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Abstract

Understanding distribution patterns of hosts implicated in the transmission of zoonotic disease 

remains a key goal of parasitology. Here, random forests are employed to model spatial patterns of 

the presence of the plateau pika (Ochotona spp.) small mammal intermediate host for the parasitic 

tapeworm Echinococcus multilocularis which is responsible for a significant burden of human 

zoonoses in western China. Landsat ETM+ satellite imagery and digital elevation model data were 

utilized to generate quantified measures of environmental characteristics across a study area in 

Sichuan Province, China. Land cover maps were generated identifying the distribution of specific 

land cover types, with landscape metrics employed to describe the spatial organisation of land 

cover patches. Random forests were used to model spatial patterns of Ochotona spp. presence, 

enabling the relative importance of the environmental characteristics in relation to Ochotona spp. 

presence to be ranked. An index of habitat aggregation was identified as the most important 

variable in influencing Ochotona spp. presence, with area of degraded grassland the most 

important land cover class variable. 71% of the variance in Ochotona spp. presence was explained, 
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with a 90.98% accuracy rate as determined by ‘out-of-bag’ error assessment. Identification of the 

environmental characteristics influencing Ochotona spp. presence enables us to better understand 

distribution patterns of hosts implicated in the transmission of Em. The predictive mapping of this 

Em host enables the identification of human populations at increased risk of infection, enabling 

preventative strategies to be adopted.
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1 Introduction

Human Alveolar Echinococcosis (HAE), caused by the parasitic tapeworm Echinococcus 

multilocularis (Em), is an emerging pathogen for which increased prevalence and range 

expansion is documented in many regions of the northern hemisphere (Eckert, 1996; Eckert 

et al., 2001). It is a highly pathogenic zoonosis with over 94% mortality in untreated patients 

ten years after diagnosis (Wang et al., 2010), and is increasingly recognised as a major 

population health problem (Zhang et al., 2014). The known Em range includes Europe, 

North America, Japan, the former USSR, Central Asia and China where new foci are being 

discovered (Wang et al., 2001; Giraudoux et al., 2013a), with prevalence rates of greater 

than 10% observed in Gansu and Sichuan provinces, China (Craig et al., 1992; Li et al., 

2010). The spatial distribution of Em is highly variable, with significant regional and local 

differences in parasite prevalence resulting in patchy distributions generally not reflected in 

Em and HAE distribution maps (Eckert et al., 2001; Giraudoux et al., 2006; 2013a).

The Em transmission cycle is based on the predator-prey relationships between canid 

definitive hosts such as fox, coyote and wolf and small mammal intermediate hosts (Rausch, 

1995; Eckert et al., 2001). Within a definitive host adult tapeworms produce eggs at regular 

intervals which are shed in faeces, contaminating the environment (Raoul et al., 2001). The 

parasite lifecycle then undergoes a free-egg stage, with intermediate hosts infected through 

oral ingestion of eggs when feeding (Eckert, 1996). The transmission cycle is completed 

when definitive hosts are infected by predating infected intermediate hosts. Em exploits a 

large number of intermediate host species (>40) (Eckert et al., 2001; Giraudoux et al., 

2013b), however the epidemiological importance of these hosts varies (Rausch, 1995).

Domestic dogs can also be infected and, due to their close contact with human populations, 

are a significant infection risk to humans (Rausch, 1995; Moss et al., 2013; Zhang et al., 

2014) via accidental ingestion of Em eggs. Prevalence rates of Em infection in domestic 

dogs of up to 33% are recorded in Tibetan communities of western Sichuan Province, China 

(Budke et al., 2005), with Craig et al. (2000) and Wang et al. (2001) identifying owned dogs 

as a major transmission source to humans in Gansu Province, and the eastern Tibetan 

plateau, China, respectively (Wang et al., 2010).

Dog re-infection studies in Sichuan Province, China, suggest that domestic dog populations 

are quickly re-infected by Em, and may contribute to an active peri-domestic transmission 
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cycle (Giraudoux et al., 2013a; Moss et al., 2013). Wang et al. (2010) also found that Em 

worm burden in dogs exhibited a statistically significant relationship to maximum burrow 

densities of a key Em intermediate host, the plateau pika (Ochotona spp.) in the surrounding 

landscape in Shiqu County, Ganze Tibetan Autonomous Prefecture, China. This study failed 

to identify significant relationships between dog worm burden and burrow density of 

another potential Em small mammal intermediate host present in this region, Microtus spp., 

thus suggesting that the rapid Em re-infection rates in domestic dogs, shown by Moss et al. 

