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Diffusion of innovation can be interpreted as a social spreading phenom-

enon governed by the impact of media and social interactions. Although

these mechanisms have been identified by quantitative theories, their role

and relative importance are not entirely understood, as empirical verification

has so far been hindered by the lack of appropriate data. Here we analyse a

dataset recording the spreading dynamics of the world’s largest Voice over

Internet Protocol service to empirically support the assumptions behind

models of social contagion. We show that the rate of spontaneous service

adoption is constant, the probability of adoption via social influence is line-

arly proportional to the fraction of adopting neighbours, and the rate of

service termination is time-invariant and independent of the behaviour of

peers. By implementing the detected diffusion mechanisms into a dynamical

agent-based model, we are able to emulate the adoption dynamics of the ser-

vice in several countries worldwide. This approach enables us to make

medium-term predictions of service adoption and disclose dependencies

between the dynamics of innovation spreading and the socio-economic

development of a country.
1. Introduction
Diffusion of news, ideas and innovations as well as the distribution of services

and products are all examples of social spreading phenomena that have become

an integral part of our everyday life, strongly accelerated by novel, Web-based

interaction channels. These innovations serve as an engine of economic devel-

opment [1], but only their diffusion throughout society brings them to

success. The processes involved in innovation spreading have been the focus

of research for decades [1–4], yet their dynamics and modelling have remained

as challenges to our scientific understanding.

The propagation of innovations takes place in a social network [2–5] and is

driven by the entanglement of individuals’ decision-making processes [6] as

well as by the influence of media and social interactions [7,8]. Although the

effects of network structure on contagion processes have recently been shown

to be important [9], knowledge about the social network itself is rather limited

as its structure and dynamics usually remain hidden. In this respect, the digital

age has opened up unprecedented opportunities, as online social networks and

Voice over Internet Protocol services record detailed information of the connec-

tions and activities of their users. These services partially decode the underlying

social structure by acting as proxies for the network of real social ties between

individuals, and also provide accurate records of the users’ adoption behaviour.

In this way, the different sources of influence on the decisions of an individual

immersed in a perpetually changing environment of social interactions become

traceable. We are therefore encouraged to devise dynamic agent-based models
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Figure 1. Sample of the aggregated Skype network of Switzerland. (a,d ) Snowball sample (maximum distance from seed d ¼ 4) where user accounts and con-
firmed links between them are shown for two intermediate times in the adoption process. Nodes are coloured according to their adoption state: grey for future
users, orange for current adopters and purple for terminated accounts (corresponding to states S, A and R in our compartmental model). A link has one of these
colours if the states of the connected nodes are equal and is grey otherwise. (b,c,e,f ) Decomposed networks for adoption (b,e) and termination (c,f ). Nodes have the
same colours as before but are shaded depending on their action (dark for spontaneous action and light for peer-pressure action). Only links connecting nodes with
equal states are shown. The termination network has a larger fraction of dark nodes than its adoption counterpart, meaning that social interactions affect adoption
more than termination.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140694

2

to describe, simulate and even predict emergent behaviour of

such social contagion phenomena [10–12].

These phenomena are identified as complex contagion pro-
cesses when the exposure of an individual is conditional on

the decision of a fraction of its peers [13]. This is particularly

different from simple spreading processes, where a rate determines

the transmission of infection between nodes and one infected

neighbour is always sufficient to expose a susceptible node

[9,14]. Complex contagion phenomena are commonly modelled

by processes where the fractions of adopting neighbours

necessary for exposure are set as individual thresholds. This

idea was first introduced by Granovetter [15] who discussed

the ideal network structure and threshold distribution to

allow for the evolution of riots or other collective movements.

Subsequently, Watts [16] proposed a simplistic model to explore

sufficient structural and threshold conditions for the evolution

of global adoption cascades. During the last 10 years, several

studies contributed to the foundations of complex contagion

[16–21], and in addition online experiments were carried out

to provide empirical evidence about the effect of social influ-

ence [22,23]. Beyond the conventional threshold mechanism,

the effect of homophily [5,20,24] and the role of external

media influence [3] were also investigated recently.

