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Many population genetic models have been developed for the purpose of

inferring population size and growth rates from random samples of genetic

data. We examine two popular approaches to this problem, the coalescent

and the birth–death-sampling model (BDM), in the context of estimating

population size and birth rates in a population growing exponentially accord-

ing to the birth–death branching process. For sequences sampled at a single

time, we found the coalescent and the BDM gave virtually indistinguishable

results in terms of the growth rates and fraction of the population sampled,

even when sampling from a small population. For sequences sampled at mul-

tiple time points, we find that the birth–death model estimators are subject to

large bias if the sampling process is misspecified. Since BDMs incorporate a

model of the sampling process, we show how much of the statistical power

of BDMs arises from the sequence of sample times and not from the genealogi-

cal tree. This motivates the development of a new coalescent estimator, which

is augmented with a model of the known sampling process and is potentially

more precise than the coalescent that does not use sample time information.

1. Introduction
The genetic diversity of many pathogens is influenced by recent epidemiological

history, and a variety of methods exist to estimate features of an epidemic history

given random samples of pathogen genetic markers [1]. An issue that is central to

how pathogen genetic diversity is understood is how infected individuals are

sampled. A great deal of theory has been developed under the assumption of

complete sampling, that is, that all infected individuals in the population are

sampled and provide at least one pathogen sequence. These methods have

found great utility for the study of small outbreaks [2,3], and for certain

hospital-acquired infections [4]. A separate body of theory has developed for the

study of epidemics where a sample of hosts is obtained for pathogen sequencing,

and these methods are derived from classical population genetic models such as

the coalescent [5,6] and classical population dynamics models such as the birth–

death process [7,8]. This paper considers the scenario of incomplete sampling

and the potentially confounding effects of non-random sampling through time

on inference using the coalescent and birth–death-sampling formula [9].

The coalescent is a mathematical model of genealogies and describes the struc-

ture of genealogies generated by different demographic processes [10]. The

coalescent has been the standard tool for demographic inference and is the under-

lying genealogical model in most phylogenetic software [11,12]. Under the neutral

coalescent, the time between consecutive common ancestry events (the internode

intervals) is modelled as a point process with a hazard rate r(t) that depends on

the effective population size Ne(t) and the number of extant lineages in that interval

A(t) at time t in the past. With time in units of the generation interval t, this becomes

r(t) ¼
A(t)

2

� �
Ne(t)

:
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By relating the time of common ancestry to the popu-

lation size, the coalescent enables estimation of the latter. A

variety of non-parametric [13–15] and parametric [13,16,17]

models have been developed for Ne as a function of time.

The parametric models for Ne(t) tend to be deterministic

functions of time, and we will consider such deterministic

models in this paper, although there have been several

recent attempts to fit stochastic demographic process

models using the coalescent [18,19].

Birth–death processes trace their origins to work by

Kendall [8], who showed how to calculate the probability

that a given number of lineages will survive up to a given

point of time in a stochastically growing population. Further

results were developed by Thompson [20] and Gernhard [21],

who showed how to calculate the probability density of

genealogies generated by the birth–death process under com-

plete sampling. These models were subsequently extended to

account for incomplete sampling of the population by Stadler

[9]. In order to account for incomplete sampling, the birth–

death process must be combined with a model of the sampling

process. Two sampling processes have thus far been considered

in birth–death-sampling models (BDMs): sampling of lineages

may take place at a constant rate; or, at a given point in time, a

proportion of lineages may be sampled uniformly at random.

These sampling processes may be combined, and recently

developed methods allow sampling rates to vary through

time according to a step function [22].

There are many variations on the coalescent and birth–

death models that could be compared. Different coalescent

and birth–death models make different assumptions about

the demographic and sampling process, and each will be

susceptible to different levels of bias by violation of those

assumptions. We will focus on two models that have recen-

tly received considerable attention and have been used in

epidemiological investigations. We use the BDM described

in [9], and the coalescent model (CoM) for an unstructu-

red population as described in [17]. Originally, CoMs were

based on restrictive assumptions about the proportion of

the population sampled and when taxa are sampled. CoMs

were also based on strictly deterministic demographic pro-

cesses, but all of these assumptions have been relaxed since

the coalescent was first introduced. BDMs were originally

based on census sampling at a single point in time, but

that assumption has also been relaxed. Both models

have been extended to consider heterogeneous structured

populations [17,23].

The probability of observing a genealogy given demo-

graphic parameters may be calculated using either the CoM

or the BDM, though these two models have very different

mathematical foundations. The likelihood functions provided

by each approach are difficult to reconcile mathematically, yet

they tend to give similar results as we demonstrate below.

The BDM has the advantage of accounting for stochasticity

of the demographic process in an efficient and natural way.

It is also possible to account for stochastically varying effec-

tive population size in the coalescent, but this has greater

computational requirements [18]. A potential disadvantage

of BDMs is that they require a model of the sampling process,

whereas the coalescent makes no assumptions about how

lineages are sampled through time. If the sampling process

deviates from the simplistic processes that form the basis of

current BDM theory, it is possible that estimates based on

the BDM will be biased.
Both methods have particular advantages and vulnerabil-

ities. Estimates based on CoMs may be biased by noisy

demographic processes, and estimates based on the BDM

may be biased by misspecification of the sampling process.

