimates identical to 

those obtained from analyzing one experiment at a time. The results from both fixed effects 

approaches are included solely to demonstrate this feature. Using the concordance 

correlation (defined in eq 4), we get nearly identical results for all four approaches and, as 

expected, identical results for the fixed effects models whether the estimates are derived 

simultaneously or separately (Table 1). Thus, there is no evidence that the added complexity 

of introducing a random peptide effect is warranted for the estimation of relative protein 

abundances.

The same holds when we compare the relative abundance estimates in the four all-

masterpool 8-plex iTRAQ experiments. Since there is no biological variability in these 32 

samples and, thus, the relative abundance estimate for each protein in each sample should be 

equal to 1, in truth we report the absolute median fold change (defined in eq 3) for each 

sample. In most instances, the results are virtually identical, and in the samples for which a 

modest difference among methods can be seen, the simplest model based on fixed effects 
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without peptide random effects actually achieves the best results (Figure 2). Thus, for the 

proteomic data in our hands, there does not appear to be a benefit of using more 

computationally intensive methods. The simplest method, ignoring the hierarchical structure 

of peptides nested in proteins and estimating relative abundances one experiment at a time, 

yields results at least as good as the mixed effects models, and is much faster to run. 

Moreover, the data can be analyzed sequentially as iTRAQ experiments are carried out in 

the laboratory, without the need to refit previous samples, an additional attractive feature. 

Therefore, only abundance estimates derived from one experiment at a time are considered 

in the remainder of the manuscript.

We show next that properly accounting for among-experiments variability can substantially 

boost the power to detect protein-nutrient associations and can improve the overall 

assessment of these relationships (as compared with ignoring the among-experiments 

variability or using the masterpool for abundance estimation and comparison of estimates 

among experiments). For example, using the “median sweep” without employing the 

masterpool (Figure 1), the estimated relative abundances of the retinol-binding protein 4 

derived from 58 8-plex iTRAQ experiments with seven individual samples and one 

masterpool each (406 individual samples total) explain 50% of the variability in measured 

plasma retinol concentrations when the data across experiments are simply augmented, but 

74% of that variability can be explained when the among-experiments variance component 

Br in eq 5 is estimated and accounted for (Figure 3). In this example, allowing a random 

intercept accounts for 42% of the total variability (the sum of the among-experiments 

variability and the residual variability). Using the masterpools to estimate protein 

abundances in all experiments yields an R2 of only 0.47. The observed improvement is a 

trend that holds in general, shown here for the 15 most significant associations of mass-

spectrometry-based protein abundances with plasma retinol (vitamin A), the C-reactive 

protein measured in plasma as an indicator of inflammation, and the α1-acid glycoprotein: 

the random intercepts model (eq 5) always yields a higher coefficient of determination 

(Figure 4 and Table 2).

We stress that the assessment of statistical significance of a protein-nutrient relationship is 

based on the test statistic for the slope parameter β1 in eq 5, whereas the improvement in R2 

is mostly due to explaining the among-experiments variability. An increase in overall 

nutrient variability explained, however, does translate into a decrease in the standard error of 

the test statistics and, thus, an improvement in power. In the Supporting Information (section 

Expected Improvement in Power), we present a simulation study and give a more in-depth 

discussion of what improvements in power one can expect.

The question remains which of the approaches (1–7) defined in the Methods section yields 

the best results for the relative abundance estimation in single iTRAQ experiments. When 

investigating the quality of the respective relative abundance estimates using the four 

iTRAQ experiments, each with eight technical replicates of the masterpool, we find that 

methods (3–7) perform roughly equally well, clearly outperforming the two approaches for 

abundance estimation based on a reference sample. In these four masterpool experiments, 

the median absolute fold change is always the lowest for the median sweeps (5) and (7), and 

the methods using masterpool normalization appear substantially more variable than all 
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others (Figure 5, top). This observation is even more pronounced when the root mean 

squared error (translated into a fold change) is considered (Figure 5, bottom).

When samples with biological variability and their associations with nutrient concentrations 

are considered, the median sweep ignoring peptides (5) again is arguably the best approach, 

typically producing among the highest coefficients of determination of all approaches 

considered (Figure 6). Interestingly, the other arguably superior method for samples with 

biological variability is the median-based masterpool approach (2), which seems to 

contradict the findings from the masterpool experiments (Figure 5). This apparent paradox 

can be explained by the fact that the random intercept models used to investigate protein–

nutrient associations can account for some or all of the extra variability introduced by the 

masterpool-based normalization. The only difference between the median-based masterpool 

approach (2) and the median sweep ignoring peptides (5) is the denominator for calculating 

ion intensity ratios from the reporter ion intensity spectrum. For both approaches, the 

numerator is the observed ion intensity of the biological sample. For the masterpool 

approach, this intensity is divided by the intensity observed in the designated masterpool 

channel, which leads to higher variability than in the median sweep, where the denominator 

is simply the median of the ion intensities across all channels with biological samples 

(Figure 5). However, as long as the intensities in all biological samples are divided by the 

same number (in fact, divided by any number), the mixed effects models can account for this 

difference by shifting the random intercepts accordingly. Since the median sweep (5) 

produces the best or among the best results for all approaches considered when proteins are 

associated with the outcome (Figure 6) or null (Figure 5), we recommend this approach for 

use in practice.