Here, we study one of today’s largest online communi-

cation services, the Skype network, with over 300 million

monthly connected users [25]. Data cover the history of indi-

viduals that adopted Skype from September 2003 until March

2011 (i.e. 2738 days), including registration events and contact

network evolution for every registered user around the

world. For our investigation, we select user accounts with

an identified country of registration and consider only their

mutually confirmed connections, both within the country

and abroad. To receive the best estimation of node degrees
in the underlying social network, we integrate the evolving

Skype network for the whole available period and count the

number of confirmed relationships per node (including inter-

national ties). The adoption dynamics of a given country can

be directly observed by assigning times of adoption (ta) and

termination (tt) to all the accounts. These are, respectively,

defined as the dates of registration and last activity (as regards

to any of the services) in Skype. Explicitly, we identify any

account as terminated if its last activity happened earlier

than 1 year prior to the end of the observation period. In this

way, we are able to build a complete adoption and termination

history of Skype for 2373 days. As an illustration of the adop-

tion process, in figure 1a,d we show a sample of the contact

network of Switzerland for two intermediate times (for further

details of the dataset, see the electronic supplementary

material, §S1).

Taking advantage of this large digital dataset, our goal is

to fill the persisting gap between real observations and the

assumptions made in models of product adoption spreading

in techno-social networks. We empirically study the assump-

tions borrowed from conventional models of complex

contagion and analyse the crucial effect of social influence.

Finally, we introduce an agent-based model that combines

the detected diffusion mechanisms and provides plausible

medium-term predictions for the spreading of online inno-

vations in several countries worldwide.
2. Results
2.1. The adoption dynamics
The spreading of the online service is determined by compet-

ing processes of adoption and termination as described by
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Figure 2. Empirical rates and probabilities for Switzerland. (a) Thin curves denote empirical rates of adoption [Ra(t)], termination [Rt(t)] and net adoption [Rn(t)],
while symbols are their corresponding binned values. A binned data point in [2T, 3T ] has been removed due to systematic bias in Rt(t) caused by a major software
update during this period. A shaded (white) area indicates the training ( predicted) period for the theoretical fit of our model, drawn as thick lines with the same
colours as the empirical rates. (b) Probabilities of spontaneous [ pa(t)] and peer-pressure [ pp(t)] adoption per unit time. (c) Average conditional probability of
adoption as a function of the fraction of adopting neighbours n, measured in the original data [ p(n), solid circles] and in the shuffled data corresponding to
the null model [ prand(n), open circles]. Inset shows the unbiased difference Dp(n) ¼ p(n) 2 prand(n) (symbols) and a fitted linear function (continuous line).
(d ) Probabilities of overall termination [ p�(t)], and of spontaneous [ p�a (t)] and peer-pressure [ p�p (t)] termination per unit time. The inset depicts a zoom
from time 2T onwards. T, r and c are arbitrary linear scaling constants, with time dimensions for T. Black lines in panels (b,d ) are fitted constants.
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the evolution of the corresponding rates Ra(t) and Rt(t),
which measure the fraction of all users that adopt or termi-

nate the service in a given time window Dt (figure 2a).

These simple rate functions already disclose interesting fea-

tures of the adoption dynamics, as their overall growth

signals continuously accelerating processes of adoption and

termination. Yet the actual time evolution of spreading ser-

vice is better characterized by the net adoption rate Rn(t) ¼
Ra(t) 2 Rt(t) (for an overview of all empirical quantities, see

table 1).

Opening a user account constitutes a single event in

the decision-making process of an individual that is triggered

by spontaneous decisions, by the influence of media or by the

social environment [5,16]. On the other hand, users may termi-

nate their accounts for several reasons including vanishing

demand or dissatisfaction, by switching to another product

permanently or by simply abandoning the service with a

chance of re-adoption (e.g. due to loss of password or inten-

tion for lower monitoring). Some of these processes are

observable by investigating the data. An example is shown

in figure 1, where the contact network of Switzerland is further

decomposed into sub-networks of adopted and terminated

users. In the former, some nodes appear disconnected,

which indicates individuals that have adopted Skype prior

to their friends. This so-called spontaneous adoption, where

individual factors and external media play a role, is a typical

adoption pattern in the beginning of the process (figure 1b).

