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Abstract

This paper is concerned with the inference of nonparametric mean function in a time series 

context. The commonly used kernel smoothing estimate is asymptotically normal and the 

traditional inference procedure then consistently estimates the asymptotic variance function and 

relies upon normal approximation. Consistent estimation of the asymptotic variance function 

involves another level of nonparametric smoothing. In practice, the choice of the extra bandwidth 

parameter can be difficult, the inference results can be sensitive to bandwidth selection and the 

normal approximation can be quite unsatisfactory in small samples leading to poor coverage. To 

alleviate the problem, we propose to extend the recently developed self-normalized approach, 

which is a bandwidth free inference procedure developed for parametric inference, to construct 

point-wise confidence interval for nonparametric mean function. To justify asymptotic validity of 

the self-normalized approach, we establish a functional central limit theorem for recursive 

nonparametric mean regression function estimates under primitive conditions and show that the 

limiting process is a Gaussian process with non-stationary and dependent increments. The superior 

finite sample performance of the new approach is demonstrated through simulation studies.
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1. Introduction

Nonparametric methods are useful complements to the traditional well developed parametric 

counterparts. They allow the users to entertain model flexibility while reducing modeling 

bias, and partly due to this reason, nonparametric inference has been extensively studied. 

This paper concerns a new way of addressing nonparametric inference in the time series 

setting. There is a huge literature about the use of nonparametric methods in time series 

analysis, and asymptotic theory for nonparametric estimators and tests has been quite well 

developed for weakly dependent time series data. We refer the reader to chapters 5-10 in 

Fan and Yao (2003) for a nice introduction of some basic ideas and results.

Given stationary time series , we focus on inference for the conditional mean 

function μ(x) = (Yi|Xi = x); see Section 4 for some possible extensions to other 

nonparametric functions. Let μ̂
n(x) be a nonparametric estimate of μ(x) based on the full 

sample. Under suitable regularity and weak dependence conditions, we have

(1)

where bn is an appropriate bandwidth,  is the bias term, s2(x) is the asymptotic 

variance function, and  stands for convergence in distribution. To construct a point-wise 

confidence interval for μ(x), the traditional approach involves consistent estimation of s2(x) 

through an extra nonparametric smoothing procedure which inevitably introduces estimation 

error. The latter issue becomes even more serious when s(x) ≈ 0 so that the left hand side of 

(1) is very sensitive to the estimation error of s(x). In particular, even if the absolute 

estimation error is small, the relative estimation error can be large, which leads to poor 

coverage in the constructed confidence interval. Thus, one needs to deal with the unpleasant 

phenomenon that, the smaller s(x) (i.e. lower noise level), the more difficult to carry out 

statistical inference. Furthermore, nonparametric estimation of s(x) involves extra bandwidth 

parameter(s). Two users using two different bandwidths in estimating s(x) for the same data 

set may get quite different results.

To alleviate the above-mentioned problem in the traditional inference procedure, we propose 

to extend the recently developed self-normalized (SN, hereafter) approach (Shao, 2010) to 

nonparametric setting. The SN approach was developed for a finite dimensional parameter 

of a stationary time series and it has the nice feature of being bandwidth free. The basic idea 

of the SN approach, when applied to nonparametric setting, is to use estimates of μ(x) on the 

basis of recursive subsamples to form a self-normalizer that is an inconsistent estimator of 

s(x). Although it is inconsistent, the self-normalizer is proportional to s(x), and the limiting 

distribution of the self-normalized quantity is pivotal. The literature on the SN approach and 

related methods (Lai and Siegmund, 1983; Lobato, 2001; Kiefer et al., 2000; Kiefer and 

Vogelsang, 2005; Shao, 2010, 2012; Shao and Zhang, 2010; Zhou and Shao, 2013) has been 

growing recently, but most of the work is limited to parametric inference, where the 

parameter of interest is finite dimensional and the method of estimation does not involve 

smoothing. Kim and Zhao (2013) studied SN approach for the nonparametric mean function 

Kim et al. Page 2

J Multivar Anal. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



in longitudinal models, but the data are essentially independent due to the independent 

subjects. To the best of our knowledge, the SN-based extension to nonparametric time series 

inference seems new.

An important theoretical contribution of this article is that we establish non-parametric 

functional central limit theorem (FCLT, hereafter) of some recursive estimates of μ(·) under 

primitive conditions. To be specific, denote by μ̂
m(x) the nonparametric estimate of μ(x) 

using data  up to time m and bandwidth bm. Throughout, denote by ⌊υ⌋ the 

integer part of υ. We show that, due to the sample-size-dependent bandwidths, the process 

{μ̂
⌊nt⌋(x)−μ(x)} indexed by t, after proper normalization, converges weakly to a Gaussian 

process {Gt} with non-stationary and dependent increments. Such a result is very different 

from the FCLT required for the SN approach in the parametric inference problems, where 

the limiting process is a Brownian motion with stationary and independent increments.