DISCUSSION

In this manuscript, we show that using a masterpool, a commonly employed strategy in 

iTRAQ experiments, is not optimal in several regards. In a single iTRAQ experiment, more 

precise estimates of protein relative abundances can be obtained by using a summary of the 

biological data as the reference. The data from multiple iTRAQ experiments can then be 

analyzed, allowing for an experiment-specific random effect, which results in improved 

inference compared with the masterpool-based approach. And obviously, using a masterpool 

occupies a channel that otherwise could be used for an additional biological sample.

We note that in addition to iTRAQ, our new method is also applicable to other isobaric 

labeling methods with reporter fragment ions, such as tandem mass tag (TMT) reagents; 

however, our approach does not alleviate the often observed “shrinkage to the mean” effects, 

that is, the fact that the estimated and reported fold changes are closer to unity than the 

actual existing abundance ratios in the samples.6 Our method is based on the observed 

reporter ion intensities, which already are subject to these shrinkage effects, and thus, our 

method also does not yield unbiased estimates for relative abundances (see section 

Estimation Bias in the Supporting Information for an example).

Our approach was specifically developed to investigate associations between protein 

abundances and a numeric outcome of interest, and thus, other types of studies based on 
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multiple experiments, such as chaining of experiments to track protein abundances and 

protein changes over time, are typically outside this framework. However, we note that in 

case-control studies, the inference is rather simple (and a masterpool would be of no use at 

all). If case and control samples are used in the same iTRAQ experiment, the difference in 

the respective sample means is an unbiased estimate for the true difference in log2 

abundance, and its significance can be assessed by calculating the standard error of that 

difference. For a single iTRAQ experiment, this is simply a two-sample t test, and for 

multiple iTRAQ experiments, the test statistics could be weighted using inverse variances. It 

might be the case that the simultaneous analysis of multiple proteins in case-control settings 

could improve by pooling variances and, thus, derive more precise estimates for the standard 

errors, assuming that the variance components for these proteins are indeed the same, and 

that these protein sets were known a priori.

Alternative approaches, such as linear models that do not necessarily include a masterpool in 

the experiment, have also been proposed in the literature for the estimation of relative 

protein abundances. These methods also allow for statistical inference on multiple 

experiments simultaneously and attempt to describe the existing sources of variability and 

the biological and technical factors 14–18 in a single model. For case-control settings, Oberg 

et al.11 and Hill et al.12 extended a mixed effects approach originally used for gene 

expression studies 19,20 and proposed to use an analysis of variance (ANOVA) approach 

with mixed effects for proteomic data. Specifically, the authors write

(10)

where yi,j(i),c,q,s,l is the log-transformed reporter ion intensity corresponding to protein i, 

peptide j, condition or treatment group c, experiment q, tag or channel l, and spectrum s. In 

the above, p denotes the protein effect (a fixed effect); f denotes a peptide nested within a 

protein, a random effect,21 and r denotes potential differences in spectra intensities 

comparing case and control samples. The inference for the interaction between protein and 

group status (denoted as ri,c in eq 10) is of particular interest because it quantifies 

differences in protein abundances, comparing cases and controls (i.e., it answers which 

proteins are differentially expressed). The terms v and q allow adjustment for potential 

differences due to channel effects, loading, mixing, and sample handling. In the above, 

hi,j(i),c,q,s,l is the remaining experimental error, not explained by the linear model terms.

The mixed effects model above (eq 10) is specifically tailored to case-control settings or 

data stemming from experiments with more than two conditions (defining outcome groups) 

to carry out a corresponding analysis of variance. In principle, these models could also be 

extended into more general regression settings, such as ours; however, one drawback of this 

approach and presumably a reason for their somewhat limited use in the proteomics 

literature is that it can be computationally very difficult to fit these mixed effects models. A 

very large number of parameters need to be estimated numerically in these models (in 

contrast to balanced gene expression studies, in which closed-form solutions and exact null 

distributions are often available), and the design matrix is such that no orthogonal 

components exist that would allow for separate estimation of sets of parameters. In 

proteomic experiments, the data are typically unbalanced and contain missing values,21–23 
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adding significantly to the computational complexity. Oberg et al.11 and Schwacke et al.24. 

discuss these challenges and provide some practical advice for possible implementations of 

such ANOVA models for a limited number of complex samples. Needless to say, finding the 

global optimum for such a high dimensional likelihood function would be a daunting task 

with 58 iTRAQ experiments.

