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Abstract

Background: The oriental fruit fly, Bactrocera dorsalis, is an important pest of fruit and vegetable crops throughout
Asia, and is considered a high risk pest for establishment in the mainland United States. It is a member of the
family Tephritidae, which are the most agriculturally important family of flies, and can be considered an out-group
to well-studied members of the family Drosophilidae. Despite their importance as pests and their relatedness to
Drosophila, little information is present on B. dorsalis transcripts and proteins. The objective of this paper is to
comprehensively characterize the transcripts present throughout the life history of B. dorsalis and functionally
annotate and analyse these transcripts relative to the presence, expression, and function of orthologous sequences
present in Drosophila melanogaster.

Results: We present a detailed transcriptome assembly of B. dorsalis from egg through adult stages containing
20,666 transcripts across 10,799 unigene components. Utilizing data available through Flybase and the modENCODE
project, we compared expression patterns of these transcripts to putative orthologs in D. melanogaster in terms of
timing, abundance, and function. In addition, temporal expression patterns in B. dorsalis were characterized
between stages, to establish the constitutive or stage-specific expression patterns of particular transcripts. A fully
annotated transcriptome assembly is made available through NCBI, in addition to corresponding expression data.

Conclusions: Through characterizing the transcriptome of B. dorsalis through its life history and comparing the
transcriptome of B. dorsalis to the model organism D. melanogaster, a database has been developed that can be
used as the foundation to functional genomic research in Bactrocera flies and help identify orthologous genes
between B. dorsalis and D. melanogaster. This data provides the foundation for future functional genomic research
that will focus on improving our understanding of the physiology and biology of this species at the molecular level.
This knowledge can also be applied towards developing improved methods for control, survey, and eradication of
this important pest.
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Background

The oriental fruit fly (Bactrocera dorsalis) is an important
agricultural pest in Asia, Africa, and the Pacific, impacting
over 150 fruits and vegetables in tropic and sub-tropic
regions [1,2]. In addition, B. dorsalis is established across
the Hawaiian Islands and is a species of concern in the
continental United States, with numerous interceptions
and detections made annually, often triggering eradication
efforts and quarantines [3-5]. In addition to being an
important pest species, B. dorsalis, as a member of the
family Tephritidae, can serve as an important species for
comparison to the well characterized drosophilid group,
having diverged from Drosophila approximately 70 million
years ago [6].

Despite its importance as an agricultural pest, little
functional genomic information is available for the
species outside of a collection of sequences used for
phylogenetic analysis of the genus. The addition of
functional genomics information can lead to development
of new control strategies, a basic understanding of the
biology of the insect, and expansion of the techniques
used in research. With the advent of high-throughput
sequencing technology, there is increased ability to obtain
cost-effective sequence data from non-model organisms,
including sequencing from total RNA libraries to target
coding genes at particular time points. While collection of
this data is fairly straightforward, in order to accurately
predict gene models and transcripts, much attention must
be given towards assembly and analysis of the data. While
this shotgun de novo approach to sequencing potentially
allows for collection of full length genes, detection of
splice variants, and calculation of differential expression
between tissues, it can also lead towards assembly of
partial gene fragments, erroneous assembly fragments,
and mis-assemblies [7-9]. Many RNA-seq experiments
report a large number of small transcript fragments,
sometimes numbering in the hundreds of thousands, with
a small proportion likely to be full length transcripts. This
can make it difficult to calculate meaningful expression
values, accurately identify transcript isoforms, and limit
the utilization of the resulting dataset in downstream
functional genomics experiments. For example, for B.
dorsalis there are several published experiments that have
performed de novo transcriptome assembly, presented tens
of thousands of assembled contigs, but did not publish gene
models or transcript sequences as part of their experiment
[10-12]. This makes it difficult to utilize the research and
limits the application of the research. As an alternative, we
attempted to analyze RNA-seq data to produce a high
confidence transcript set consisting of full length or near
full-length transcripts with strong support for their accuracy.
The resulting dataset can be used as a foundation for
expanding on the B. dorsalis gene set without concerns that
the dataset contains erroneous data.
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Our approach was to perform comprehensive RNA
sequencing on a laboratory colony of B. dorsalis with
a focus on attempting to capture expression of as
many genes and gene splice variants that represent
the entire developmental life history. De novo transcrip-
tome assembly and analysis of the resulting sequence were
performed with a focus on identifying full length gene and
splice variants, and then annotating through identification
of orthologs in Drosophila gene sets. High confidence genes
were filtered from potentially erroneously assembled
transcripts based on homology to known proteins and
read coverage of the transcript. The result produced a
high quality reference transcript set for this species for com-
parative analysis with D. melanogaster. This transcriptome
can be used as a foundation for functional genomic and
population genetic experiments. Further development from
other lines of evidence can be used in the future to broaden
this gene set.

