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From automatic speech recognition to discovering unusual stars, underlying

almost all automated discovery tasks is the ability to compare and contrast

data streams with each other, to identify connections and spot outliers. Despite

the prevalence of data, however, automated methods are not keeping pace. A

key bottleneck is that most data comparison algorithms today rely on a

human expert to specify what ‘features’ of the data are relevant for comparison.

Here, we propose a new principle for estimating the similarity between the

sources of arbitrary data streams, using neither domain knowledge nor learn-

ing. We demonstrate the application of this principle to the analysis of data

from a number of real-world challenging problems, including the disambigua-

tion of electro-encephalograph patterns pertaining to epileptic seizures,

detection of anomalous cardiac activity from heart sound recordings and classi-

fication of astronomical objects from raw photometry. In all these cases and

without access to any domain knowledge, we demonstrate performance on a

par with the accuracy achieved by specialized algorithms and heuristics

devised by domain experts. We suggest that data smashing principles may

open the door to understanding increasingly complex observations, especially

when experts do not know what to look for.
1. Introduction
Any experienced data analyst knows that simply feeding raw data directly into a

data analysis algorithm is unlikely to produce meaningful results. Most data analysis

today involves a substantial and often laborious preprocessing stage, before stan-

dard algorithms can work effectively. In this preprocessing stage, data are filtered

and reduced into ‘features’ that are defined and selected by experts who know

what aspects of the data are important, based on extensive domain knowledge.

Relying on experts, however, is slow, expensive, error prone and unlikely

to keep pace with the growing amounts and complexity of data. Here, we pro-

pose a general way to circumvent the reliance on human experts, with relatively

little compromise to the quality of results. We discovered that all ordered

datasets—regardless of their origin and meaning—share a fundamental univer-

sal structure that can be exploited to compare and contrast them without a

human-dependent preprocessing step. We suggest that this process, which

we call data smashing, may open the door to understanding increasingly

complex data in the future, especially when experts cannot keep pace.

Our key observation, presented here, is that all quantitative data streams have

corresponding anti-streams, which in spite of being non-unique, are tied to the

stream’s unique statistical structure. We then describe the data smashing process

by which streams and anti-streams can be algorithmically collided to reveal differ-

ences that are difficult to detect using conventional techniques. We establish this

principle formally, describe how we implemented it in practice and report its per-

formance on a number of real-world cases from varied disciplines. The results

show that without access to any domain knowledge, the unmodified data smash-

ing process performs on a par with specialized algorithms devised by domain
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Figure 1. Data smashing: (a) determining the similarity between two data streams is key to any data mining process, but relies heavily on human-prescribed
criteria. (b) Data smashing first encodes each data stream, then collides one with the inverse of the other. The randomness of the resulting stream reflects
the similarity of the original streams, leading to a cascade of downstream applications involving classification, decision and optimization. (Online version in colour.)
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experts for each problem independently. For example, we ana-

lyse raw electro-encephalographic (EEG) data, and without any

domain knowledge find that the measurements from different

patients fall into a single curve, with similar pathologies clus-

tered alongside each other. Making such a discovery using

conventional techniques would require substantial domain

knowledge and data preprocessing (see figure 3a(ii)).

2. Anti-streams
The notion of data smashing applies only to data in the form of

an ordered series of digits or symbols, such as acoustic waves

from a microphone, light intensity over time from a telescope,

traffic density along a road or network activity from a router.

An anti-stream contains the ‘opposite’ information from the

original data stream and is produced by algorithmically invert-

ing the statistical distribution of symbol sequences appearing in

the original stream. For example, sequences of digits that were

common in the original stream will be rare in the anti-stream,

and vice versa. Streams and anti-streams can then be algorith-

mically ‘collided’ in a way that systematically cancels any

common statistical structure in the original streams, leaving

only information relating to their statistically significant

differences. We call this the principle of information annihilation.

Data smashing involves two data streams and proceeds in

three steps (see figure 1): raw data streams are first quantized,

by converting continuous value to a string of characters or
symbols. The simplest example of such quantization is where

all positive values are mapped to the symbol ‘1’ and all negative

values to ‘0’, thus generating a string of bits. Next, we select one

of the quantized input streams and generate its anti-stream.

Finally, we smash this anti-stream against the remaining quan-

tized input stream and measure what information remains.

The remaining information is estimated from the deviation of

the resultant stream from flat white noise (FWN).

As information in a data stream is perfectly annihilated by a

correct realization of its anti-stream, any deviation of the collision

product from noise quantifies statistical dissimilarity. Using this

causal similarity metric, we can cluster streams, classify them or

identify stream segments that are unusual or different. The algor-

ithms are linear in input data, implying they can be applied

efficiently to streams in near-real time. Importantly, data smash-

ing can be applied without understanding where the streams

were generated, how they are encoded and what they represent.