Throughout, we write ξ ∈ p (p ≥ 1) if ∥ξ∥p := ( |ξ|p)1/p < ∞. The symbols Op(1) and op(1) 

signify being bounded in probability and convergence to zero in probability, respectively. 

For sequences {an} and {cn}, write an ≍ cn if an/cn → 1. The article is organized as follows. 

Section 2 presents the main results, including the FCLT for nonparametric recursive 

estimates and the self-normalization based confidence interval. Simulation results are 

presented in Section 3. Section 4 concludes and technical details are gathered in Section 5.

2. Main results

We consider the nonparametric mean regression model:

(2)

where μ(·) is the nonparametric mean function of interest and {ei} are noises. As an 

important special case, let Xi = Yi−1 and ei = σ(Xi)εi for innovations {εi} and a scale function 

σ(·), then we have the nonparametric autoregressive (AR) model Yi = μ(Yi−1)+σ(Yi−1)εi, 

which includes many nonlinear time series models, such as linear AR, threshold AR, 

exponential AR, and AR with conditional heteroscedasticity; see Fan and Yao (2003). We 

assume that  are stationary time series observations so that they have a natural 

ordering in time, i.e., (Xi, Yi) is the observation at time i.

2.1. Nonparametric FCLT for recursive estimates

Throughout let x be a fixed interior point in the support of Xi. Denote by μ̂
m(x) the 

nonparametric estimate of μ(x) based on data  up to time m. In this paper we 

consider the local linear kernel smoothing estimator (Fan and Gijbels, 1996) of μ(x):

(3)

where K(·) is a kernel function and bm > 0 is the bandwidth. By elementary calculation,
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(4)

where, for j = 0, 1, 2,

(5)

Let c ∈ (0, 1) be a fixed small constant. With m =⌊cn⌋, ⌊cn⌋ + 1, …, n, we can obtain the 

recursive estimates μ̂
⌊cn⌋(x), μ̂

⌊cn⌋+1(x), …, μ̂
n(x) of the same quantity μ(x). In this section we 

establish a nonparametric FCLT for the process {μ̂
⌊nt⌋(x)}c≤t≤1. If bm = ∞ and we drop the 

linear term a1(Xi − x) from (3) (i.e., we consider the local constant estimation), then 

 reduces to the partial sum process of , which has been the 

focus of classical FCLT.

The extension of parametric FCLT to nonparametric setting is far from trivial and the main 

complication lies in the following two aspects:

i. The bandwidth bm depends on the sample size m and it has an impact on the 

asymptotic behavior of μ̂
m(x). It is well known that the optimal bandwidth of μ̂

n(x) 

is bn = C(K, r, s)n−1/5 for some constant C(K, r, s) that depends only on the kernel 

K(·), the bias function r(·), and the asymptotic variance function s2(·). Therefore, 

the optimal bandwidth bm for sample size m satisfies bm = bn(n/m)1/5, where bn is 

the bandwidth chosen on the basis of full sample . For example, we 

can use the plug-in method or the cross-validation method (Li and Racine, 2007) to 

choose bn and then set bm = bn(n/m)1/5.

ii. For parametric FCLT, the limiting process is typically a scaled Brownian motion in 

the weakly dependent setting. By contrast, due to the sample-size-dependent 

bandwidths, the limit for the partial sum process in (4) is unknown and a careful 

investigation is needed.

Next, we introduce some technical assumptions.

Assumption 1 (Dependence condition)—In (2), (ei|Xi, Xi−1, …, X1, ei−1, ei−2, …, e1) 

= 0. Moreover, {(Xi, ei)}i∈ℕ is stationary and α-mixing with mixing coefficient αk < Cρk, k 

∈ ℕ, for some constants C < ∞ and ρ ∈ (0, 1).

Assumption 1 implies  (ei|Xi) =  [  (ei|Xi, …, X1, ei−1, …, e1)|Xi] = 0, which ensures the 

identifiability of μ(x) through the conditional mean regression  (Yi|Xi = x) = μ(x). The α-

mixing framework is widely used in time series analysis; see Fan and Yao (2003).