Results and discussion

Sequencing and quality filtering

In total, approximately 101 million paired 100 bp reads
were obtained from Illumina GAIIx sequencing, totalling
over 20 Gb of data (Table 1). These reads were evenly
distributed between all of the libraries sequenced (egg,
larvae, pupae, adult male, adult female, mated adult female).
All raw reads were submitted to the NCBI Sequence Read
Archive under accession numbers SRX261507-SRX261512
associated with BioProject PRINA167923. After quality
filtering and removing low quality reads, approximately
84% of reads remained and were used for assembly and
mapping. While filtering provided little improvement to
the quality of the beginning of the read, it dramatically
increased the quality score of the end of the read from an
average q20 score of 24.9 at base 95 in unfiltered
reads to average q20 score of 29.2 in filtered reads
(Table 1). Filtering also had no dramatic effect on GC
content of the data, suggesting there was no bias to
the reads that were removed during filtering. In silico
normalization using the Trinity normalization tool
dramatically reduced the number of input reads into
the assembly without adversely influencing the kmer
abundance from those reads. From ~101,364,649 raw read
pairs, filtering and normalization reduced the read abun-
dance to 7,796,491 (~7.7%) reads used as input into the
Trinity assembly, greatly reducing the computational
requirements for assembly and avoiding complicated
de bruin graphs created by low quality sequence or
overabundant sequence kmers.

De novo transcriptome assembly and transcript filtering

The B. dorsalis transcriptome was reconstructed using
the Trinity assembly pipeline with all filtered reads from
all libraries pooled into one dataset [9,13]. This raw



Table 1 Quality filtering of lllumina GAlIx data before assembly and mapping

Average quality (interquartile range) GC content (percent)
Number of reads Before filtering After filtering Before filtering After filtering
Stage Before filtering After filtering Percent retained Base 5 Base 50 Base95 Base5 Base50 Base95 Base5 Base 50 Base 95 Base 5 Base 50 Base 95
Egg 29899982 24924408 834% 367 (4 341 (7)) 249 (25 377 (2 366 (50 293 (8 400 411 419 389 39.8 406
Larvae 28913860 23506167 81.3% 367 (4) 338 (6) 235 (33) 377 () 364 (5 282 (8 412 428 44.2 40.1 414 428
Pupae 31954342 26582294 83.2% 368 (4 342 (7)) 246 (33) 377 (2 366 (50 290 (8 406 420 428 394 406 414
Male 41546048 35350086 85.1% 374 (20 351 (5 258 (17) 382 (2 373 4 298 (7) 39.7 415 424 385 40.0 411
Female 35096592 29240854 83.3% 369 (4) 344 (7) 247 (33) 378 () 367 (5 290 (8 39.7 419 428 385 40.5 414
Mated Female 35318474 29909305 84.7% 369 (4 345 (/) 253 (18) 378 (2 367 (5 294 (8 385 409 419 374 396 408
Total 202729298 169513114 83.6% 369 (35 344 (65) 249 (26) 378 (2) 367 (48 292 (78) 399 4.7 426 38.7 403 413

Tr6'SL ‘P10T $21wouan NG ‘| 12 qIeD

TV6/SL/P9LT-L LiL/WOD [RIIUSIPIWIOIG MMM//:dNYy

Gl Jo € abed



Geib et al. BMIC Genomics 2014, 15:942
http://www.biomedcentral.com/1471-2164/15/942

assembly yielded 80,346 contigs, with an N50 contig size
of 2,802 bases, 31,321 contigs greater than 1000 bp, and
a transcript sum of 109.4 Mb. While not all assembled
contigs produced by Trinity represent true transcripts in
B. dorsalis, this contig set was used as a starting point
for defining the transcriptome present in our sample.
Filtering based off of read abundance and component
isoform percentage removed 35,729 sequences, leaving
44,617 remaining. Further filtering through identification of
likely coding sequence based on ORF prediction identified
6,864 genes containing a complete ORF (unique genes
defined as sequences with unique comp##_c# identifier
from Trinity (http://trinityrnaseq.sourceforge.net/)) with
13,017 isoforms giving complete ORFs. In addition, 3,935
genes only contained a partial ORF (missing either 5' or 3'
end or both) with 7,649 isoforms identified in those genes,
giving a total of 20,666 transcripts across 10,799 genes, with
an N50 transcript size of 3,460 bp and transcript sum of
62.08 Mb. While Trinity assembled an additional 56,785
contigs, these were discarded by the above filtering
because they lacked a likely coding sequence or did
not have significant read coverage. While in some
cases these may contain partial gene fragments, we
chose to exclude them from further analysis as the
majority consist of short, low read count data with
low blast homology to known proteins in D. melanogaster
(Figure 1A-C). In contrast, the majority of the retained
transcripts had a significant number of reads mapping to
them, with full length transcripts being longer, and having
a higher alignment percentage to known Drosophila
proteins when compared to the partial transcripts
(Figure 1A-C).