Ultimately, from a collection of data streams and their

pairwise similarities, it is possible to automatically ‘back

out’ the underlying metric embedding of the data, revealing

their hidden structure for use with traditional machine

learning methods.

Dependence across data streams is often quantified using

mutual information [1]. However, mutual information and

data smashing are distinct concepts. The former measures

dependence between streams; the latter computes a distance

between the generative processes themselves. For example,



rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140826

3
two sequences of independent coin flips necessarily have

zero mutual information, but data smashing will identify

the streams as similar because they originate in the same

underlying process—a coin flip. Moreover, smashing only

works correctly if the streams are generated independently

(see the electronic supplementary material, Section S-G).

Similarity computed via data smashing is clearly a function

of the statistical information buried in the input streams.

However, it might not be easy to find the right statistical

tool that reveals this hidden information, particularly without

domain knowledge, or without first constructing a good

system model (see the electronic supplementary material,

Section S-H, for an example where smashing reveals non-trivial

categories missed by simple statistical measures). We describe

in detail the process of computing anti-streams and the process

of comparing information. In the electronic supplementary

material, we provide theoretical bounds on the confidence

levels, minimal data lengths required for reliable analysis and

scalability of the process as a function of the signal encodings.

We do not claim strictly superior quantitative perform-

ance to the state-of-art in all applications; carefully chosen

approaches tuned to specific problems can certainly do as

well, or better. Our claim is not that we uniformly outperform

existing methods, but that we are on a par, yet do so without

requiring either expert knowledge or training examples.
3. The hidden models
The notion of a universal metric of similarity makes sense only

in the context of an approach that does not rely on arbitrarily

defined feature vectors, in particular where one considers pair-

wise similarity (or dissimilarity) directly between individual

measurement sets. However, while the advantage of consider-

ing the notion of similarity between datasets instead of

between feature vectors has been recognized [2–4], attempts

at formulating such measures have been mostly application

dependent, often relying heavily on heuristics. A notable

exception is a proposed universal normalized compression

metric (NCM) based on Kolmogorov’s notion of algorithmic

complexity [5]. Despite being quite useful in various learning

tasks [6–8], NCM is somewhat intuitively problematic as a

similarity measure; since even simple stochastic processes

may generate highly complex sequences in the Kolmogorov

sense [1], data streams from identical sources do not necess-

arily compute to be similar under NCM (see the electronic

supplementary material, Section S-I). We ask whether a more

intuitive notion of universal similarity is possible; one that

guarantees that identical generators, albeit hidden, produce

similar data streams. We show that universal comparison

that adheres to this intuitive requirement is indeed realizable,

and provably so, at least under some general assumptions on

the nature of the generating processes.

The first step in data smashing is to map the possibly

continuous-valued sensory observations to discrete symbols

via some quantization of the data range (see the electronic sup-

plementary material, Section S-C and figure S3). Each symbol

represents a slice of the data range, and the total number of

slices define the symbol alphabet S (where jSj denotes the

alphabet size). The coarsest quantization has a binary alphabet

(often referred to as clipping [6,9]) consisting of say 0 and 1 (it

is not important what symbols we use, we can as well rep-

resent the letters of the alphabet with a and b), but finer
quantizations with larger alphabets are also possible. A poss-

ibly continuous-valued data stream is thus mapped to a

symbol sequence over this pre-specified alphabet.

If two data streams are to be smashed, we need the symbols

to have the same meaning, i.e. represent the same slice of the

data range, in both streams. In other words, the quantization

scheme must not vary from one stream to the next. This may

be problematic if the data streams have significantly different

average values as a result of a wandering baseline or a definite

positive or negative trend. One simple de-trending approach is

to consider the signed changes in adjacent values of the data

series instead of the series itself, i.e. use the differenced or

numerically differentiated series. Differentiating once may not

remove the trend in all cases; more sophisticated de-trending

may need to be applied. Notably, the exact de-trending

approach is not crucially important; what is important is that

we use an invariant scheme and that such a scheme is a

‘good quantization scheme’ in the sense of detailed criteria

set forth in the electronic supplementary material, Section S-C.