Alternatively, at the time of adoption many nodes have neigh-

bours who are already existing users, a common pattern for
later times (figure 1e). This second scenario of peer-pressure
adoption indicates the possible influence of the social environ-

ment. By contrast, the termination network consists mostly of

single nodes at all times (figure 1c,f), meaning that these users,

although they are surrounded by adopters, decide indivi-

dually to terminate. This observation suggests a negligible

effect of social influence on termination.
2.2. Mechanisms of adoption
An analysis of the evolving network structure around a given

user can help us to detect whether an ego adopted or terminated

the product before any of its neighbours did; or else followed the

decisions previously made by a fraction of them. In this way, we

can label the performed action as either spontaneous or driven

by peer pressure. To define the related measures, we consider

the underlying social network as static, meaning that its evol-

ution requires a much larger temporal scale than the adoption

process itself. This static structure is defined as the aggregated

social network of Skype at the end of the recorded period and

provides a lower estimate for the total number of friends of

each individual. Moreover, we assume that the maximum size

of the static social network is the number I of Internet users in

a given country at the end of the observation period [26], and

thus define I 2 Na(t) as the population that has not yet adopted

Skype at time t.
Under these assumptions, the probabilities per unit time

that a user adopts either spontaneously or due to peer



Table 1. Data and model quantities, including notation and a brief description of their meaning. Groups correspond to: quantities measured in both the data
and model; empirical quantities; parameters used by the model; and parameters estimated from the data.

quantity description

data/model quantities

Ra(t), Rt(t) fraction of all users that adopt/terminate the service in a time window

Rn(t) ¼ Ra(t) 2 Rt(t) net rate of adoption

empirical quantities

ta, tt time of adoption/termination of service for a user

t{ ¼ tt � ta lifetime of a user account in the service

Dt time window used to define rates

I number of Internet users in a country at the end of observation period

Na(t) number of service users at time t

pa(t), pp(t) rate of spontaneous/peer-pressure adoption at time t

p�a (t), p�p (t) rate of spontaneous/peer-pressure termination at time t

p�(t) ¼ p�a (t)þ p�p (t) rate of termination at time t

p(n) probability that a user adopts, if a fraction n of its neighbours are adopters

prand(n) value of p(n) after shuffling adoption times

Dp(n) ¼ p(n) 2 prand(n) unbiased measure of social influence in adoption

t inverse speed of innovation diffusion

model parameters

pa, pp constant probability of spontaneous/peer-pressure adoption

ps, pr constant probability of temporary/permanent termination

kkl average degree of network

ppk ¼ pp(kkl� 1)=kkl peer-pressure adoption probability, weighted by degree

estimated parametersfkkl, fp� estimates of average degree and asymptotic rate of termination

eps ¼ (fp� � pr)=(1� pr) estimate of temporary termination probability

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140694

4

pressure are defined as

pa(t) ¼ #ad(tþ DtjSF ¼ 0)

I �Na(t)

and pp(t) ¼ #ad(tþ DtjSF = 0)

I �Na(t)
,

9>>>=
>>>;

(2:1)

where #ad(tþ DtjSF ¼ 0) [#ad(tþ DtjSF = 0)] is the number

of users who adopt the service in a time window Dt, under

the condition that their number of adopting neighbours at

time t is SF ¼ 0 (SF = 0). In a similar fashion, the probabil-

ities per unit time that a user terminates the service either

spontaneously or due to peer pressure are

p�a (t) ¼ #tr(tþ Dt, TF ¼ 0)

Na(t)

and p�p (t) ¼ #tr(tþ Dt, TF = 0)

Na(t)
,

9>>>=
>>>;

(2:2)

where TF stands for the number of neighbours of a user that

have terminated usage up to time t (for a discussion on the

restrictions of these empirical quantities, see the electronic

supplementary material, §§S2.1–S2.4).

The data show that after an initial, transient period, the rate

of spontaneous adoption pa(t) (figure 2b) and the rate of ter-

mination p�(t) ¼ p�a (t)þ p�p (t) (figure 2d) become constant

apart from small fluctuations. The same holds separately for
the rates of spontaneous [p�a (t)] and peer-pressure [p�p (t)] ter-

mination. The time invariance of these rates is an obvious

assumption for most biological epidemics, which, however,

has never been empirically shown before in the case of social

contagion phenomena, despite its wide use [27,28]. Our results

provide the first validation of this quite fundamental assump-

tion used in the conventional modelling of social spreading

processes, where probabilities analogous to the ones described

here are treated like constants at the outset.