Read abundance based expression analysis across
developmental stages

Stage specific expression values were calculated for each
developmental library as TMM normalized FPKM values.
Unique genes were classified with the modENCODE FPKM
expression categories (very low, low, moderate, moderate
high, high, very high, extremely high) utilized by flybase.org
with the same FPKM expression level calculations and
category bins used in Drosophila [14,15]. Distribution of
expression categories across developmental stages are
presented in Figure 2. From this, genes were categorized
as constitutively expressed in all libraries, stage-specific
or expressed across several stages. Constitutive highly
expressed genes were defined as those genes having
an expression level of "moderately high" or higher in
all 6 samples. Under this definition, we identified 1,347
constitutive highly expressed genes in our dataset. Stage
specific genes were defined as those that are "moderately
expressed” or higher in one library and “low” or "very low"
in the other 5 libraries. A total of 310 unigenes were
declared stage specific. Finally, genes expressed across
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two, three, four, or five libraries were also calculated, as
many genes may be expressed during several related
libraries that could constitute a biologically relevant
developmental stage. This identified 395 genes expressed at
least moderately high in two libraries compared to very low
in the rest of the libraries, 186 genes with this same pattern
in three libraries, 156 in 4 libraries and 136 in 5 libraries.
The majority of the genes in the combined transcriptome
dataset were found constitutively expressed at a low level
(“low” or “very low”, 8269 genes). A breakdown of the
number of stage specific genes is listed in Table 2, and a
matrix of stage specific and constitutively expressed genes
is provided in Additional file 1.

Using the same classification described above, the
number of genes falling into each of the expression level
categories for each stage was compared with that of
D. melanogaster (Figure 3), demonstrating strong similarity
of distribution of gene expression levels in both species.
While this result helps to corroborate the expression
values presented for B. dorsalis, it additionally highlights
the intra-species conservancy of expression levels for the
majority of transcripts, suggesting stage-specific functional
conservation between the identified genes in B. dorsalis
and D. melanogaster (Figure 3).

Another complementary approach to compare expression
between stages was employed through hierarchical cluster-
ing of the gene expression values between libraries, and then
defining subclusters that share similar expression patterns
across libraries. From the hierarchical clusters, 19 subclus-
ters were created by splitting the tree at clusters that shared
45% of the tree height. These subclusters were visualized by
plotting the median centered FPKM values (Figure 4). In
this case, expression patterns are not focused specifically on
the most highly expressed genes as in the first approach,
but rather on genes that exhibit a change in expression
based on median-centered values, regardless of the level of
expression. Some of the defined clusters did not clearly
describe a stage specific expression pattern such that no
expression values were distributed significantly outside
of the median (e.g. cluster Q, Figure 4); others, however,
showed clear differences in expression between libraries.
These patterns are highlighted as inset figures in Figure 4,
and a list of genes present in each cluster is provided as
supplementary data (Additional file 2).

Putative unigenes orthologous to D. melanogaster genes

A set of 5,681 putative orthologous genes were identified in
our B. dorsalis dataset through reciprocal BLAST alignment
with the D. melanogaster protein set. We anticipate this
number to be an underestimation of actual ortholog repre-
sentation, as utilizing an RNA-seq assembly increases the
chance for multiple unigenes. Expression levels in terms of
normalized FPKM values were compared between the
putative orthologs by plotting the data along a regression
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(See figure on previous page.)

Figure 1 Comparative evidence for filtering of de novo assembly. Lines represent retained unigenes (either containing a full or partial ORF) or
transcripts discarded based off of lack of evidence of coding region or due to low expression values. A) Proportion length of B. dorsalis putative
transcripts relative to highest scoring blast alignment to D. melanogaster proteins. B) Length distribution of transcripts. C) Relative log read count

expression values of transcripts.

curve. A strong linear relationship was observed between
the expression values of orthologs (Figure 5). To identify
orthologous proteins with potential difference in expression
between the two species, a 95% interval was calculated
along the regression. A conservative approach was taken to
avoid the identification of false orthologs, and at
times this approach may not identify true orthologs. This
is particularly true when using de novo assembled
RNA-seq data, which commonly has a large proportion of
extraneous or superfluous transcripts assembled due to
genetic heterogeneity of the sample, sequence error, and/
or relaxed transcript reconstruction parameters of the
software. By filtering the assembly to the approximate
expected unigene and transcript density, over 5,600
putative orthologs were identified. Through linear regres-
sion analysis between expression values of the orthologs in
B. dorsalis and D. melanogaster, we found a strong linear
correlation at each developmental stage. Of the unigenes
falling outside of the confidence interval of the regression,
a significant proportion were identified as constitutive
low expression. This bias seems largely due to a large
number of unigenes with higher expression (although

still constitutively low) in B. dorsalis compared to D.
melanogaster and are likely not biologically relevant.
In contrast, there are 4,234 unigenes (~75%) that are
always within the confidence interval and about 25%
that are conversely outside in at least one developmental
stage (Additional file 3). Only 30 unigenes were consistently
outside of the confidence interval in all 5 developmental
stages. This strong homology in expression patterns
between B. dorsalis and D. melanogaster for the putative
orthologs suggests conserved functions between species. Of
course, this is biased, as additional unigenes that may be
orthologs were not identified by our analysis, and it is
possible that those may be enriched for proteins that have
modified function or expression patterns, and may not have
passed the threshold set. Despite some genes not falling
within the confidence interval of the regression, Pearson
correlation values (rho) at a p <0.001 were calculated and
both data sets were found to have a strong correlation.
Both the regression and the correlation support assembly
accuracy and relative completeness. For genes outside of
the confidence, while considered potential orthologs, may
have different functions or temporal expression patterns
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Table 2 Number of unigenes present in expression level
categories