The idea of representing continuous-valued time series as

symbol streams via application of some form of quantization

to the data range is not a new idea, e.g. the widely used sym-

bolic aggregate approximation (SAX) [10]. Quantization

involves some information loss which can be reduced with

finer alphabets at the expense of increased computational com-

plexity (see the electronic supplementary material, Section S-C,

for details on the quantization scheme, its comparison with

reported techniques and on mitigating issues such as wander-

ing baselines, brittleness, etc.). Importantly, our quantization

schemes (see electronic supplementary material, figure S3)

require no prior domain knowledge.
3.1. Inverting and combining hidden models
Quantized stochastic processes which capture the statistical

structure of symbolic streams can be modelled using prob-

abilistic automata, provided the processes are ergodic and

stationary [11–13]. For the purpose of computing our simi-

larity metric, we require that the number of states in the

automata be finite (i.e. we only assume the existence of a gen-

erative probabilistic finite state automata (PFSA)); we do not

attempt to construct explicit models or require knowledge of

either the exact number of states or any explicit bound thereof

(see figure 2).

A slightly restricted subset of the space of all PFSA over a

fixed alphabet admits an Abelian group structure (see the

electronic supplementary material, Section S-E), wherein the

operations of commutative addition and inversion are well

defined. A trivial example of an Abelian group is the set of

reals with the usual addition operation; addition of real num-

bers is commutative and each real number a has a unique

inverse 2a, which when summed produce the unique iden-

tity 0. We have previously discussed the Abelian group

structure on PFSAs in the context of model selection [14].

Here, we show that key group operations, necessary for

classification, can be carried out on the observed sequences

alone, without any state synchronization or reference to the

hidden generators of the sequences.

Existence of a group structure implies that given PFSAs

G and H, sums G þ H, G 2 H, and unique inverses 2G and

2H are well defined. Individual symbols have no notion of

a ‘sign’, and hence the models G and 2G are not generators

of sign-inverted sequences which would not make sense as
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Figure 2. Calculation of causal similarity using data smashing. (a) We quantize raw signals to symbolic sequences over the chosen alphabet and compute a causal
similarity between such sequences. The underlying theory is established assuming the existence of generative probabilistic automata for these sequences, but our
algorithms do not require explicit model construction, or a priori knowledge of their structures. (b) Concept of stream inversion; while we can find the group inverse
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(c) Summing PFSAs G and its inverse 2G yields the zero PFSA W. We can carry out this smashing purely at the sequence level to get FWN. (d ) Circuit that allows us
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our generated sequences are symbol streams. For example, the

anti-stream of a sequence 10111 is not 21 0 21 21 21, but a

fragment that has inverted statistical properties in terms of the

occurrence patterns of the symbols 0 and 1 (see table 1). For a

PFSA G, the unique inverse 2G is the PFSA which when

added to G yields the group identity W ¼ G þ (2G), i.e. the

zero model. Note, for the zero model W is the unique element

in the group such that for any arbitrary PFSA H in the group,

we have H þW ¼W þ H ¼ H.

For any fixed alphabet size, the zero model is the unique

single-state PFSA (up to minimal description [15]) that gener-

ates symbols as consecutive realizations of independent

random variables with uniform distribution over the symbol

alphabet. Thus, W generates FWN, and the entropy rate of

FWN achieves the theoretical upper bound among the

sequences generated by arbitrary PFSA in the model space.

Two PFSAs G, H are identical if and only if G þ (2H ) ¼W.
3.2. Metric structure on model space
In addition to the Abelian group, the PFSA space admits a

metric structure (see the electronic supplementary material,

Section S-D). The distance between two models thus can be

interpreted as the deviation of their group-theoretic differ-

ence from a FWN process. Data smashing exploits the
possibility of estimating causal similarity between observed

data streams by estimating this distance from the observed

sequences alone without requiring the models themselves.

We can easily estimate the distance of the hidden model

from FWN given only an observed stream s. This is achieved

by the function ẑ (see table 1, row 4).

Intuitively, given an observed sequence fragment x, we

first compute the deviation of the distribution of the next

symbol from the uniform distribution over the alphabet.

ẑ(s, ‘) is the sum of these deviations for all historical frag-

ments x with length up to ‘, weighted by 1=jS j2jxj. The

weighted sum ensures that deviation of the distributions for

longer x have smaller contribution to ẑ(s, ‘), which addresses

the issue that the occurrence frequencies of longer sequences

are more variable.
4. Key insight: annihilation of information
Our key insight is the following: two sets of sequential obser-

vations have the same generative process if the inverted copy

of one can annihilate the statistical information contained in

the other. We claim that given two symbol streams s1 and

s2, we can check whether the underlying PFSAs (say G1,



Table 1. Algorithms for stream operations: procedures to assemble the annihilation circuit in figure 2d, which carries out data smashing. Symbolic derivatives
underlie the proofs outlined in the electronic supplementary material. However, for the actual implementation, they are only needed in the final step to
compute deviation from FWN.