(2013), is probably linked to surrounding high densities of Ochotona spp.

Small mammal species often exhibit specific preferences for optimal habitats, with species 

distributions influenced by the locations of these key habitats (Raoul et al., 2008). Small 

mammal populations are shown to respond to optimal habitat availability, particularly the 

ratio of optimal habitat to total land area (Giraudoux et al., 2003; Pleydell et al., 2008). 

Consequently, landscape change is known to affect the population dynamics of wild 

mammals (Lidicker, 1995), with increases in the optimal habitat proportions correlated with 

population outbreaks of Microtus arvalis and Arvicola terrestris in France (Giraudoux et al., 

1997), and M. limnophilus and Cricetulus longicaudatus in south Gansu, China (Giraudoux 

et al., 1998; Craig et al., 2000). This process is hypothesised to be significant for Em 

transmission (Giraudoux et al., 1997), so that pathogen transmission may vary through time 

and space due to landscape modification. Elsewhere in China, small mammal spatial 

distributions are shown to be modified by landscape disturbances such as deforestation in 

Gansu (Giraudoux et al., 1998), afforestation in Ningxia (Raoul et al., 2008), and 

overgrazing and fencing practices on the Tibetan plateau (Wang et al., 2004; Raoul et al., 

2006).

Pastureland degradation due to overgrazing has also been linked to increased small mammal 

densities, for example Ochotona spp., Microtus spp., Cricetulus kamensis and Myospalax 

baileyi (Raoul et al., 2006) on the eastern Tibetan plateau, China, where HAE is endemic 

(Wang et al., 2004; Li et al., 2010). In Shiqu county, China, grass height was negatively 

related to Ochotona curzoniae burrow abundance suggesting that overgrazing in this area 

increased abundance of this species (Wang et al., 2010). With high Ochotona spp. densities 

significantly associated with infection of domestic dogs (Wang et al., 2010), foxes and 

humans (Craig et al., 2000), pastureland degradation resulting from overgrazing could prove 

a significant driver of increased human Em incidence in this region.

Previous studies of Em and landscape using remote sensing techniques in southern Gansu 

Province, China, identified strong links between landscape composition and HAE 

prevalence (Craig et al., 2000; Giraudoux et al., 2003; Danson et al., 2004). This suggested 

that grassland and tree/shrub habitats capable of sustaining cyclically high populations of 

susceptible intermediate hosts were key spatial determinants of Em transmission (Danson et 

al., 2003), and indicated that landscape composition could provide a useful predictor of Em 

and HAE (Pleydell et al., 2008; Giraudoux et al., 2013b).

On the Tibetan plateau the black-lipped pika or plateau pika (Ochotona curzoniae) is 

thought to be one of the principal intermediate hosts in the Em transmission cycle 

(Giraudoux et al., 2006; Zhang et al., 2014). Pika are social mammals that tend to be 
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spatially clumped (Arthur et al., 2008), with average individual home range sizes for 

Ochotona curzoniae of 1,375 ± 206m2 (Smith & Gao, 1991) and population densities 

ranging from 100 to 400 pikas ha−1 on the Tibetan plateau (Jiapeng et al., 2013). Given the 

contrast between the biomass of Ochotona spp. (high) to Microtus spp. (low) in Shiqu 

county (Wang et al., 2010), the role of Ochotona spp. in transmission to dogs may be highly 

significant (Giraudoux et al., 2013a).

The research presented here builds on this previous work and investigates a critical phase of 

the Em transmission cycle, where the parasite is carried by small mammal intermediate 

hosts. Satellite remote sensing and in-situ ecological datasets are used to investigate the 

spatial relationship between Ochotona spp. presence and specific landscape characteristics 

to identify and better understand these links using random forests. Key landscape variables 

hypothesised to influence Ochotona spp. presence, and their relative importance, are 

determined and used to map Ochotona spp. presence over a broader geographical area. The 

hypotheses addressed are: (1) Ochotona spp. presence is statistically related to key 

environmental variables which can be used to predict species presence over larger areas; and 

(2) In the geographical area of interest, Ochotona spp. presence is specifically linked to 

areas of degraded grassland.