Stage Number of Percentage of total
unigenes unigenes (%)
All stages:
Constitutive highly expressed genes 1,347 1247
Constitutive low 8,269 76.56
Single Stages:
Egg specific 29 0.26
Larvae specific 136 1.25
Pupae specific 110 1.01
Mated Female specific 35 0324
Adults (Female and male) specific 50 046

Lists of genes present in each category is provided as matrices in Additional
file 1. Constitutive highly expressed genes have modENCODE expression
values of “High” or greater across all stage specific samples. Sparsely
expressed genes have a value of “Low” or lower.

between the two species, or may be more sensitive to
external variables that potentially differed between rearing
conditions.

Functional annotation

A large proportion of the transcripts assembled and
retained after filtering were able to be functionally annotated
through BLAST homology to proteins in the UniProt
Swiss-Prot database and the D. melanogaster protein set or
HMM profiles in Pfam-A. Further, when possible, gene
ontology, KOG, and COG terms were added. In total,
17,093 transcripts (72.5% of total) were annotated from
BLAST homology to Swiss-Prot with a qualified gene name,
whereas 20,713 transcripts (87.9% of total) had significant
alignment to D. melanogaster proteins (r5.44), encompass-
ing 10,686 proteins from 9,004 unique gene models in
D. melanogaster, and representing 65% of known D.
melanogaster genes. In contrast, 16,612 transcripts were
annotated with Pfam domains, encompassing 3,846 unique
Pfam identities.

Identification of transcription factors in the B dorsalis
genome

Spatial and temporal patterns of gene expression are in part
regulated by transcription factors. Transcription factors
(TFs) were searched in our dataset initially by using the
Gene Ontology annotations and further curated using Pfam.
Genes with GO terms corresponding to: GO:0003700
(sequence-specific DNA binding transcription factor activity),
GO:0006355 (regulation of transcription, DNA-templated),
and GO:0003705 (RNA polymerase II distal enhancer,
sequence-specific DNA binding transcription factor
activity) were selected and Pfam annotations were used to
curate and classify the selected list of genes. A total of
1,265 transcripts were classified as TFs, roughly 6% of the
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transcriptome. This percentage is comparable with the
number of TFs estimated in D. melanogaster [16]. The
1,265 identified sequences corresponded to one of 305
unique domains. The most abundant TFs corresponded to
Zinc finger domains, followed by homeobox domains and
helix-loop-helix proteins (Table 3). It is worth noting that
several sequences may be false positives. For the purposes
presented here, transcription factors were defined as DNA
binding domains, however several proteins exist that
possess motifs similar to DNA binding factors and yet
may be unrelated. Similarly, several true transcription
factors might be missing from the analysis.

Detoxification genes in B. dorsalis transcriptome

An important aspect of insect evolutionary adaptation is
their ability to remove acquired toxic compounds and
protect the organism. To identify genes related to
detoxification in B. dorsalis, genes linked with Phases I
and II in mammalian detoxification pathways were mined
from the transcriptome dataset through sequence
homology. Cytochrome P450 monooxygenases (P450s)
accounted for 163 transcripts in 93 unique unigenes,
approximately equating the 90 genes found in Drosophila
from this superfamily [17]. These 93 unigenes belong to 12
families (Table 4). While many P450 proteins are known to
be involved in detoxification, the superfamily consists of a
wide array of enzymes with distinct functions [17,18]. This
is not the first report of characterization of P450’s in B.
dorsalis, with previous research reporting as many as 90
unigenes to as few as 51 from shotgun transcriptome
experiments [10,12,19]. Inconsistent database deposition of
sequences obtained in previous reports makes it difficult
to make comparisons and draw conclusions across the
respective studies. In one case, multiple P450s were
verified through cloning [20], and 60 P450’s were reported
from the olive fly B. oleae [21]. The overall consensus
suggests strong consistency in the diversity and abundance
of P450’s in B. dorsalis and D. melanogaster.

Glutathione-S-transferases (GSTs) and
UDP-glucuronosyltransferases

(UGTs) constitute phase II of the mammal detoxification
pathway, usually by mitigating the effects of the oxygen
radicals produced by phase I [22]. Our transcriptome
profiling detected 34 unique GSTs domains, 26 of which
had both N- and C- terminal domains and eight with
homology to either the C-terminal region only or the
N-terminal region (four and four respectively). This is
comparable to a previous report that identified 37 unigenes
with GST domains [12]. Additionally, 23 UGTs were found
(Table 4). Furthermore, data from a D. melanogaster
microarray experiment designed to profile genes in the
CncC/Keapl pathway was obtained [23]. The CnC/Keap
pathway is presumably the central pathway for detoxification
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Figure 3 Comparison of expression level distribution between B. dorsalis and D. melanogaster utilizing modENCODE expression
categories. Numbers below bars represent modENCODE expression categories as follows: 1- No Expression, 2- Very Low, 3- Low, 4- Moderate,
5- Moderate High, 6- High, 7- Very High, 8- Extremely High. Frequency of all B. dorsalis unigene models were compared to all gene level expression
values derived from the D. melanogaster modENCODE project.

in D. melanogaster and has little evolutionary rela-
tionship with detoxification in mammals. The data
was cross-referenced with our identified orthologous
genes in B. dorsalis. Among the genes that changed
in expression in response to CncC/Keap pathway activation
in D. melanogaster, 141 appear to be present in B. dorsalis
with most constitutively expressed (either at a high or
low degree) across all stages, with no specificity to their
expression pattern (Additional file 4).