stream operation algorithmic procedure ( pseudocode)

independent stream copya

s

s¢

generate an independent sample path from the same

hidden stochastic source

(1) generate stream v0 from FWN

(2) read current symbol s1 from s1, and s2 from v0

(3) if s1 ¼ s2, then write s1 to output s0

(4) read next symbol and go to step 1

this operation is required internally in stream inversion

stream inversiona

s s¢

generate sample path from inverse model of hidden source

(1) generate jSj � 1 independent copies of s1: s1, � � � , sjSj�1

(2) read current symbols si from si (i ¼ 1, � � � , jSj � 1)

(3) if si = sj for all distinct i, j, then write Sn
SjSj�1

i¼1 si to output s0

(4) read next symbol and go to step 1

stream summationa

s1

s2

s¢

generating sample path from sum of hidden sources

(1) read current symbols si from si (i ¼ 1, 2)

(2) if s1 ¼ s2, then write to output s0

(3) read next symbol and go to step 1

deviation from FWNb

s
real
number
output
in [0, 1]

z�

estimating the deviation of a symbolic stream from FWN

(symbolic derivatives (electronic supplementary material,

Definition S-9) in the electronic supplementary material,

Section S-B, formalize fs(�). If s is generated by a FWN

process, then fs(x)! US for any x [ PSw, and hence

ẑ (s, ‘)! 0)

ẑ (s, ‘) ¼ jSj � 1
jSj

X

x:jxj¼,‘

jjfs(x)� USjj1
jSj2jxj

, where

— jSj is alphabet size, jxj is the length of string x

—‘ is the maximum length of strings up to which the sum is evaluated. For a

given ew, we choose ‘ ¼ ln (1=ew)= ln (jSj) (see the electronic

supplementary material, Proposition SI-15)

—US: uniform probability vector of length jSj
— for si [ S,

fs(x)ji ¼
number of occurrences of xsi in string s

number of occurrences of x in string s

aSee the electronic supplementary material, Section S-F, for proof of correctness.
bSee the electronic supplementary material, Definition S-22, Propositions S-14 and S-15 and Section S-F.
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G2) satisfy the annihilation equality G1 þ (2G2) ¼W without

explicitly knowing or constructing the models themselves.

Data smashing is predicated on being able to invert and

sum streams, and to compare streams to noise. Inversion gen-

erates a stream s0 given a stream s, such that if PFSA G is the

source for s, then 2G is the source for s0. Summation collides

two streams: given streams s1 and s2 generate a new stream s0

which is a realization of FWN if and only if the hidden

models G1, G2 satisfy G1 þ G2 ¼W. Finally, deviation of

a stream s from that generated by a FWN process can be

calculated directly.

Importantly, for a stream s (with generator G), the

inverted stream s0 is not unique. Any symbol stream gener-

ated from the inverse model 2G qualifies as an inverse for

s; thus anti-streams are non-unique. What is indeed unique

is the generating inverse PFSA model. As our technique com-

pares the hidden stochastic processes and not their possibly

non-unique realizations, the non-uniqueness of anti-streams

is not problematic.

However, carrying out these operations in the absence of

the model is problematic. In particular, we have no means to
correct for any mis-synchronization of the states of the

hidden models. Additionally, we want a linear-time algor-

ithm, implying that it is desirable to carry out these

operations in a memoryless symbol-by-symbol fashion.

Thus, we use the notion of a pseudo-copies of probabilistic

automata: given a PFSA G with a transition probability

metric P, a pseudo-copy P(G) is any PFSA which has the

same structure as G, but with a transition matrix

P(P) ¼ g[I� (1� g)P]�1P, (4:1)

for some scalar g [ (0, 1). We show that the operations

described above can be carried out efficiently, once we are

willing to settle for stream realizations from pseudo-copies

instead of the exact models. This does not cause a problem

in disambiguation of hidden dynamics, because the invert-

ibility of the map in equation (4.1) guarantees that pseudo-

copies of distinct models remain distinct, and nearly identical

hidden models produce nearly identical pseudo-copies.

Thus, despite the possibility of mis-synchronization between

hidden model states, applicability of the algorithms shown in

table 1 for disambiguation of hidden dynamics is valid. We
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show in the electronic supplementary material, Section S-F, that

the algorithms evaluate distinct models to be distinct, and nearly

identical hidden models to be nearly identical.

Estimating the deviation of a stream from FWN is

straightforward (as specified by ẑ (s, ‘) in table 1, row 4).

All subsequences of a given length must necessarily occur

with the same frequency for a FWN process; and we

simply estimate the deviation from this behaviour in the

observed sequence. The other two tasks are carried out via

selective erasure of symbols from the input stream(s) (see

table 1, rows 1–3). For example, summation of streams is rea-

lized as follows: given two streams s1, s2, we read a symbol

from each stream, and if they match then we copy it to our

output and ignore the symbols read when they do not match.