Definition 1—Let pX(·) be the density function of Xi. Throughout we assume that pX(·) is 

bounded. Recall that x is a given point. For q > 0, define
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(6)

Define the set of functions

(7)

Intuitively, (7) asserts that ℓq(υ) is continuous at υ = 0 under the norm induced by |f(·)|q. If 

f(·) has a bounded support and ℓq(·) is continuous at υ = 0, then f ∈ (q).

Assumption 2 (Regularity condition)—(i) For some δ > 0, ei ∈ 4+δ. (ii)  is 

continuous at x and pX(x) > 0. (iii) μ‴(·) is bounded and continuous at x. (iv) K(·) is 

symmetric, has bounded derivative, and (recall (q) in Definition 1)

(8)

To establish the asymptotic normality of μ̂
⌊nt⌋(x) at a fixed t, it suffices to assume ei ∈ 2+δ 

for some δ > 0, see Theorem 2.22 in Fan and Yao (2003); for FCLT, we need the stronger 

moment assumption ei ∈ 4+δ to establish the tightness of the process {μ̂
⌊nt⌋(x)}c≤t≤1. For 

nonparametric kernel smoothing estimation, it is typically assumed that the kernel has 

bounded support and bounded derivative. For this type of kernel function, if ℓ2(·) and ℓ4+δ(·) 

are continuous at υ = 0, then (8) trivially holds. On the other hand, Assumption 2(iv) allows 

the kernel function to have an unbounded support with sufficiently thin tails, such as the 

standard Gaussian kernel.

Theorem 1—In (3), let bm = bn(n/m)1/5 and bn ∝ n−1/5. Suppose Assumptions 1−2 hold. 

Then the following weak convergence holds in the Skorokhod space (Billingsley, 2009)

(9)

where r(x) = μ″(x) ∫ℝ u2K(u)du/2, , c ∈ (0, 1) is any given constant, and 

{Gt}c≤t≤1 is a centered Gaussian process with autocovariance function given by

(10)

The asymptotic normality in (1) is a direct application of Theorem 1 with t = 1. For 

parametric inference, FCLT often admits Brownian motion, which has stationary and 

independent increments, as its limit. By contrast, in the nonparametric context, the properly 

standardized nonparametric recursive estimates converge to a Gaussian process {Gt} with 

non-stationary and dependent increments, owing to the sample-size-dependent bandwidth. 
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The covariance function of the Gaussian process depends on the kernel function as shown in 

(10). If we use the standard normal density as the kernel function, i.e., K(u) = (2π)−1/2 

exp(−u2/2), then .

2.2. Self-normalization based confidence interval

In this section, we focus on point-wise confidence interval construction for μ(x) using the 

SN approach. First, we provide a brief discussion of the traditional approach. By Theorem 1 

with t = 1, (1) holds with

(11)

In the traditional approach, one would construct a consistent estimate of s2(x) by using 

consistent estimates for pX(x) and σ2(x). For pX(x), we can use a nonparametric kernel 

density estimate with bandwidth τn:

(12)

Let êi = Yi − μ̂
n(Xi) be the residuals, then one can estimate σ2(x) by applying the local 

constant kernel smoothing procedure to  with another bandwidth hn:

(13)

Finally, s2(x) can be estimated by plugging estimates  and pX̂(x) into (11). Therefore, 

traditional approach requires the selection of two additional bandwidths hn and τn.

A distinctive feature of the SN approach (Shao, 2010) is that it does not involve any 

bandwidth parameter. When applied to the nonparametric inference problem at hand, the 

key idea of the SN approach is to construct an inconsistent estimator of s2(x) using recursive 

estimates of μ(x) and form a self-normalized quantity. Such an inconsistent self-normalizer 

is proportional to s2(x), which can then be canceled out in the limiting distribution of the 

self-normalized quantity. The SN approach was developed in the context of parametric 

inference and its generalization to nonparametric inference requires nontrivial modifications. 

First, we need to deal with the bias in nonparametric estimation. Instead of estimating the 

bias explicitly, we propose to use a higher order kernel to make the bias asymptotically 

negligible. In particular, we can impose the following assumption:

Assumption 3—In (9), assume without loss of generality that r(x) = 0.

Assumption 3 assumes r(x) = 0; otherwise, we can use a higher order kernel to achieve bias 

reduction. Note that the constant in r(x) is proportional to ∫ℝu2K(u)du. Let
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Then we can easily verify ∫ℝu2K*(u)du= 0 so the second order bias vanishes, i.e., r(x) = 0. 