Sex determination transcripts

Genes involved in sex-determination can be used to
develop pest control tools as well as to improve the
existing sterile insect technique (SIT) [24]. To identify
sex-determinant genes, amino acid sequences of 67
transcripts corresponding to 14 genes known to be
involved in sex determination in D. melanogaster [25,26]
were used to search our B. dorsalis transcriptome dataset
trough BLASTp (e-value cutoff 1E-10). This resulted in

169 B. dorsalis unique transcripts with high sequence
similarity to at least one of the D. melanogaster peptide
sequences (Additional file 5).

The genes Sex lethal (Sxl) and Notch (N) had the highest
number of transcripts with high sequence similarity
in B. dorsalis. The gene transformer (tra) was not
found in our transcriptome assembly, and only two
transcripts matched transformer 2 (tra2) (which has 7
transcripts in D. melanogaster). The gene tra2 was
found to be critical for sex-determiantion in Anastrepha
fruit flies [27] but needs to interact with tra. While tra
was found to be present in another Bactrocera species, B.
oleae [28], it may not have been actively expressed in the
samples we tested, despite our effort to include as
many developmental stages as possible. A previous
report investigated reproduction and development in
B. dorsalis utilizing RNA-seq, but did not investigate
sex-determination [11]. Additionally, putative sex de-
terminant D. melanogaster orthologs and transcripts
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Figure 4 Two dimensional cluster of expression profiles of unigenes in B. dorsalis across developmental stages. Two dimensional
clustering of developmental stages by expression patterns of the 10,799 unigenes identified. Vertical cluster of unigenes sub-clustered into
unigenes of similar expression profile, subclusters color coded on vertical bar adjacent to heatmap, and cluster expression profiles presented as
inset figures A-S. Vertical axis of inset figures is log2(median centered FPKM values).
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with sequence similarity to other species were mined
from the annotation output and the D. melanogaster
orthologous datasets. The total number of genes,
transcripts and orthologs found are in Additional file 5.

Conclusions

The sequencing of stage-specific messenger RNA from
the fruit fly B. dorsalis allowed for the construction of a
transcriptome that when compared with D. melanogaster
allowed for the identification of 20,666 transcripts across
10,799 unigenes. This is comparable to the current genome
annotation derived D. melanogaster transcript set, which

includes 15,504 genes, 25,205 isoforms, N50 isoform length
of 3,633 and an isoform sum of 68.46 Mb. Utilizing binning
expression nomenclature utilized by the modENCODE
project, 65% of the unigenes identified were expressed at a
constitutively low level (Figure 2). In addition, the relative
distribution of unigenes across bins throughout the
developmental life history in B. dorsalis is very similar
in pattern to the distribution seen in D. melanogaster across
the same developmental stages. Despite this, distribution
does not directly demonstrate similarity between species
at a gene or unigene level, so putative orthologs were
identified using a reciprocal blast approach.
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Figure 5 Regression analysis of log expression values between orthologous unigenes in B. dorsalis and D. melanogaster across
developmental stages. Linear regression represented as solid line with 95% confidence interval indicated with dashed lines. Each B. dorsalis
unigene with putative ortholog identified in D. melanogaster developmental stage was plotted against the putative ortholog based off of log(10)
expression values. Detailed list of each unigene outside of the confidence interval is presented in Additional file 3.

Functional annotation of the transcriptome yielded a
large diversity of functions. The focus of this study was
on proteins related to DNA binding, detoxification, and
sex determination. This analysis demonstrates the utility
of a D. melanogaster based annotation approach for
closely related species, and potentially that functions or
processes in Drosophila will largely translate to Tephritide
flies. Despite this, direct transfer of Drosophila annotations
is not always sufficient for inferring function. For example,
genes involved in sex-determination are potential targets
for the development of novel control strategies and
the improvement of the sterile insect technique (SIT)
in Tephritids. Orthology to Drosophila should be used
with caution, as sex determination is highly diverged
among dipeteran insects. For example, Sx/ in tephritids is
not regulated in a sex-specific fashion; rather the Sx/
transcript is present in both sexes. To address this
point, further studies utilizing more accurate and sensitive
techniques will be needed to validate and verify the

expression patterns of genes of interest throughout the life
history of B. dorsalis. In addition, functional genomic
approaches will lead to a better understanding of the
similarities and differences between Tephritids and
Drosophilids and serve as a foundation for developing
new control techniques for pestiferous true fruit flies.