When the ego is not the first adopter among neighbours,

the rate pp(t) of adoption via peer pressure is not constant but

increases with time (figure 2b). This is mainly due to social

influence arising from the user’s social circle. An appropriate

way to quantify such effects is to measure the conditional

probability p(n) of adoption provided that a fraction n of

the ego’s neighbours have adopted the product before as

p(n) ¼ #ad(n)

N �
Pm,n

m¼0 #ad(m)
: (2:3)

Here, the numerator counts the number of users with a

fraction n of adopter friends at the time of adoption, while

the denominator is the number of people with a larger or

equal fraction m � n, i.e. all individuals who had the chance

to adopt Skype while having a fraction n of adopter neigh-

bours (for further details, see the electronic supplementary
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material, §S2.3). We observe that the probability p(n) is mono-

tonically increasing (figure 2c), an empirical finding in

agreement with the assumptions of several threshold models

for epidemic spreading and social dynamics [16,29–31].

However, as we cannot see the entire social network (only

the part uncovered by the Skype graph), this probability is

biased as n! 1. To estimate such bias, we build a reference

null model by shuffling the adoption times of all accounts and

measuring the corresponding conditional probability prand(n)

for this system. The shuffling procedure removes the effect of

social influence but conserves the adoption rates and keeps

the social structure unchanged. In other words, the reference

probability is biased in the same way as the original measure-

ment, but is not driven by social influence as all such

correlations have been removed by the shuffling. Consequently,

the difference Dp(n) ¼ p(n) 2 prand(n) quantifies the effect of

social influence in the adoption process (inset of figure 2c):

Dp(n) increases approximately in a linear fashion with the frac-

tion of adopting neighbours. This observation is in agreement

with previous studies where a similar scaling of social influence

has been recognized through small scale experiments [22],

data-driven observations [20] and modelling [29,32].

2.3. The model process
The analogy between epidemic spreading and social conta-

gion has been widely used to model various societal

diffusion processes [11,14,33,34]. Here, we take this approach

to build a compartmental model based on the identified

mechanisms in Skype usage, aimed at a generic description

of the large-scale adoption dynamics of technological inno-

vations. We depict individuals as agents in one of three

non-overlapping states, susceptible (S), adopter (A) and

removed (R), describing people who may adopt the product

later, are users already, and will never use it again. In accord-

ance with our observations, the behaviour of an agent can be

characterized by four elementary processes. (a) Spontaneous
adoption, influenced by individual factors or external media

independently of the social network. This is certainly the

dominant mechanism for agents with no user neighbours at

the time of adoption. (b) Peer-pressure adoption, an intrinsic

social effect implemented here by making use of the observed

linear scaling of the probability p(n). (c) Temporary termination,

describing the case in which agents stop usage with a chance

of re-adoption. (d) Permanent termination, when users aban-

don the service altogether. The flow S! A is regulated by

processes (a) and (b), A! S by (c), and A! R by (d). Finally,

we assume that the underlying social network evolves with a

much longer time scale than the ongoing adoption process, so

that its structure may be considered static with fixed size.

For large systems, the modelled adoption process can

be well characterized by a rate equation formalism using

the heterogeneous mean-field approximation [9,35] (see

appendix A). This approach takes agents with identical

degree to be statistically equivalent and ignores fluctuations

in their dynamical properties. Thus, assuming no degree–

degree correlations in the network, the adoption dynamics

is reduced to the following system of nonlinear ordinary

differential equations:

da
dt
¼ [ pa þ p pk(1� pa)a]s� [ pr þ ps(1� pr)]a, (2:4)

ds
dt
¼ �[pa þ ppk(1� pa)a]sþ ps(1� pr)a (2:5)
and
dr
dt
¼ pra, (2:6)

where s(t), a(t) and r(t) are the average probabilities that an

agent is in state S, A or R, respectively, and satisfy the nor-

malization condition s(t) þ a(t) þ r(t) ¼ 1. The elementary

mechanisms (a–d) are parametrized through the constant

probabilities of spontaneous ( pa) and peer-pressure ( pp)

adoption, and of temporary ( ps) and permanent ( pr) termin-

ation (for an overview of all model parameters, see table 1).