Thus, data smashing allows us to manipulate streams via

selective erasure, to estimate a distance between the hidden

stochastic sources. Specifically, we estimate the degree to

which the sum of a stream and its anti-stream brings the entropy

rate of the resultant stream close to its theoretical upper bound.
0826
4.1. Contrast with feature-based state of art
Contemporary research in machine learning is dominated by

the search for good ‘features’ [16], which are typically under-

stood to be heuristically chosen discriminative attributes

characterizing objects or phenomena of interest. Finding

such attributes is not easy [17,18]. Moreover, the number of

characterizing features, i.e. the size of the feature set, needs

to be relatively small to avoid intractability of the subsequent

learning algorithms. Additionally, their heuristic definition

precludes any notion of optimality; it is impossible to quan-

tify the quality of a given feature set in any absolute terms;

we can only compare how it performs in the context of a

specific task against a few selected variations.

In addition to the heuristic nature of feature selection,

machine learning algorithms typically necessitate the choice

of a distance metric in the feature space. For example, the clas-

sic ‘nearest neighbour’ k-NN classifier [19] requires definition

of proximity, and the k-means algorithm [20] depends on pair-

wise distances in the feature space for clustering. To side-step

the heuristic metric problem, recent approaches often learn

appropriate metrics directly from data, attempting to ‘back

out’ a metric from side information or labelled constraints

[21]. Unsupervised approaches use dimensionality reduction

and embedding strategies to uncover the geometric structure

of geodesics in the feature space (e.g. see manifold learning

[22–24]). However, automatically inferred data geometry in

the feature space is, again, strongly dependent on the initial

choice of features. As Euclidean distances between feature

vectors are often misleading [22], heuristic features make it

impossible to conceive of a task-independent universal metric.

By contrast, smashing is based on an application-

independent notion of similarity between quantized sample

paths observed from hidden stochastic processes. Our univer-

sal metric quantifies the degree to which the summation of

the inverted copy of any one stream to the other anni-

hilates the existing statistical dependencies, leaving behind

FWN. We circumvent the need for features altogether (see

figure 1b) and do not require training.

Despite the fact that the estimation of similarities between

two data streams is performed in the absence of the knowl-

edge of the underlying source structure or its parameters,

we establish that this universal metric is causal, i.e. with
sufficient data it converges to a well-defined distance

between the hidden stochastic sources themselves, without

ever knowing them explicitly.

4.2. Contrast with existing model-free approaches to
time-series analysis

Assumption-free time-series analysis to identify localized

discords or anomalies has been studied extensively [6,7,25,26].

A significant majority of these reported approaches use

SAX [10] for representing the possibly continuous-valued raw

data streams. In contrast to our more naive quantization

approach, where we map individual raw data streams to indi-

vidual symbol sequences, SAX typically outputs a set of short

symbol sequences (referred to as the SAX-words) obtained via

quantization over a sliding window on a smoothed version of

the raw data stream (see the electronic supplementary material,

Section S-C, for a more detailed discussion). While the quantiza-

tion details are somewhat different, both approaches essentially

attempt to use information from the occurrence frequency of

symbols or symbol-histories. However, choosing the length

of the SAX-words beforehand amounts to knowing a priori
the memory in the underlying process. By contrast, data smash-

ing does not pre-assume any finite bound on the memory,

and the self-annihilation error (see §5) provides us with a tool

to check if the amount of available data is sufficient for carry-

ing out the operations described in table 1. The underlying

processes need to be at least approximately ergodic and station-

ary for both approaches. Nevertheless, data smashing is more

advantageous for slow-mixing conditions, and for a fixed

chosen word-length, the processes induce similar frequency

of observed sequence fragments (see the electronic supplemen-

tary material, Section S-J). Importantly, no reported technique,

to the best of our knowledge, has a built-in automatic check

for data sufficiency that the self-annihilation error provides

for data smashing.

SAX by itself does not lead to any notion of universal simi-

larity. However, the NCM based on Kolmogorov complexity

has been successfully used on symbolized data streams for par-

ameter-free data mining and clustering [8]. While NCM is an

elegant universal metric, the distance computed via smashing

reflects similarity in a more intuitive manner; data from identi-

cal generators always mutually annihilate to FWN, implying

that identical generators generate similar data streams (see

the electronic supplementary material, Section S-I). Additio-

nally, NCM needs to approximately ‘calculate’ incomputable

quantities, and in theory needs to allow for unspecified addi-

tive constants. By contrast, we can compute the asymptotic

convergence rate of the self-annihilation error.
5. Algorithmic steps
5.1. Self-annihilation test for data-sufficiency check
The statistical characteristics of the underlying processes,

e.g. the correlation lengths, dictate the amount of data requi-

red for estimation of the proposed distance. With no access to

the hidden models, we cannot estimate the required data

length a priori; however, it is possible to check for data

sufficiency for a specified error threshold via self-annihilation.