Methods

Bactrocera dorsalis colony rearing and stage collections
Bactrocera dorsalis eggs used in this experiment were
obtained from the USDA-ARS-Pacific Basin Agricultural
Research Center research colony "Punador” (Hilo, HI, USA)
maintained on conventional mill feed diet [29]. This colony
is derived from wild flies collected in Puna, Hawaii in 1984
and has since been maintained in the laboratory on artificial
diet. These eggs were transferred to liquid based artificial
diet [30,31] and insects reared to obtain a collection
of samples representing the entire life cycle of this insect.
Typically, when reared on artificial diet in colony, eggs
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Table 3 Classification of transcripts annotated as
transcription factors

Number of
transcripts

Transcription factor
domain class

Relative percentage of
total TF trascripts
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Table 4 Distribution of detoxification annotations in B.
dorsalis transcriptome including cytochrome P450,
glutathione S-transferases, and UDP-
glucuronosyltransferases

Zinc finger 330 26.1
Homeobox 64 5.1
Helix-loop-helix 55 44
BTB/POZ 44 35
Bzip 39 3.1
Myb 24 19
WD40 19 15
Basal TFs 18 14
Fork-head 18 14
Bromodomain 15 1.2
Helicase 13 1.0
other 625 494
Total 1264 100.0

Distribution of transcription factors. The eleven most abundant domain classes
are listed, but 305 unique domains in total were identified. Transcripts
belonging to classes not specifically listed were identified by fewer than 13
unique transcripts and pooled into the “other” category.

take approximately 1-3 days to hatch; insects stay in the
larval stage 8—10 days, are in pupal stage for 10 days, and
survive as adults for several weeks. Maturation of adults
takes approximately 7 days, and adults begin mating after
that time. Samples were collected in the following manner
in order to produce RNA samples that are representative
of an entire life stage, rather than just a single point in
time during development.

Fresh eggs from colony flies were maintained at room
temperature for 3 days until complete hatch. During that
time, a daily sample of eggs was taken. The samples were
snap frozen in liquid nitrogen and then stored at —-80°C.
After hatch, 12 separate containers of liquid artificial diet
were set up with larvae, maintained at room temperature,
and each day for 10 days one container was used to collect
larvae. Liquid diet containing larvae was strained through
a mesh sieve and larvae were quickly rinsed in distilled
water. Larvae were then collected in microfuge tubes and
snap frozen in liquid nitrogen and stored at —80°C. The
larvae in the remaining two containers were allowed to
pupate following standard methods. Pupae were collected
and daily pupal samples were collected for 10 days; each
day pupae were snap frozen and stored. Adult cages with
sugar water and torula yeast were then set up with mature
pupae, and adults were allowed to emerge following
standard protocols [32]. At this time, adults were sexed
and males and females separated. Daily collections of
virgin males and females were made for 7 days and
samples immediately snap frozen. After that time,
males and females were combined into a single cage

Gene class Family Number found in
B. dorsalis®

P450s  P450 monooxygenases CYPIV 21
CYPIII 1
CYPIX 2
CYPVI 29
CYPXII 1
CYPXLIX 1
CYPXVIII 1
CYPXXVIII 2
CypCcd 1
CYpCCClll 1
CYpCCav 2
CYPCCCIX 4
Cypccev 1
CYPCCCVI 1
CYpPCCCVII 1
CYPCCCX 1
CYPCCCXI 1
CYPCCCXII 6
CYPCCCXIV 1
CYPCCCXV 1
CYPCCCXVII 1
CYPCCCXVIII 2

GSTs glutathione S-transferases 34P

UGTs  UDP-glucuronosyltransferases 23

“Breakdown of individual unigenes annotated to each class available in
Additional file 4.

BFor GSTs, 4 contained only N-terminal domains, 4 only C-terminal domains
and 26 genes encompassed both domains.

for mating. Mating cages were carefully observed and
mated females were identified, collected, and frozen.

RNA extraction and sequencing

Total RNA was extracted from each collection day
spanning from egg to adult using the Qiagen RNeasy
Plus Mini Kit (Qiagen Inc., Valencia, CA) following
the manufacturer’s procedures with the following modifi-
cations. Approximately 30 — 50 mg of liquid nitrogen
snap-frozen tissue was placed in 600 ul Buffer RLT
with 1% p-mercaptoethanol and ground carefully with
disposable micropestel in a microfuge tube. This solution
was then passed through a QIAshredder column and then
through a gDNA Eliminator column. In addition, before
final elution, on column RNase-Free DNase treatment
was performed to ensure full removal of genomic DNA
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from sample. RNA concentration and quality was assessed
using a Qubit fluorometer (Invitrogen Corp., Carlsbad,
CA, USA) as well as an Agilent 2100 Bioanalyzer (Santa
Clara, CA, USA) following standard protocols. From these
RNA extractions, stage-specific samples were created by
pooling intra-stage samples at an equal concentration
ratio. In total, six stage-representative samples were
collected representing egg, larval, pupal, adult male,
adult female, and mated adult female stages. Each of these
total RNA samples was prepared for sequencing using the
TruSeq RNA Sample Preparation Kit (Illumina Inc., San
Diego, CA, USA) and sequenced on an Illumina GAIIx to
produce approximately 14 — 20 million 2 x 101 bp PE
reads per sample library.