To identify the key landscape features influencing Ochotona spp. presence, random forest 

(RF) analysis methods are highly appropriate. RF are an ensemble learning technique 

developed by Breiman (2001) based on a combination of a large set of classification and 

regression trees. They are well-suited to handling large datasets with correlated predictor 

variables (Svetnik et al., 2003), handle a variety of data types (Duro et al., 2012), are non-

parametric (Strobl et al., 2008), make no assumption of independence concerning the data 

being analysed (Perdiguero-Alonso et al., 2008), and are robust to outliers, noise and over-

fitting (Breiman, 2001). They have been used as analytical tools for a variety of applications 

(Svetnik et al., 2003) including remote sensing analysis (Duro et al., 2012; Abdel-Rahman 

et al., 2013) and parasitological studies (Perdiguero-Alonso et al., 2008).

Random forest algorithms employ recursive partitioning to generate multiple decision trees 

and average individual tree predictions across the entire forest (Duro et al., 2012; Abdel-

Rahman et al., 2013). Each iteration uses two-thirds of the data to train the RF while the 

remaining third, the ‘out of bag’ (OOB) samples, are retained for testing the prediction error 

of the RF (Duro et al., 2012). The OOB error estimate also generates variable importance 

measures by comparing increases in OOB error when that variable is randomly permuted 

while all others are left unchanged, enabling ranking of the importance of individual 

variables (Abdel-Rahman et al., 2013). The OOB error estimate removes the need for cross-

validation via a set-aside test dataset (Perdiguero-Alonso et al., 2008).

2 Materials and methods

The research focused on a study area near the town of Tuanji, Shiqu county, Ganze Tibetan 

Autonomous Prefecture, Sichuan Province, China (Fig 1). This is located on the eastern 

edge of the Tibetan plateau (Lat 33.04° Lon 97.97°) at altitudes between 4000-4300 metres, 

and dominated by semi-natural grassland. Although above the tree line, variation in herb and 
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shrub vegetation produces a variety of land cover types. Heavy grazing by yak in this region 

has resulted in extensive areas of degraded grassland. Within Shiqu county, at least three 

townships have been found to be local foci for HAE, showing that a transmission cycle is, or 

has been active here (Wang et al., 2001).

2.1 Study design

Fifteen transects of varying length (220-4750m) totaling approximately 35 km and 

comprising 3481 transect points were surveyed in July 2001 (Table 1), with transect routes 

pre-selected to sample the maximum number of land cover types. At ten meter intervals 

along the transects small mammal activity indicators were recorded. Visual sightings of 

small mammals and species-specific indicators including foraging corridors, ground holes, 

and small mammal faeces, all identifiable to species or genus level (Raoul et al., 2006; 

Wang et al., 2010), were used as evidence of small mammal presence using methods 

established by Giraudoux et al. (1998). Transects were mapped using a GPS with an 

accuracy of approximately 15 m.

At this study site the small mammal community predominantly comprised two Ochotona 

species both known to be Em intermediate hosts, Ochotona curzoniae (black-lipped pika), 

and Ochotona cansus (Gansu pika), the latter recorded sporadically compared to the former. 

Due to similarities between the two species resulting in identification difficulties, they were 

grouped together to form a generic Ochotona spp. group. Microtus irene, M. oeconomus, M. 

leucurus and Cricetulus kamensis small mammals were also observed but, given the very 

extensive Ochotona spp. colonies in the study area in comparison to the sparse records of 

these other species, and the established links between Ochotona spp. and Em infection in 

dogs (Wang et al., 2010), our investigation focused exclusively on Ochotona spp.

Altitude, slope and aspect values for each transect point were extracted from 90m resolution 

Shuttle Radar Topographic Mission (SRTM) digital elevation models. A Landsat ETM+ 

satellite image (3 July 2001) was acquired (path 134 row 37), geometrically corrected, with 

snow, cloud and cloud shadow masks created to exclude these areas of the image from 

further analysis. ERDAS IMAGINE was used to perform a maximum likelihood supervised 

classification on the image using nine land cover classes: village, road, long grass, water, 

short grass, upper Potentilla shrubland, bare ground, degraded grassland, and wet grassland. 

Classification accuracy assessment was performed using 365 reference points collected from 

high-resolution imagery of the survey area using established techniques (e.g. Duro et al., 

2012). Reference points exhibiting temporal change in land cover type between Landsat 

ETM+ image and reference high resolution imagery acquisition dates were disregarded to 

minimise potential error.