As the proposed metric is causal, the distance between two

independent samples from the same source always converges

to zero. We estimate the degree of self-annihilation achieved
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in order to determine data sufficiency; that is, a stream is

sufficiently long if it can sufficiently annihilate an inverted

self-copy to FWN.

The self-annihilation-based data-sufficiency test consists

of two steps: given an observed symbolic sequence s, we

first generate an independent copy (say s0). This is the inde-

pendent stream copy operation (see table 1, row 1), which

can be carried out via selective symbol erasure without any

knowledge of the source itself. Once we have s and s0, we

check if the inverted version of one annihilates the other to

a pre-specified degree. If a stream is not able to annihilate

its inverted copy, it is too short for data smashing (see the

electronic supplementary material, Section S-F).

Selective erasure in annihilation (see table 1) implies that

the output tested for being FWN is shorter compared with

the input stream, and the expected shortening ratio b can

be explicitly computed (see the electronic supplementary

material, Section S-F). We refer to b as the annihilation
efficiency, because the convergence rate of the self-annihilation

error scales asymptotically as O(1=
ffiffiffiffiffiffiffiffi
bjsj

p
) (see the electronic

supplementary material, Proposition S-16). In other words,

the required length jsj of the data stream to achieve a self-

annihilation error of ew scales as 1=b(ew)2. Importantly,

electronic supplementary material, Proposition S-13, shows

that the annihilation efficiency is independent of the descrip-

tional complexity, i.e. the number of causal states, in the

underlying generating process. This, in combination with

the electronic supplementary material, Proposition S-16,

implies that the convergence of the self-annihilation error is

asymptotically independent of the number of states in the pro-

cess (see the electronic supplementary material, Section S-F,

for detailed discussion following Proposition S-16). As an illus-

tration, note that in the electronic supplementary material,

figure S9, the self-annihilation error for a simpler two state

process converges faster to a four state process. Note that the

convergence rate O(1=
ffiffiffiffiffiffiffiffi
bjsj

p
) is true only in an asymptotic

sense, and the mixing time of the underlying process does

indeed affect how fast the error drops with input length.

The self-annihilation error is also useful to rank the effective-

ness of different quantization schemes. Better quantization

schemes (e.g. ternary instead of binary) will be able to produce

better self-annihilation while maintaining the ability to dis-

criminate different streams (see the electronic supplementary

material, Section S-C).
5.2. Feature-free classification and clustering
Given n data streams s1, . . . , sn, we construct a matrix E, such

that Eij represents the estimated distance between the streams

si,sj. Thus, the diagonal elements of E are the self-annihilation

errors, while the off-diagonal elements represent inter-stream

similarity estimates (see figure 2d for the basic annihilation

circuit). This circuit yields three non-negative real numbers

eii, eij, e jj, which define the corresponding ijth entries of E.

Given a positive threshold ew . 0, the self-annihilation tests

are passed if ekk ¼, ew (k ¼ i,j ), and for sufficient data the

streams si,sj have identical sources with high probability if

and only if eij ¼, ew. Once E is constructed, we can determine

clusters by rearranging E into prominent diagonal blocks.

Any standard technique [27] can be used for such clustering;

data smashing is only used to find the causal distances

between observed data streams, and the resultant distance

matrix can then be used as input to state-of-the-art clustering
methodologies or finding geometric structures (such as lower

dimensional embedding manifolds [22]) induced by the

similarity metric on the data sources.

The matrix H, obtained from E by setting the diagonal

entries to zero, estimates a distance matrix. A Euclidean

-embedding [28] of H then leads to deeper insight into the

geometry of the space of the hidden generators. For example,

in the case of the EEG data, the time series’ embedding describe

a one-dimensional manifold (a curve), with data from similar

phenomena clustered together along the curve (see figure 3a(ii)).

5.3. Computational complexity
The asymptotic time complexity of carrying out the stream

operations scales linearly with input length and the granular-

ity of the alphabet (see the electronic supplementary material,

Section S-F, and figure 4b for illustration of the linear-time

complexity of estimating inter-stream similarity).
6. Limitations and assumptions
Data smashing is not directly useful in problems which do

not require a notion of similarity, e.g. predicting the future

course of a time series, or for problems that do not involve

the analysis of a stream, such as comparing images or

unordered datasets.