The idea can be traced back to jackknifing kernel regression estimator of Hardle (1986) and 

is also used in Wu and Zhao (2007) in the inference of trend with time series errors. In 

practice, using this higher order kernel is asymptotically equivalent to 

, where μ̃
m(x|bm) and  are the estimates of 

μ(x) using bandwidth bm and , respectively. If we use the latter kernel K*(u) with K(u) 

being the standard Gaussian kernel, then the autocovariance function in (10) becomes

(14)

By stationarity and (1), for each t ∈ (0, 1), both μ̂
⌊nt⌋(x) and μ̂

n(x) have asymptotic variances 

proportional to s2(x). Motivated by this feature, we consider certain ratio of μ̂
n(x) and an 

aggregated version of the process {μ̂
⌊nt⌋(x), t ∈ [c,1]} to cancel out s2(x).

Theorem 2—Suppose that the same assumptions in Theorem 1 hold. Further assume 

Assumption 3 holds. Then we have

(15)

Here {Gt} is the Gaussian process in Theorem 1. Consequently, an asymptotic 100(1 −α)% 

confidence interval for μ(x) is μn̂(x)±q1−αVn, where qτ is the τ quantile of |ξ|.

For a given c and kernel function, the distribution of ξ is pivotal and the quantiles of |ξ| can 

be obtained through Monte Carlo simulations; see Table 1 for simulated quantiles. In the 

context of confidence interval construction for finitedimensional parameters, Shao (2010) 

used a similar self-normalization method with no trimming (i.e. c = 0). The use of trimming 

is also adopted in Zhou and Shao (2013), who proposed an extension of the self-normalized 

approach to linear regression models with fixed regressors and dependent errors. In our 

problem, trimming seems necessary as nonparametric estimate of μ(x) on the basis of a small 

sample is very unstable, and in the extreme case of only one point (X1, Y1), we are unable to 

carry out the estimation. Throughout the simulation and data illustration, we set c = 0.1, 

which seems to work pretty well. In general large c is not recommended as we lose some 

efficiency, whereas some recursive estimates may not be stable when c is too small. A 

similar finding is reported in Zhou and Shao (2013), where c = 0.1 is also shown to be a 

good choice via simulations.

We summarize the procedure to obtain the SN-based confidence interval for μ(x):

Kim et al. Page 7

J Multivar Anal. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1. Find the optimal bandwidth bn using the existing bandwidth selection procedure, 

such as cross-validation or plug-in method; set bm = bn(n/m)1/5.

2. Calculate the recursive estimates of μ(x), i.e., μ̂
m(x) for m= ⌊cn⌋,⋯,n; see (3).

3. For a given nominal level 1 − α, the SN-based interval is constructed as μ̂
n(x)

±q1−αVn; see (15).

Thus the SN approach only involves the choice of a smoothing parameter in the estimation 

stage, which seems necessary as a good estimator is usually needed for inference. By 

contrast, the traditional approach requires a consistent nonparametric estimate of s(x), which 

involves selecting two extra smoothing parameters and always introduces estimation error in 

a finite sample. Thus, our proposed method provides an easy-to-implement and fully 

nonparametric inference technique.

The proposed self-normalization based approach is effectively performing inference using 

an inconsistent estimator for the asymptotic variance, the idea of which has attracted 

considerable attention recently. Kiefer, Vogelsang and co-authors proposed the fixed-b 

approach in the context of heteroscedasticityautocorrelation consistent robust testing; see 

Kiefer et al. (2000), Kiefer and Vogelsang (2002, 2005), Vogelsang (2003), among others. 

By holding the smoothing parameter or truncation lag as a fixed proportion of sample size, 

the resulting asymptotic variance matrix estimator is no longer consistent, but is proportional 

to the asymptotic variance matrix, and consequently the resulting studentized statistic has a 

pivotal non-normal limiting distribution. Similar ideas can be found in the self-

normalization scheme of Lobato (2001) and Shao (2010). For confidence interval 

construction of finite-dimensional parameters, Shao's selfnormalized approach relies on the 

functional convergence of standardized recursive estimates based partial sum process to 

standard Brownian motion. In contrast, due to the sample-size-dependent bandwidth of 

nonparametric recursive estimates, our self-normalization is based on a different Gaussian 

process with non-stationary dependent increments. To the best of our knowledge, the 

functional convergence result and the extension of the self-normalization idea to 

nonparametric time series context seems new.

Remark 1—In Theorems 1−2, the limiting distribution is the same for any arbitrarily given 

(but fixed) x, and we can use this result to construct the pointwise confidence interval for 

μ(·). On the other hand, if we wish to construct the uniform or simultaneous confidence 

interval on an interval x ∈ [a, b], then we must obtain some uniform convergence in x ∈ [a, 

b], which is more technically challenging. In this paper we focus on the pointwise 

confidence interval case, and the uniform confidence interval case will serve as a direction 

for future research.