Under the above conditions, the model does not depend on

the degree distribution of the social network, as pp appears

only in the weighted form p pk ¼ pp(kkl� 1)=kkl, with kkl
the average degree of the network. Moreover, for large kkl,
the model becomes independent of this quantity as ppk � pp.

The system (2.4)–(2.6) finally allows us to write the theoretical

rates of adoption and termination as

Ra(t) ¼ [ pa þ p pk(1� pa)a]s (2:7)

and

Rt(t) ¼ [pr þ ps(1� pr)]a, (2:8)

that is, the gain and loss terms in equation (2.4) (detailed

derivation in the electronic supplementary material, §S3).

In order to measure the effect of degree–degree corre-

lations on the spreading dynamics, we perform data-driven

simulations by evaluating the model process over the inte-

grated Skype network of a country (figure 3a). While this

empirical network retains its full topological complexity (in

terms of real community structure, assortativity, etc.), we con-

sider a model scale-free network [36] of the same size and

average degree as a control case. We then run the model pro-

cess over the empirical and control networks and compare

their corresponding rates of adoption and termination with

the mean-field prediction of equations (2.7) and (2.8). As the

average degree of the Skype network is not too small, devi-

ations of the simulated rates from the theoretical values are

not large, resulting in rates with the same qualitative behav-

iour. More interestingly, there is only a small discrepancy

between the rates of the empirical and control networks. This

suggests that topological correlations have a minor slowing-

down effect on the spreading dynamics, and thus play a negli-

gible role in the overall rates of the adoption process. Note that

a similar independence of the population structure has been

observed earlier in controlled experiments of networked

public goods games [24] and a spatial Prisoner’s Dilemma

[37]. These observations validate retrospectively the theoretical

considerations mentioned above, where we have assumed the

background social network to be uncorrelated.

2.4. Validation and socio-economic correlations
In order to validate our model process, we compare the theor-

etical rate functions of equations (2.7) and (2.8) with the

empirical data by estimating some of the model parameters.

An estimate fkkl for the average degree of the social network

can be obtained from the fully aggregated Skype net-

work of a country, if we consider the ego-network of each

user with international links included. The estimated rate of

termination, fp�, can be measured from the long-time behav-

iour of the spreading process (figure 2d ) and then used to fix

ps to the value fps ¼ (fp� � pr)=(1� pr), where pr is a free par-

ameter. While pa could also be measured directly (by

counting adoption events where no user neighbours are
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present at the time), the observation time of the dataset is

not sufficiently long to estimate a constant value fpa in all

countries. Therefore, we leave pa, pp and pr as free quantities

to be fitted (estimation of pa for selected countries in the

electronic supplementary material, §S4).

Overall, the model dynamics is characterized by

{ pa, pp, pr, fps, fkkl}, a set of three free parameters and two

estimated quantities. The free parameters are used to simul-

taneously fit the model rates on the binned empirical rates

Ra(t), Rt(t) and Rn(t), by means of a bounded nonlinear

least-squares method. To ascertain the predictive power of

our model, we fit over a 5-year training period and look for

predictions in the last 1.5 years (figure 2a). Such prognosis

can be quantified by comparing the average rates provided

by the model with their corresponding empirical values

during the final six months of observation. After repeating

the calculations for 34 different countries (with diverse

levels of technological development), the related values of

the final empirical and modelled rates all collapse close to a

line with unit slope (figure 3b,c), thus validating our model

for the studied adoption process.
Our model may also be used to disclose relevant differences

between the adoption dynamics of countries at various levels of

societal and economical development. One characteristic indi-

cator is the inverse speed of innovation diffusion, defined as

the time t when the theoretical Rn(t) is maximal (see the elec-

tronic supplementary material, §S3.4). If we relate t with one

of the standard measures of economical development, gross

domestic product (GDP) per capita (the GDP dollar estimates

used in our study are derived from purchasing power parity

calculations using World Bank data, 2011; www.worldbank.

org), large differences emerge between countries (figure 4a).