Raw read quality filiter, in silico library normalization and
de novo transcriptome assembly

Pre-filtering the reads for quality is critical to obtaining
a high quality assembly and produce accurate RNA-Seq
expression data. Reads were filtered that contained a
Phred score below 20 across more than 20% of the
bases using the fastx-toolkit fastq_quality_filter script
(http://hannonlab.cshl.edu/fastx_toolkit/commandline.
html). These quality-filtered reads were then normalized
to reduce redundant read data and discard read errors
using Trinity's normalize_by_kmer_coverage.pl script with
a kmer size of 25 and maximum read coverage of 30. The
resulting normalized reads were used to create a de novo
transcriptome assembly using the Trinity de novo tran-
scriptome assembly pipeline (r2012-10-05) [19,33]. The
Trinity pipeline (Inchworm, Chrysalis, and Butterfly)
was executed using default parameters, implementing
the —REDUCE flag in Butterfly and utilizing the Jellyfish
k-mer counting approach [33]. Assembly completed in
3 hours and 13 minutes on a compute node consisting of
32 Xeon 3.1 GHz cpus and 256 Gb of RAM available to
the software on the USDA-ARS Pacific Basin Agricultural
Research Center Moana computer cluster (http://moana.
dnsalias.org).

Assembly filtering and gene prediction

The output of the Trinity pipeline is a fasta formatted
file containing sequences defined as a set of transcripts,
including alternatively spliced isoforms determined
during graph reconstruction in the Butterfly step. These
transcripts are grouped into gene components, which
represent multiple isoforms across a single unigene model.
While many full-length transcripts are expected to be
present, it is likely that the assembly also consists of
erroneous contigs, partial transcript fragments, and
non-coding RNA molecules. This collection of sequences
was thus filtered to identify contigs containing full or near
full-length transcripts or likely coding regions and
isoforms that are representative at a minimum level
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based off of read abundance. Pooled non-normalized
reads were aligned to the unfiltered Trinity.fasta transcript
file using bowtie 0.12.7 through the alignReads.pl script
distributed with Trinity. Abundance of each transcript was
calculated using RSEM 1.2.0 utilizing the Trinity wrapper
run_RSEM.pl [13,34]. Through this wrapper, RSEM read
abundance values were calculated on a per-isoform and
per-gene basis. In addition, the percent composition of
each transcript component for each gene is calculated.
From these results, the original assembly file produced by
Trinity was filtered to remove transcripts that represent
less than 1% of the RSEM based expression level of its
parent gene or transcripts with TPM (Transcripts per
Million) value below 0.5. This filter set discarded is
referred to as "transcripts filtered: low abundance" in
figures and tables and the retained transcripts used as
input for further filtering.

Coding sequence was predicted from the filtered
transcripts using the transcripts_to_best_scoring ORFs.pl
script distributed with the Trinity software from both
strands of the transcripts. This approach uses the software
Transdecoder (http://transdecoder.sourceforge.net/) which
first identifies the longest open reading frame (ORF) for
each transcript and then the 500 longest ORFs are used to
build a Markov model against a randomization of these
ORFs to distinguish between coding and non-coding
regions. This model is then used to score the likelihood of
the longest ORFs in all of the transcripts, reporting only
those putative ORFs which outscore the other reading
frames [13]. Thus, the low abundance filtered transcript
assembly was split into contigs that contain complete
transcripts (Retained: Full Length ORF), contigs containing
transcript fragments with predicted partial ORF (Retained:
Partial ORF) and contigs containing no ORF prediction
(Transcripts filtered: non-coding). The resulting retained
transcript sets (partial and full) were merged and subjected
to annotation and utilized in subsequent analysis. In
addition, sequence length and read count histograms were
created for each of the four filter categories described above
to help visualize the effect of filtering on retention of
transcripts (Figure 1A-B).

Gene annotation

The filtered transcripts were annotated using the
UniProtKB/Swiss-Prot database, Pfam-A, eggNOG, and
gene ontology utilizing the Trinotate annotation pipeline. In
addition, homologous proteins in Drosophila melanogaster
were identified. The filtered transcript set was first subjected
to blastp search against the UniProtKB/Swiss-Prot database
using blast-2-2-26+ with an e-value cutoff of 1.0E-5. In
addition, protein domains were identified through searching
the Pfam_A database using HMMER 3.0. Signal peptides
and transmembrane domains were annotated with SignalP
4.1 and TMHMM 2.0 respectively. The resulting outputs
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were loaded into a Trinotate database, where eggNOG and
Gene Ontology terms were annotated and the resulting
annotation set was exported as a delimited file for
further analysis (Additional file 6). In addition, transcripts
were subjected to BLASTx search against the current D.
melanogaster protein set (Flybase.org, Dmel-r5.44) and
uniref90 using an e-value cutoff of 1.0E-5 to identify
homologous genes [35]. In addition, percent align-
ment length of the query transcript against the top D.
melanogaster alignment was calculated and binned for
each filtering category and plotted (Figure 1C). To further
define putative orthologs to D. melanogaster proteins,
reciprocal BLASTp alignment was performed between
protein sequences in the B. dorsalis transcriptome
assembly and all known D. melanogaster proteins.
Putative orthologs were defined only when reciprocal
top scoring hit (at unigene/gene level) between both
searches were the same and were unique. This yielded
5,681 unigenes orthologous with D. melanogaster genes.
An additional 4,186 unigenes were members of a reciprocal
hit that was not unique, with multiple unigene/genes
having equal score. These were not included as putative
orthologs, as they may represent paralogous proteins or
other situations without a 1:1 relationship, and thus this is
a conservative, yet largely accurate analysis [36]. Putative
orthologs are presented in Additional file 7, as a cross
reference between flybase gene ID and B. dorsalis unigene
identifier. The resulting annotated transcriptome
was converted to Genbank .tbl format using a beta-
release of the Genome Annotation Generator (http://
genomeannotation.github.io/GAG/) and transvestigator
(http://genomeannotation.github.io/transvestigator/) and
submitted to NCBI under Transcriptome Shotgun
Assembly (TSA) GAKP00000000 associated with
Bioproject 167923.