The main motivation for a comprehensive analysis, assessing all proteins across all samples 

and experiments with a single analysis, is that more precise estimates of protein abundance 

and better inference can be derived when the underlying model assumptions are met. These 

assumptions are fairly strong and are subject to debate in the proteomics literature,12,21 

similar to the discussions in other fields, such as studies of gene expression.25–27 For the 

model in eq 7, we would have to assume that the loading effects are normally distributed 

with a constant variance for all channels (a reasonable assumption from a statistical 

perspective); that the peptide effects are normally distributed with a constant variance for all 

proteins across all channels (a less reasonable assumption); and that the residual error has a 

constant variability across all spectra, peptides, proteins, and channels (a fairly unrealistic 

assumption; see the section Model Assumptions in the Supporting Information). It is not 

obvious how such model violations affect abundance estimates and inference and if a highly 

complex single analysis might do more damage than good. Allowing for a random peptide 

effect did not improve the relative abundance estimates or the statistical inference for our 

data. Virtually identical results were obtained when the data were analyzed one experiment 

at a time, compared with a simultaneous analysis of all experiments. Ignoring the 

hierarchical structure of peptide nested in protein and estimating relative abundances one 

experiment at a time yields results as good as or better than the mixed effects models and is 

much faster to execute. This approach also allows for data to be analyzed as iTRAQ 

experiments are carried out sequentially in the laboratory, without the need to refit previous 

samples, which makes this approach even more attractive.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Quantification of relative peptide and protein abundances in an experiment with eight 

technical replicates of pooled plasma samples. The normalization steps are shown for four 

randomly selected proteins (accession numbers gil678S7790, gi221316614, gi4S0363S, and 

gi677823S8, in columns 1–4). Shown are the absolute reporter ion intensities on the log10 

scale for all spectra detected for the respective proteins (first row), the same data after 

removal of the spectrum median (second row), the relative peptide abundances calculated as 

the median of the above row 2 values for each channel and peptide (third row), and the 
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relative protein abundances after removing the loading effect (fourth row). The gray regions 

(rows 2–4) represent 25% fold changes in relative abundances. Since the same samples were 

loaded in the eight channels, all relative protein abundances should be equal to 1.
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Figure 2. 
Protein relative abundance estimates (left column) derived from four all-masterpool 8-plex 

iTRAQ experiments (top to bottom). Proteins observed in all four experiments with two or 

more peptides were considered (n = 130). Boxplots of the relative abundance estimates are 

shown for the eight channels in each of the four experiments, using linear mixed effects 

models estimating all relative abundances simultaneously (white), linear mixed effects 

models estimating all relative abundances separately for each experiment (light gray), and 

standard linear models estimating all relative abundances separately for each experiment 
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(dark gray). The median absolute fold change (right column) represents a typical value for 

the deviation from 0 on the log2 scale, mapped back to the original fold change scale. A 

value of 1 represents no variability, 1.1 indicates that typical deviation is 10%. The gray 

regions in the left panels represent 25% fold changes in relative abundances.
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Figure 3. 
Estimates of relative abundances of retinol-binding protein 4 (RBP4) derived from 58 8-plex 

iTRAQ experiments (seven individual samples and one masterpool each, 406 biological 

samples total) versus measured plasma retinol concentration. Relative abundance estimates 

from different experiments were combined using the masterpool (A), the median sweep 

augmenting the estimates from each experiment (B), and the linear mixed effects model (eq 

5), using the median sweep-derived relative abundance estimates (C). Highlighted are two 
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experiments, one with high (lighter gray) and one with low (darker gray) average plasma 

retinol concentration.
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Figure 4. 
The strongest associations (R2, y-axis) of proteins (accession numbers on the x-axis) with 

nutrients or indicators of acute phase response observed in our experiments (Table 2). 

Estimates of relative protein abundance from different experiments were combined using the 

linear mixed effects model (eq 5), the masterpool normalization, and the median sweep, 

augmenting (stacking) the estimates from each experiment. The association of RBP4 

(accession number gi55743122) and plasma retinol is shown in detail in Figure 3.
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Figure 5. 
The median absolute fold changes (top) and the root mean-squared fold changes (bottom) 

for seven different relative abundance estimating procedures, defined in the Methods 

section. Proteins observed in all four experiments with two or more peptides were included 

in the assessment (n = 130), and results are shown for each procedure and each iTRAQ 

experiment, calculating summary statistics across all proteins and channels. The masterpool-

based procedures 1 and 2 clearly fare the worst. In addition, median-based procedures, for 

example, 5 and 7, appear to perform better than the respective mean-based procedures, for 

example, 4 and 6.
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Figure 6. 
The associations (R2, y-axis) of proteins (accession numbers on the x-axis) with nutrients or 

indicators of acute phase response observed in our experiments (a subset of Table 2). 

Proteins observed in at least half of the samples (203, corresponding to 29 complete 

experiments with seven biological samples) with two or more peptides were included in the 

assessment (n = 92). The R2 values were derived from the random intercept model (eq 5), 

based on seven different procedures to estimate protein relative abundances (defined in the 

Methods section). Highlighted are the results for the median-based master pool approach (2) 

and the median sweep ignoring peptides (5), performing the best in this assessment.
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