When investigating the relationships between landscape and Ochotona spp. issues of scale 

and the spatial arrangement of different land cover class patches within the landscape should 

be considered (Pleydell et al., 2008; Pleydell & Chrétien, 2010). A common approach is to 

quantify landscape characteristics around a point of interest using a circular buffer centred at 

the observation (Pleydell & Chrétien, 2010). However, as the optimal buffer size cannot be 

known apriori, multiple nested buffers with radius increments between 100m and 500m in 

100m increments were generated for each transect point, enabling landscape influence over 
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multiple ranges to be investigated. Within each nested buffer, the area of each land cover 

class was recorded. To minimise collinearity between these nested land cover area 

measurements (variables calculated using smaller buffers partly measures the same area as 

the larger buffers), but to retain the nested spatial structure, a new set of variables Z100m, 

Z200m, Z300m, Z400m and Z500m were created following the methodology of Rhodes et 

al. (2009) such that:

Z100m = X100m.

Z200m = X200m - X100m.

Z300m = X300m - X200m.

Z400m = X400m - X300m.

Z500m = X500m - X400m. where X100m,...,X500m are the land cover class coverage data 

for the 100m,...,500m buffer sizes respectively, and the Z200,...,Z500m provide the 

difference between the original variables and the variable nested within it (Rhodes et al., 

2009).

Landscape structure and composition are important determinants of species distributions and 

population viability (Rhodes et al., 2009), with the amount of suitable habitat present and 

the level of landscape fragmentation both important factors for biological population 

abundance and distribution (Fahrig, 2003). Here, the aggregate properties of the spatial 

organisation of land cover patches within a 500m radius buffer surrounding each transect 

point are examined using landscape metric methods within FRAGSTATS (McGarigal et al., 

2002). Seventeen landscape level metrics were generated (see Table 1). These metrics have 

previously been applied for examining landscape pattern and structure (for example Riitters 

et al., 1995), and were selected from the wider range of metrics available to examine both 

landscape composition and configuration, and to avoid redundancy between metrics.

Pairwise correlation was performed between metrics values, with all correlations exhibiting 

an r2 value of <0.5 indicating that the landscape metrics variables were not highly 

correlated.

Random forest (RF) analysis was performed to identify potential causal linkages between 

Ochotona spp. presence and the environmental variables of nested land cover class areas, the 

landscape metrics, and topographical variables of elevation, slope and aspect (total number 

of environmental variables = 65, number of trees = 10000, number of variables tried at each 

split = 8). The OOB data samples generated importance measures for each variable, and 

tested the prediction error of the generated RF. Random Forest analysis was performed in 

the R statistical environment using the randomForest package (Liaw & Wiener, 2002). The 

RF was then used to produce a predicted Ochotona spp. distribution map. A point grid was 

generated for a 45km x 45km area surrounding the survey transect locations with 30m point 

spacing. Data values for each explanatory variable included in the RF were calculated for 

each vector grid point. The RF was applied in a predictive classifier capacity with the vector 
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grid datasets as input variables and predicted Ochotona spp. presence or absence as the 

output. Predicted values were converted from vector to raster format using ArcMap 10.1.

3 Results

The overall classification accuracy of the land cover map (Figure 2) using 365 reference 

locations was 83.84% (Table 2). Of the 3481 sample points sampled along 15 transects, 

Ochotona spp. were present at 1246 points (35.8%). For individual transects the rate of 

Ochotona spp. presence ranged from 0% (transects 1, 11 and 15) to 88% (transect 2) 

indicating a patchy distribution across the study area (Table 3).

RF analysis explained 70.78% of the variance in Ochotona spp. presence or absence. Figure 

3 shows the ten environmental variables determined as most important by the RF in relation 

to Ochotona spp. presence. Aggregation Index (AI) was identified as the single most 

important variable, however it was the only landscape metric in the top ten ranked variables. 

Three of the top five variables were degraded grassland (DG), with DG at the 100m buffer 

size second, at the 300m buffer size fourth, and at the 200m buffer size fifth. Upper 

Potentilla shrubland (UPS) was also important but at the larger buffer sizes of 400m (third 

ranked importance), 500m (seventh) and 300m (ninth). Water at 500m was sixth highest 

ranked, with altitude eighth, and short grass (SG) at the 500m buffer tenth.

A confusion matrix of the predicted values was generated using the OOB data samples to 

assess the RF predictive accuracy (Table 4). Results indicate that the RF performed with a 

high level of accuracy, with a 90.98% accuracy rate. Of the incorrectly predicted samples, 

the false positives (150) and false negatives (164) were similar in magnitude.