Read library mapping and expression analysis

Because the Trinity assembler is able to accurately predict
splice isoforms, gene and isoform expression quantification
was performed using the RSEM (RNA-Seq by Expectation
Maximization) software package (v1.1.15) which is particu-
larly well suited to work with multiple isoforms where the
same read may map to multiple sequences [34]. The filtered
transcript set from Trinity was used for analysis that only
contained contigs containing likely coding sequence (full
and partial ORFs) to avoid skewing expression quantifica-
tion results with non-coding and fragmented data. Quality
filtered reads from each sequencing library (egg, larvae,
pupae, adult male, adult female, mated adult female) were
independently mapped to the reference transcriptome as-
sembly created by Trinity using bowtie (v 0.12.7) [37] using
the alignReads.pl script distributed with Trinity. The result-
ing bam formatted mapping files were sorted and used to
produce fragment abundance estimation by RSEM [34].
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Transcript abundance values were produced as expected
read count, and they were normalized using trimmed
mean of M values (TMM) methods and transformed into
fragments per feature kilobase per million reads mapped
(FPKM) for each gene and the individual isoforms that
compose each gene for each developmental library using
scripts provided by Trinity [38,39]. These TMM normal-
ized FPKM values were appended to the annotation infor-
mation, and binned into expression level categories based
off of FPKM values (No Expression, very low, low, moder-
ate, moderately high, high, very high, and extremely high)
following the approach and nomenclature used to describe
modENCODE expression data in FlyBase2012_06 (David
Emmert and William Gelbart, personal communication)
(Figure 4, Additional file 1) [14,35,40]. TMM normalized
FPKM values were also used to create a dissimilarity
matrix based on Euclidean distance utilizing the dist func-
tion in R and this matrix was used to perform cluster ana-
lysis using the complete agglomeration method in the
hclust R function. These clusters and the TMM normal-
ized FPKM values were used to create a heatmap of ex-
pression levels sorted by both transcript and sample
clusters utilizing the R enhanced heatmap (heatmap.2)
function. Each cluster in the expression heatmap describes
a different developmental expression pattern shared by all
genes present in that cluster. Both TMM normalized and
read count matrices are available under the NCBI Gene
Expression Omnibus (GEO) under accession GSE46310
associated with BioProject PRINA198716.

Additional files

Additional file 1: Expression categories across developmental
stages for unigenes. An XLSX file based off of modENCODE expression
categories, listing all unigenes and if they are constitutively expressed, or
expressed only during certain developmental stages.

Additional file 2: Unigene expression matrix of major clusters in
Figure 4. An XLSX file containing individual tabs for each cluster present
in Figure 4 (clusters A-S). Each cluster specific matrix contains the unigene
identifiers present in the cluster and the log2(median centered FPKM values)
across the 6 developmental stages.

Additional file 3: List of unigenes outside of confidence interval in
regression analysis between expression levels of putative orthologs
between B. dorsalis and D. melanogaster.

Additional file 4: Unigenes associated with detoxification. An XLSX
file containing unigenes annotated as relating to detoxification in B. dorsalis.

Additional file 5: Transcripts associated with sex determination
identified in B. dorsalis. An XLSX file containing results from
comparative analysis of sex determination genes in B. dorsalis utilizing
putative orthologs identified in D. melanogaster.

Additional file 6: Functional annotation table of peptide sequences
from predicted open reading frame of transcripts. Tab delimited text
file containing annotations associated with peptide sequences of each
transcript associated with unigene components. Includes top blast hit
against UniProtKB/SwissProt, Pfam domains, results from SignalP and
TmHMM analysis and COG and GO terms associated with the sequence.

Functional annotations were also submitted with the NCBI TSA submission.
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Additional file 7: Putative orthologous genes/unigenes between

D. melanogaster and B. dorsalis. An XLSX file containing B. dorsalis
unigene identifier and D. melanogaster Flybase gene ID (FBgn##ti ).
First tab presents putative orthologs as defined as reciprocal best unique
blast hit, and second tab presents unigenes with top scoring hit, but not
considered orthologous due to multiple top scoring unigenes/genes
(non-unique hit).
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