3. Numerical results

We compare the finite sample performance of the proposed self-normalization based method 

in Theorem 2 to that of the traditional method based on asymptotic normality and consistent 

estimation of the asymptotic variance function. We adopt the bias reduction procedure in 

Assumption 3 so the effective kernel becomes  where ϕ(·) is 

Kim et al. Page 8

J Multivar Anal. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the standard normal density, and the covariance function of the Gaussian process {Gt} in 

Theorem 2 is given by (14).

Denote by ℓτ the τ-percentile of X's. Let xj = ℓ0.1 + (j−1)(ℓ0.9−ℓ0.1)/20, j = 1, …, 21, be 

uniform grid points on [ℓ0.1, ℓ0.9]. For each xj, we construct a 95% confidence interval for 

μ(xj), and denote by pj the empirical coverage probability, which is computed as the 

proportion of realizations among 1,000 replications whose confidence interval covers μ(xj). 

Define the average deviation of pj from the nominal level 95% as

(16)

with a smaller value indicating better overall performance.

First, consider the stochastic regression model with time series errors:

(17)

where Xi are independently distributed with uniform distribution on [0, 1] and gi are 

independent standard normal random variables. The model allows conditional 

heteroscedasticity and dependence in εi, with the parameter θ ∈ (0, 1) controlling the 

strength of dependence. We consider θ = 0.0, 0.4, 0.8, representing models ranging from 

independence to strong dependence. Let μ(x) = 0.6x be the mean regression function of 

interest. To investigate the effect of noise level, we let λ = 0.03, 0.06, 0.12, 0.24, ranging 

from low noise level to high noise level.

Next, consider the autoregressive conditional heteroscedastic model

(18)

where εi are independent standard normal errors, (Xi, Yi) = (Yi−1, Yi), and μ(x;θ) = θx is the 

function of interest. As in Model I, we consider different combinations of θ = 0.0, 0.4, 0.8 

and λ = 0.03, 0.06, 0.12, 0.24.

To select the bandwidth bn, we use Ruppert et al. (1995)'s plug-in method, implemented 

using the R command dpill in the package KernSmooth. To implement the traditional 

method, we select hn in (13) using the latter plug-in method, and consider the following five 

popular choices for the nonparametric kernel density bandwidth τn in (12):

i. The normal reference rule-of-thumb method with factor 0.9, i.e., τn = 0.9*n−1/5 * 

min{sd(X), IQR(X)}, where sd(X) and IQR(X) are, respectively, the standard 

deviation and interquartile of X1, …, Xn. This method is implemented using the R 

command bw.nrd0 in the stats package.
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ii. The normal reference rule-of-thumb method with factor 1.06, implemented using 

the R command bw.nrd in the stats package.

iii. The unbiased cross-validation bandwidth method, implemented using the R 

command bw.ucv in the stats package.

iv. The biased cross-validation bandwidth method, implemented using the R command 

bw.bcv in the stats package.

v. Sheather and Jones (1991)'s method by minimizing estimates of the mean 

integrated squared error, implemented using the R command bw.SJ in the stats 

package.

In all settings, we use sample size n = 300.

The results are presented in Table 2. For the asymptotic normality methods with the five 

different bandwidth selection methods, there is a substantial deviation between the actual 

coverage probability and the nominal level. For Model I, the deviation becomes clearly more 

severe as the dependence increases. The latter can be explained by the fact that stronger 

positive dependence corresponds to a smaller effective sample size, which results in larger 

estimation error and worse coverage. What appears intriguing is that for Model I, as the 

noise level λ decreases from 0.24 to 0.03, the traditional methods perform even worse. This 

phenomenon is presumably due to the fact that the relative estimation error of estimating 

s(x) in (1) is more severe when s(x) becomes smaller, especially when s(x) is close to 0. For 

Model II, the performance of the traditional methods is relatively consistent across 

dependence and noise level, with average deviations around 6%-7%. By contrast, the 

proposed self-normalization based method delivers much more accurate coverage 

probabilities and is fairly robust with respect to the magnitude of dependence and noise 

level.

4. Discussions and conclusions

This article proposes an extension of the self-normalized approach (Shao, 2010) to 

nonparametric inference in a time series context. The new approach overcomes the 

drawbacks of the traditional approach, where consistent estimation of the asymptotic 

variance function is needed with an extra smoothing procedure. The finite sample 

performance convincingly demonstrates that the proposed methodology delivers 

substantially more accurate coverage than the traditional approach. The new inference 

method does not require any additional bandwidth parameters other than bn, which seems 

necessary for the estimation of the nonparametric mean function.