The map produced (Figure 4) shows the predicted areas of Ochotona spp. presence with 

patchiness in these areas observed at the local scale. Areas of predicted presence occur 

across the area, but are more extensive to the south, west, and north-west of the original 

survey transects, with sparser areas of predicted presence to the east and north-east.

4 Discussion

This research examined a critical phase of the Echinococcus multilocularis (Em) 

transmission cycle, and adopted an analytical approach using random forests (RF) to model 

and predict Ochotona spp. presence in relation to landscape characteristics within a highly 

endemic area of the Tibetan plateau for Em. We found that the environmental variables 

analysed explained 70.78% of the variance in Ochotona spp. presence. It is argued thus that 

(1) Ochotona spp. presence is statistically related to key environmental variables which can 

be used to predict species presence over large areas; and (2) in the geographical area of 

interest Ochotona spp. presence is specifically linked to areas of degraded grassland.

The application of RF for predictive modelling of Ochotona spp. presence, based on 

landscape characteristics has provided a clearer understanding of the influence of key 

landscape variables in this region. The environmental variables analysed explained 70.78% 

of the variance in Ochotona spp. presence, with a 90.98% accuracy rate indicating that the 

RF methods employed enabled accurate modelling of Ochotona spp. presence. Given these 
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encouraging results, we then generated predictive maps of Ochotona spp. presence across a 

larger spatial extent within the same bio-geographical area to identify potential hot-spots of 

presence meriting further investigation as reservoir zones of the zoonotic parasite 

Echinococcus multilocularis.

This analysis enabled comparison of the relative importance of the environmental predictors, 

with the aggregation index (AI) landscape metric ranked with the highest importance. AI is 

computed where each land cover class is weighted by its area in the landscape, scaled to 

account for the maximum possible number of like adjacencies given any landscape 

composition (McGarigal et al., 2002). The interpretation is that buffered areas containing 

larger aggregations, or clusters of land cover patches of the same type, are of greater 

importance in influencing Ochotona spp. presence. However, eight of the ten highest ranked 

variables are particular land cover class variables suggesting that the presence of specific 

land cover classes was, with the exception of AI, of greater importance in influencing 

Ochotona spp. presence than land cover patch spatial arrangement.

RF assessment indicated that degraded grassland (DG) at the 100m buffer size was the most 

important land cover class variable. At the 200m and 300m buffer sizes DG was again the 

highest ranked land cover variable. Although UPS (400m) and water (500m) were the 

highest ranked land cover variables at those respective buffer sizes, the ranking of DG as 

second, fourth and fifth most important variables overall, and highest at the three buffer 

sizes closest to the survey transect points, indicates that DG could be considered the most 

important land cover variable of influence. Smith & Gao, (1991) determined that the average 

home range for Ochotona curzoniae is 1,375 ± 206m2, placing the principle area of activity 

of an individual Ochotona spp. within the 100m buffer area, supporting the RF result that 

DG at the 100m buffer size is the most important land cover variable influencing Ochotona 

spp. presence. This reinforces previous studies that have sought to understand the drivers of 

Ochotona spp. presence in the study region such as Raoul et al. (2006), and visual field 

observations, indicating that higher Ochotona spp. densities were more commonly present in 

areas with larger tracts of low vegetation cover. The high ranking of AI and degraded 

grassland by the RF also suggests that areas containing larger patches of degraded grassland 

are a greater influence on Ochotona spp. presence, than simply the area of degraded 

grassland present. It should be noted, however, that in some areas of degraded grassland 

where transects were surveyed Ochotona spp. were not present. This may be due to patchy 

local-scale extinctions during Ochotona spp. population cycles in this area.

Of particular concern in the study area is the impact of heavy grazing by yak resulting in 

large areas of degraded grassland. Past studies have shown that land cover changes and 

grazing practices can increase the likelihood of small mammal population outbreaks that are 

suggested to play a significant role in Em transmission (Wang et al., 2004). If this heavy 

grazing results in larger Ochotona spp. populations and more frequent population outbreaks 

due to increased optimal habitat availability, this could potentially contribute to increasing 

levels of Em transmission, resulting in greater risk to human populations.