For problems to which smashing is applicable, we

implicitly assume the existence of PFSA generators, although

we never find these models explicitly. It follows that what

we actually assume is not any particular modelling frame-

work, but that the systems of interest satisfy the properties

of ergodicity, stationarity and have a finite (but not a priori
bounded) number of states (see the electronic supplementary

material, Section S-D). In practice, our technique performs

well even if these properties are only approximately satisfied

(e.g. quasi-stationarity instead of stationarity; see example in

the electronic supplementary material, Section S-H). The alge-

braic structure of the space of PFSAs (in particular, existence of

unique group inverses) is key to data smashing; however, we

argue that any quantized ergodic stationary stochastic process

is indeed representable as a probabilistic automata (see the

electronic supplementary material, Section S-D).

Data smashing is not applicable to data from strictly

deterministic systems. Such systems are representable by prob-

abilistic automata; however, transitions occur with probabilities

which are either 0 or 1. PFSAs with zero-probability transitions

are non-invertible, which invalidates the underlying theoretical

guarantees (see the electronic supplementary material, Section

S-E). Similarly, data streams in which some alphabet symbol

is exceedingly rare would be difficult to invert (see the elec-

tronic supplementary material, Section S-F, for the notion of

annihilation efficiency).

Symbolization of a continuous data stream invariably intro-

duces quantization error. This can be made small by using

larger alphabets. However, larger alphabet sizes demand

longer observed sequences (see the electronic supplementary

material, Section S-F and figure S8), implying that the length

of observation limits the quantization granularity, and in the

process limits the degree to which the quantization error can

be mitigated. Importantly, with coarse quantizations distinct

processes may evaluate to be similar. However, identical pro-

cesses will still evaluate to be identical (or nearly so),

provided the streams pass the self-annihilation test. The
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self-annihilation test thus offers an application-independent

way to compare and rank quantization schemes (see the

electronic supplementary material, Section S-C).

The algorithmic steps (see table 1) require no synchroniza-

tion (we can start reading the streams anywhere), implying

that non-equal length of time series, and phase mismatches

are of no consequence.
7. Application examples
Data smashing begins with quantizing streams to symbolic

sequences, followed by the use of the annihilation circuit

(figure 2d ) to compute pairwise causal similarities. Details
of the quantization schemes, computed distance matrices

and identified clusters and Euclidean embeddings are sum-

marized in table 2 and figure 3 (see also the electronic

supplementary material, Sections S-A and S-C).

Our first application is classification of brain electrical

activity from different physiological and pathological brain

states [29]. We used sets of EEG data series consisting of sur-

face EEG recordings from healthy volunteers with eyes closed

and open, and intracranial recordings from epilepsy patients

during seizure-free intervals from within and from outside

the seizure generating area, as well as intracranial recordings

of seizures.

Starting with the data series of electric potentials, we gener-

ated sequences of relative changes between consecutive values



Table 2. Application problems and results (see the electronic supplementary material, table S1, for a more detailed version).

system input description classification performance

(1) identify epileptic pathology [29]

— 495 EEG excerpts, each 23.6 s sampled at 173.61 Hz

— signal derivative as input

— quantizationa (three letter):

0

1

2
20

7

–7

–20
0 1000 2000 3000

no comparable result is available in the

literature. However, IA reveals a one-

dimensional manifold structure in the

dataset, while [29] with additional

assumptions on the nature of hidden

processes fails to yield such insight

(2) identify heart murmur [30]

— 65 .wav files sampled at 44.1 kHz (approx. 10 s each)

— quantizationa (two letter):
0.005

–0.005

0

100 200

state of the art [30] achieved in supervised

learning with task-specific features

(3) classify variable stars (Cepheid

variable versus RR Lyrae) from

photometry (OGLE II) [31]

— 10 699 photometric series

— differentiated folded/raw photometry used as input

— quantizationa (three letter):

0

1

2
8

–8

50 100

0

state of the art [31] achieved with task-

specific features and multiple hand-

optimized classification steps

(this capability is beyond the state of art)

(4) EEG-based biometric

authentication [32] with

visually evoked potentials

— 122 subjects, multi-variate data from 61 standard

electrodes

— 256 data points for each trial for each electrode

— total number of data series: 5477 (each with 61

variables)

— quantizationa (two letter):

0

120

–20

100 200

0

state of the art [33] achieved with task-

specific features, and after eliminating two

subjects from consideration

(5) text-independent speaker

identification using ELSDSR

database [34]

— 23 speakers (9 female, 14 male), 16 kHz recording

— approximately 100 s recording/speaker

— 2 s snippets used as time-series excerpts

— total number of time series: 1270

— quantizationa (two letter):

0

10.05

–0.05
–0.10

0

100 200 300

state of the art [35] achieved with

task-specific features and multiple

hand-optimized classification steps

aSee the electronic supplementary material, Section S-C, for details on choosing quantization schemes.
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before quantization. This step allows a common alphabet for

sequences with wide variability in the sequence mean values.