The work presented here seems to be the first attempt to generalize the selfnormalization 

based methods to nonparametric inference problems in the time series setting. We limit our 

framework to nonparametric mean regression with one covariate variable and our theory is 

developed for time series data. There are certainly room for further extensions of our 

methodology to nonparametric and semiparametric problems with multiple covariates and to 

dependent data of other types, such as longitudinal data or spatial data. The key difficulty 

would be to establish FCLT for certain recursive estimates based on some natural ordering 
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of the data. For example, for data on a squared lattice, we can construct the m-th recursive 

estimate from data on expanding squares −m ≤ i, j ≤ m, but the corresponding FCLT is more 

challenging. It is also worth noting that nonparametric estimation and inference have been 

well studied for iid data, and an application of the SN approach developed in this article to 

iid setting encounters a practical problem because there is no natural ordering with iid data. 

With different ordering, the SN approach may deliver different results. In view of this 

practical drawback, it would be interesting to develop a new SN-based approach that does 

not depend on the ordering of the data.

Another direction for possible extension is to consider self-normalization based inferences 

for a general nonparametric function, denoted by μ(·), such as conditional mean function, 

conditional quantile function, nonparametric density function, and conditional distribution 

function. Consider recursive estimates μ̂
m(x) of μ(·) using data up to time m. Assume that 

there exists some functions r(·) and H(·,·) such that the following asymptotic Bahadur type 

representation holds

(19)

uniformly over ⌊cn⌋ ≤ m ≤ n, where Rm(x) is the negligible remainder term. Under 

conditions similar to Assumptions 1 and 2, we can establish similar FCLT as in Theorem 1, 

which can be used to construct self-normalized confidence interval for μ(x) as in Theorem 2. 

However, it can be challenging to obtain the uniform representation (19). As an example, 

consider nonparametric quantile regression and denote by μ(x|τ), τ ∈ (0, 1), the conditional 

τ-quantile of Yi given Xi = x. We can estimate μ(x|τ) by the local linear quantile regression

where ρτ(t) = |t| + (2τ − 1)t is the check function or quantile loss function at quantile τ. By 

Honda (2000), (19) holds for each fixed m, but it requires significantly more work to 

establish uniform representations and show the uniform negligibility of the remainder terms 

Rm(x). We leave these possible extensions for future work.
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5. Appendix: Technical proofs

Throughout this section C, c1, c2, … are generic constants that may vary from line to line.
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5.1. Some results on mixing process

In this section we present some results on mixing process which may be of independent 

interest for other nonparametric inference problems involving dependent data.

Lemma 1 (Proposition 2.5 in Fan and Yao (2003))

Let U and V be two random variables such that U ∈ p1
 and V ∈ p2

 for some p1 > 1, p2 > 

1, and 1/p1 + 1/p2 < 1. Then

Here α(U, V) is the α-mixing coefficient between the two σ-algebras generated by U and V.

In Lemmas 2–4 below, let {Zi}i∈ℤ be a stationary α-mixing process with mixing coefficient 

αk ≤ Cρk for some constants C < ∞ and ρ ∈ (0, 1). Lemma 2 presents an exponential 

inequality for the tail probability of , Lemma 3 establishes a uniform convergence 

result with optimal rate (up to a logarithm factor) for partial sum process of functions of 

{Zi}, and Lemma 4 presents a moment inequality for .

Lemma 2

Assume (Z0)= 0 and ℙ{|Z0| ≤ b} = 1 for some b. For ℓ≤⌊n/2⌋ and z > 0,

PROOF. Let s = n/(2ℓ). By Theorem 2.18 in Fan and Yao (2003),

where Γs = max0≤j≤2ℓ−1 {(⌊js⌋+1 −js)Z1+Z2+ ⋯+Zr+(js+s−⌊js+s⌋)Zr+ 1}2 and r = ⌊(j + 

1)s⌋ − ⌊js⌋. The result then follows from the Cauchy-Schwarz inequality 

.

Lemma 3

Let {θm}m∈ℕ, be a sequence of deterministic parameters and h(·,·) a bivariate function such 

that [h(Z0, θm)] = 0 and ℙ{|h(Z0, θm)| ≤ b} = 1 for a constant b. Define
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Let c ∈ (0, 1) be any fixed constant. Suppose there exist σm and a constant c1 such that

with sufficiently large n. Then as n → ∞,

PROOF. Let c2 > 0 be a constant to be determined later. Applying Lemma 2 with 

 and ℓ = m/(2⌊log2m⌋), we obtain

Notice that, for ⌊cn⌋ ≤ m ≤ n with large enough n,

As m → ∞, m → ∞, α⌊log2m⌋ = O(ρlog2m) = o(m−4). Therefore, for large m,

(20)

Choose c2 such that . By (20),

completing the proof.
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Lemma 4

Assume Z0 ∈ 4+δ, (Z0) = 0, and (Z0Zi) = 0, i ≥ 1. Then for r ≥ 1,

PROOF. Write p = (4 + δ)/3. From (Z0) = 0, .