Marston et al. Page 8

Appl Geogr. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4.1 Conclusions

We have used random forests (RF) to successfully model the environmental variables 

influencing spatial patterns in the presence of the E. multilocularis intermediate host 

Ochotona spp. in western China. The predictive use of random forests to indicate likely 

areas of Ochotona spp. presence could form a valuable contribution to systematic modelling 

describing the broader E. multilocularis transmission pathways between Ochotona spp. 

small mammal intermediate hosts, both sylvatic (fox) and domestic (dog) definitive hosts, 

and susceptible human populations. Given the relationships established previously by Wang 

et al. (2010) correlating density of Ochotona spp. burrows with domestic dog infection rates, 

this methodology could enable identification of domestic dog populations at risk of 

continual re-infection through predation of Ochotona spp. and thus help identify areas of 

active E. multilocularis transmission. In conjunction with the possibility of applying these 

techniques over larger geographical regions utilizing the extensive coverage of satellite 

imagery, such information could facilitate the design of pre-emptive disease control 

measures including targeted treatment of dogs with antihelminthic drugs to disrupt the Em 

transmission cycle in that region, thus reducing Em infection risk in local human 

populations.
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Highlights

• We model key environmental variables influencing E.multilocularis parasite 

host distributions.

• Satellite imagery and landscape metrics are used to quantify landscape 

characteritics.

• Random Forests indicate degraded grassland is key in influencing Ochotona 

spp. presence.

• Predictive Ochotona spp. modeling enables identification of populations at risk.
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Figure 1. 
Study site map with numbered survey transects and SRTM DEM (USGS, 2006) site 

elevation and UTM WGS84 zone 47N grid displayed.
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Figure 2. 
Land cover classification of the study area with original survey transects overlaid and UTM 

WGS84 zone 47N grid displayed for context.
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Figure 3. 
Variable importance scores for the top ten variables as identified by the RF, with 

corresponding % increase in mean square error when that variable is randomly permuted. 

Percent variance explained = 70.78%, number of trees = 10000, mean square of residuals = 

0.07, number of variables tried at each split = 21. AI = Aggregation Index; DG = degraded 

grassland; UPS = upper Potentilla shrubland; SG = short grass.
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Figure 4. 
Predicted Ochotona spp. presence (red) or absence (blue) with original survey transects 

overlaid and UTM WGS84 zone 47N grid displayed for context.
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Table 1

Landscape metrics included in the analysis (McGarigal et al., 2002).

Metric Type Metric Acronym

Area and edge metrics Total Area TA

Largest Patch Index LPI

Patch Area Distribution AREA_AM

Shape metrics Perimeter-Area Ratio Distribution PARA_AM

Fractal Index Distribution FRAC_AM

Contiguity Index Distribution CONTIG_AM

Aggregation metrics Aggregation Index AI

Patch Cohesion Index COHESION

Landscape Division Index DIVISION

Splitting Index SPLIT

Euclidean Nearest Neighbor Distance Distribution ENN_AM

Connectance CONNECT

Diversity metrics Patch Richness PR

Shannon's Diversity Index SHDI

Simpson's Diversity Index SIDI

Shannon's Evenness Index SHEI

Simpson's Evenness Index SIEI
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Table 3

Survey transect Ochotona spp. presence and elevation ranges.

Transect Number of survey 
points along transect

Number of points with 
Ochotona spp. present

Number of points with 
Ochotona spp. absent

Ochotona spp. 
presence (%)

Elevation range of 
transect (m)

1 276 0 276 0.0 4280-4480

2 133 117 16 88.0 4290-4334

3 320 89 231 27.8 4294-4350

4 94 1 93 1.1 4299-4360

5 346 28 318 8.1 4287-4350

6 475 363 112 76.4 4285-4501

7 274 129 145 47.1 4387-4532

8 137 61 76 44.5 4309-4484

9 182 10 172 5.5 4299-4366

10 424 242 182 57.1 4160-4348

11 22 0 22 0.0 4160-4160

12 172 1 171 0.6 4160-4259

13 339 204 135 60.2 4177-4262

14 109 1 108 0.9 4182-4300

15 178 0 178 0.0 4190-4492

Total 3481 1246 2235 35.8 4160-4532

Appl Geogr. Author manuscript; available in PMC 2015 December 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Marston et al. Page 20

Table 4

RF confusion matrix of predicted versus observed Ochotona spp. presence (1) and absence (0). Total correct = 

3167, total incorrect = 314, percentage of survey points predicted correctly = 90.98%

Observed value Predicted value Total

0 1

0 2085 150 2235

1 164 1082 1246

Total 2249 1232 3481
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