Specifically, the larger the GDP of a country, the faster the

adoption process is in its society. Another way to characterize

the adoption dynamics is through the average account lifetime,

kt{l ¼ ktt � tal, where ta and tt are the corresponding regis-

tration and termination times. We relate this empirical

measure to its theoretical analogue, the inverse probability of

termination 1=fp� obtained from the fitted model process

(figure 4b). Their correlation indicates that our model captures

this dynamical property correctly. Moreover, the typical dur-

ation of user engagement uncovers clusters of countries at

http://www.worldbank.org
http://www.worldbank.org
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different levels of socio-economic development. This can be

better understood by linking kt{l with general civil liberty

measures [38] (figure 4c). We observe that the weaker the

press liberty is in a country, the shorter the time online accounts

are used there (other liberty measures in the electronic sup-

plementary material, §S4.3). Such observations indicate a

quantifiable dependence between the dynamics of innovation

spreading and the socio-economic status of a country.
3. Discussion
Our analysis of one of the largest online communication ser-

vices worldwide aimed at clarifying several long-standing

questions about the spreading mechanisms of novel technol-

ogies. We have shown that innovation diffusion can be

interpreted as a competition between service adoption and

termination; a process characterized, after a transition time,

by constant rates and by a linearly increasing influence of

user neighbours on service adoption. In addition, we have

integrated the identified mechanisms into a minimal model-

ling framework that provides accurate medium-term

predictions for the spreading of an online service.

It should be pointed out that this study has some limitations.

First, the complete structure of society cannot be mapped by

using online interactions only, as observations taken from any

online social network underestimate the real number of contact

peers of an ego. This incompleteness allows us only to estimate

effective degrees and adoption thresholds. Second, the obser-

vation of correlated adoption does not necessarily imply the

presence of actual social influence, only its possibility; even

more so since other mechanisms like homophily cannot be syn-

thesized from this dataset. Despite these limitations, the

presented results provide strong evidence of key mechanisms

driving the complex contagion of online technologies, up to a

level of detail and scale that has not been possible before.

These results may help fill an enduring gap between the

theoretical understanding and the empirical observation of

social contagion phenomena, validating several earlier

studies based on similar assumptions, like constant adoption
rates and the effect of social influence. In addition, we have

shown how the adoption of novel technologies is related to

the societal and economical development of a country.

Beyond the clear advantage of these observations for the

design of marketing and business plans, they also provide

further insight into the differences in the development of

modern online societies.
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Appendix A. Model description
For a static social network G with degree distribution rk, the

probability that individual i becomes a user is pþi ¼ paþ
pp(1� pa)ni with ni ¼ Ni/ki. Here, Ni is the number of neigh-

bours of i that have already adopted the product and ki its

degree. Furthermore, the probability that i stops being a user

is p�i ¼ pr þ ps(1� pr). In the thermodynamic limit, we

assume that all agents with the same degree are statistically

equivalent, allowing us to group individuals and write rate

equations for each degree class k. We denote by sk, ak and rk

the average probabilities that a randomly chosen agent with

degree k is susceptible, adopter and removed, respectively. A

first-order moment closure method leads to the rate equation

dak=dt ¼ kpþi lsk � kp�i lak. In other words, the average prob-

ability that an adopting agent becomes either removed or

susceptible is kp�i lak ¼ [pr þ ps(1� pr)]ak, while the average

probability that a susceptible individual adopts the product

is kpþi lsk ¼ [pa þ pp(1� pa)na]sk with na ¼ knil. This approxi-

mation ignores higher moments of the dynamical quantities

sk, ak and rk, as well as any correlations between them.

In the presence of degree–degree correlations in G, we have

na ¼
P

k0 (k0 � 1)rk0 ,kak0=k0, where rk0,k is the conditional

http://www.worldbank.org
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probability that an edge departing from an agent with degree k
arrives at an agent with degree k0. Similar rate equations can be

written for sk and rk, leading to a system of nonlinear ordinary
differential equations that determines adoption at the degree

class level (for further details, see the electronic supplementary

material, §S3).
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