By Lemma 1,

(21)

Here the second “≤” follows from the Hölder's inequality

Furthermore, by (Z0Zi) = 0 and Lemma 1,

(22)

Notice that . Also, by the Cauchy-Schwarz inequality,

Therefore, by (22), we have

(23)

Combining (21) and (23), we obtain . The 

desired result then follows from .

5.2. Proof of Theorems 1-2

Lemma 5

Recall ℓq(·) and (q) in Definition 1. Then for any f(·) ∈ (q) and bn → 0,

Kim et al. Page 14

J Multivar Anal. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



PROOF. (i) Conditioning on Xi and then using the double-expectation formula, we obtain

(24)

where the second “=” follows from the change-of-variable u = (υ−x)/bn and the third “=” 

follows from (7). (ii) It follows from (i) and the Jensen's inequality 

.

Lemma 6

Suppose the conditions in Theorem 1 hold. Write ,

Then {Wn(t)}c≤t≤1 ⇒ {Gt}c≤t≤1 with {Gt}c≤t≤1 being the Gaussian process in Theorem 1.

PROOF. Consider the approximation of Wn(t):

Let g(·) be defined in (8). Note that for all c1/5 ≤ s ≤ s′, by (8), we have

(25)

where s* ∈ [s, s′]. Also, by Taylor's expansion  for z → 0 and any fixed 

z0 and a, we have

(26)

uniformly in t ∈ [c, 1]. Thus, by (25) and (26), we have
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(27)

Since g(·) ∈ (4 + δ), by Lemma 5(ii) and (27),

(28)

Thus, it suffices to show the convergence of {Un(t)}c≤t≤1.

We need to establish the finite-dimensional convergence and the tightness of {Un(t)}c≤t≤1; 

see Billingsley (2009). For finite-dimensional convergence, by the Cramér-Wold device, it 

suffices to consider linear combinations of Un(t). Let t, t′ ∈ [c, 1]. Recall ℓq(z) in (6). By the 

same double-expectation argument in (24) and using ℓ2(0) = pX(x)σ2(x), we have

(29)

where the last convergence holds since K(·) ∈ (2).

For k ∈ ℕ, let c ≤ t1, …, tk ≤ 1 and w1, …, wk ∈ ℝ. Consider the linear combination

Let i be the sigma-algebra generated by (Xi+1, Xi, …, X1, ei, ei−1, …, e1). By Assumption 

1, [ηi(t) i−1] = 0 for each fixed t, and thus {ηi}iεℕ are martingale differences with respect 

to { i} i∈ℕ. We shall apply the martingale central limit theorem (CLT) to establish a CLT 

for Un. Write a∧b = min{a, b}. From 1i≤⌊nts⌋1i≤⌊nts'⌋ = 1i≤⌊n(ts∧ ts')⌋ and (29),

(30)

Therefore, by the orthogonality of martingale differences and (30),
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which is the variance of . Next, we verify the Lindeberg condition. Since k is 

fixed, it suffices to verify that  for any given t > c 

and c1 > 0. Since K(·) ∈ (4 + δ), by Lemma 5(i), [|ηi(t)|4+δ] = O(bn). Therefore,

This proves the Lindeberg condition. By martingale CLT, Un has the desired CLT.

It remains to prove the tightness of Un(t). Let c ≤ t < t′ ≤ 1. By the inequality (a + b)4 ≤ 

16(a4 + b4), we obtain

(31)

where

Write Zi = ηi(t)−ηi(t'). By (ηi(t)| i−1) = 0,  (Zi| i−1) = 0. For i < j < r < s, (Zi) = 0, 

(ZiZj) =  [  (ZiZj| i−1)] = 0, 

. Therefore,

(32)

Recall ℓq(·) in (6). By the same argument in the derivation of (24), for q ∈ (0, 4 + δ],
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(33)

where the last “=” follows from (25) and the inequality |t′1/5−t1/5| ≤ c−4/5|t′ − t|/5 for c ≤ t < t' 

≤ 1. By (33) and the definition of (q), if g(·) ∈ (q) so that ∫ℝℓq(ubn)|g(u)|qdu = ℓq(0) ∫ℝ |

g(u)|qdu + o(1) = O(1), we have (|Zi|q) = O(bn|t′ − t|q). Therefore, under the condition g(·) 

∈ (2) ∩ (4 + δ), we obtain

(34)

An application of Lemma 1 with p1 = p2 = (4 + δ)/2 gives

Combining the above two expressions, we obtain

(35)

Applying Lemma 4 and (34), we have

(36)

Furthermore, by (34) and Jensen's inequality, . 