The distance matrix from pairwise smashing yielded clear

clusters corresponding to seizure, normal eyes open, normal

eyes closed and epileptic pathology in non-seizure conditions

(see figure 3a, seizures not shown due to large differences

from the rest).

Embedding the distance matrix (see figure 3a(i)) yields

a one-dimensional manifold (a curve), with contiguous

segments corresponding to different brain states, e.g. right-

hand side of plane A corresponds to epileptic pathology.
This provides a particularly insightful picture, which eludes

complex nonlinear modelling [29].

Next, we classify cardiac rhythms from noisy heat–

sound data recorded using a digital stethoscope [30]. We

analysed 65 data series (ignoring the labels) corresponding

to healthy rhythms and murmur, to verify if we could

identify clusters without supervision that correspond to the

expert-assigned labels.

We found 11 clusters in the distance matrix (see figure 3b),

four of which consisted of mainly data with murmur (as

determined by the expert labels), and the rest consisting of
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mainly healthy rhythms (see figure 3b(iv)). Classification pre-

cision for murmur is noted in table 2 (75.2%). Embedding of

the distance matrix revealed a two-dimensional manifold (see

figure 3b(iii)).

Our next problem is the classification of variable stars

using light intensity series (photometry) from the optical

gravitational lensing experiment (OGLE) survey [31]. Super-

vised classification of photometry proceeds by first ‘folding’

each light-curve to its known period to correct phase mis-

matches. In our first analysis, we started with folded light-

curves and generated data series of the relative changes

between consecutive brightness values in the curves before

quantization, which allows for the use of a common alphabet

for light-curves with wide variability in the mean brightness

values. Using data for Cepheids and RR Lyrae (3426 Cep-

heids, 7273 RR Lyrae), we obtained a classification accuracy

of 99.8% which marginally outperforms the state of art (see

table 2). Clear clusters (obtained unsupervised) correspond-

ing to the two classes can be seen in the computed distance

matrix (see figure 3c(i)) and the three-dimensional projection

of its Euclidean embedding (see figure 3c(ii)). The three-

dimensional embedding was very nearly constrained within

a two-dimensional manifold (see figure 3c(ii)).

Additionally, in our second analysis, we asked if data

smashing can work without knowledge of the period of the

variable star; skipping the folding step. Smashing raw pho-

tometry data yielded a classification accuracy of 94.3% for

the two classes (see table 2). This direct approach is beyond

state of the art techniques.

Our fourth application is biometric authentication using

visually evoked EEG potentials. The public database used [32]

considered 122 subjects, each of whom was exposed to pictures

of objects chosen from the standardized Snodgrass set [36].

Note that while this application is supervised (as we are

not attempting to find clusters unsupervised), no actual train-

ing is involved; we merely mark the randomly chosen

subject-specific set of data series as the library set represent-

ing each individual subject. If ‘unknown’ test data series is

smashed against each element of each of the libraries corre-

sponding to the individual subjects, we expected that the
data series from the same subject will annihilate each other

correctly, whereas those from different subjects will fail to

do so to the same extent. We outperformed the state of art

for both kNN- and SVM-based approaches (see table 2, and

the electronic supplementary material, Section S-A).

Our fifth application is text-independent speaker identifi-

cation using the ELSDSR database [34], which includes

recording from 23 speakers (9 female and 14 male, with poss-

ibly non-native accents). As before, training involved

specifying the library series for each speaker. We computed

the distance matrix by smashing the library data series

against each other and trained a simple kNN on the Eucli-

dean embedding of the distance matrix. The test data then

yielded a classification accuracy of 80.2%, which beat the

state of art figure of 73.73% for 2 s snippets of recording

data [35] (see table 2 and the electronic supplementary

material, figure S1b).
8. Conclusion
We introduced data smashing to measure causal similarity

between series of sequential observations. We demonstrated

that our insight allows feature-less model-free classification in

diverse applications, without the need for training, or expert

tuned heuristics. Non-equal length of time series, missing

data and possible phase mismatches are of little consequence.

While better classification algorithms likely exist for

specific problem domains, such algorithms are difficult to

develop and tune. The strength of data smashing lies in its

ability to circumvent both the need for expert-defined heuris-

tic features and expensive training, thereby eliminating one of

the major bottlenecks in contemporary big data challenges.
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cornell.edu or by contacting the corresponding author.
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