Therefore, by (32) and (34)-(36), it is easy to see

(37)

For I2, by the same argument in I1, we can show

(38)

Therefore, by (31) and (37)–(38),
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completing the tightness of Un(t) in view of  under the 

condition bn ∝ n−1/5; see condition A1 and Remark 2.1 of Shao and Yu (1996).

Lemma 7

Suppose pX(·) and g(·) are bounded and continuous at x. Then for any integrable function 

f(·), we have

PROOF. Note that g(x)pX(x) is continuous at x because g(x) and pX(x) are continuous at x and 

pX(x) is bounded. Observe that

Note that bm ∝ bn for⌊cn⌋ ≤ m ≤ n. The result then follows from

Here the last convergence follows from the dominated convergence theorem in view of the 

continuity of g(·)pX(·) at x, the boundedness of g(·)pX(·), and the integrality of f(·).

Lemma 8

Suppose the conditions in Theorem 1 hold. For Mm(j) defined in (5), we have

PROOF. We abbreviate “uniformly in ⌊cn⌋≤ m ≤ n” as “uniformly in m”. Define
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Let c1 = supu(1 + |u| + |u|2)|K(u)|. By (8), c1 < ∞ and thus hj(Xi, bm) is bounded for j = 0, 1, 

2. By the integrability of |u3K(u)| [see (8)], |ujK(u)| is integrable for j = 0, 1, 2, which implies 

that |u2jK2(u)| ≤ c1|ujK(u)| is also integrable for j = 0, 1, 2. By Lemma 7, [hj(Xi, bm)2] = 

O(bn) uniformly in m. Therefore, applying Lemma 3, we obtain 

 uniformly in m. Furthermore, by 

Lemma 7, [hj(Xi, bm)] = bmpX(x) ∫ℝujK(u)du + o(bn) uniformly in m. Thus,

uniformly in m. Since bn ∝ n−1/5, . This completes the proof.

Proof of Theorem 1—By (4), we can easily obtain the following decomposition

(39)

Define

By (39), we can derive the decomposition

(40)

Below we consider the three terms on the right hand side of (40) separately. We shall show 

that the first term is the bias term, the second term is the stochastic component that 

determines the asymptotic distribution, and the third term is negligible.

The symmetry of K(·) implies ∫ℝuK(u)du = 0. By Lemma 8, we can easily obtain

(41)

uniformly in ⌊cn⌋ ≤ m ≤ n (hereafter, abbreviated as “uniformly in m”). Note that, by the 

same argument in Lemma 8, we can show 

 uniformly in m. Thus, since μ(·) has 
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bounded third derivative, by the Taylor's expansion μ(Xi) − μ(x) = (Xi − x) μ′(x) +(Xi − x)2μ″

(x)/2 + O[(Xi − x)3], we can obtain

Similarly,  uniformly in m. Combining the latter two 

approximations with (41) and Lemma 8, after some algebra we see that the first term in (40) 

has the approximation

uniformly in m. This gives the asymptotic bias. From (41), Lemma 8, and the FCLT in 

Lemma 6, after proper normalization the second term in (40) has the desired FCLT. By 

Lemma 8 and the same argument in Lemma 6, the third term in (40) satisfies a FCLT with a 

faster convergence rate and thus is negligible. This completes the proof.

Proof of Theorem 2—For a function f, denote its L2 norm by . 

Note that |n−4/5⌊nt⌋4/5−t4/5|≤n−4/5 uniformly for t ∈ [c, 1], and{t4/5[μ̂
⌊nt⌋(x)−μ̂

n(x)]}t∈[c,1] and 

{n−4/5⌊nt⌋4/5[μ̂
⌊nt⌋(x) −μ̂

n(x)]}t∈[c,1] are asymptotically equivalent. Thus, by Theorem 1 and 

the continuous mapping theorem,

Since ⌊nt⌋ is piecewise constant, it is easy to verify L2{n−4/5⌊nt⌋4/5[μ̂
⌊nt⌋ (x−μ̂

n(x)], t∈[c,1]} 

=Vn, completing the proof.
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