In this paper, we will evaluate the vulnerability of both

methods to these confounders. Because of the additional

assumptions about sampling built into BDMs, it is difficult

to make a direct comparison of the statistical power of

BDMs and CoMs. If the sampling process is correctly speci-

fied, the observed sequence of sample times provides a

great deal of information about the population size through

time, which is not directly accessible with the CoM approach.

Indeed, given a sequence of sample times, it is possible to

estimate birth and death rates without a genealogy provided

that the model of the sampling process is correctly specified

(§3.1). We show that much of the statistical power of the

BDM approach is derived from information in the sequence

of sample times and not in the genealogy. This finding also

suggests an enhancement to CoMs: if the sampling process

is known, we can augment the CoM likelihood with a separ-

ate likelihood for the sequence of sample times. This

augmented coalescent method is presented in §3.2.

In sampling at a single time point (homochronously), we

show that estimates based on CoMs and BDMs are very simi-

lar. In §4.8, we show how the distribution of coalescent times

predicted by CoM converges with large sample size to the

distribution given by BDM.
2. The demographic and sampling processes
The population size Y(t) is modelled as a continuous-time

Markov chain on [0, 1), which is governed by the following

transition probabilities:

P(Y(tþ Dt) ¼ Y(t)þ 1) ¼ lY(t)DtþO((Dt)2),

P(Y(tþ Dt) ¼ Y(t)� 1) ¼ mY(t)DtþO((Dt)2)

and P(Y(tþ Dt) ¼ Y(t)) ¼ 1� (lþ m)Y(t)DtþO((Dt)2),

9>>>=
>>>;
(2:1)

where l and m are the per capita birth and death rates of the

process, respectively. Initially, Y(0) ¼ 1.

We investigated three distinct sampling processes for the

reconstruction of genealogies from a simulated demographic

history:

(1) Continuous sampling through time at constant rate. Accord-

ing to this model, after a lineage dies (with a per-lineage

rate m), it is sampled with independent probability p.

(2) Homochronous sampling. According to this model,

every extant lineage at a predetermined time point is

sampled with independent probability r.

(3) Weighted sampling. According to this model, each unit

has a sample weight at the time of death. If ftig is the set

of death times for lineages indexed by i, the sample

weights are wi ¼ eati . A sample is taken of n lineages with-

out replacement with selection probabilities proportional

to sampling weights.

Note that, with the exception of homochronous sampling, the

lineages are only sampled at the time of death. This design is

chosen for mathematical convenience, since it eliminates the

possibility that a sampled lineage will be directly ancestral
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to another sample, which would yield genealogies with zero

branch lengths [24], although more complex BDMs and

CoMs can be applied in this situation.

In this paper, we use CoMs based on the following

deterministic approximation y(t) to the stochastic process Y(t):

y(t) ¼ y(0)et(l�m), (2:2)

with real-valued initial conditions y(0) that will be estimated.

Genealogies were generated by simulation of the birth–

death process in continuous time using the software

MASTER v. 1.7.1 [25]. For simulating genealogies with a

time-dependent sampling rate, we developed a custom simu-

lator for the birth–death process in Python (see the electronic

supplementary material). We simulated 300 genealogies for

each of the three sampling scenarios given above using m ¼ 1

and l ¼ 2 or l ¼ 1.25 or l ¼ 1.1. In the case of sampling

through time, we terminated the simulation when 100 samples

were collected and using a sampling probability of p ¼ 1% or

50%. If sampling homochronously, we sampled 100 taxa after

9.21 or 25 units of time, yielding a sample proportion that

varied around 1% or 20%, respectively. Simulations that

failed to reach the target sample size were removed.
3. Estimation methods
All models are fitted by maximum likelihood (ML). The

choice of ML was motivated by the simplicity of the demo-

graphic process, the speed of ML methods and the small

number of free parameters. For the exponential growth pro-

cess, there are four potential parameters that could be

estimated: birth rates l, death rates m, the initial population

size y(0) (needed for CoMs but not BDMs), and a parameter

that describes sampling (needed for BDMs but not CoMs).

As previously shown in the analysis of BDMs, at most two

of these parameters are identifiable from a genealogy alone,

and we must therefore choose which parameters to fix accord-

ing to prior knowledge, and CoMs are subject to the same

identifiability constraints. We focus on an epidemiologically

plausible scenario, where birth rates and the number of infec-

tions are unknown, but independent clinical information

provides information on death rates. Consequently, we will

assume m ¼ 1 is known and will focus on the estimation of

birth rate l along with the nuisance parameters describing

initial population size (for CoMs) or sampling rates (for

BDMs). We will also consider the special case of homochro-

nous sampling, in which we can reparametrize the CoM

such that, like the BDM, estimates of the sampling fraction

can be obtained.

Throughout the remainder of the paper, we use two sym-

bols to denote time on different axes, and all dynamic

variables will be defined on both axes. t will denote time

from an arbitrary point in the past, whereas s will denote

time before present. It will be useful to define the population

genetic models in terms of the retrospective time axis s.

Let G ¼ (N , E, X) represent a genealogy consisting of a set

of nodes N , edges E and a function X :N ! R that gives the

time s before the present of each node. Every edge corresponds

to a 2-tuple (u, v) such that u, v [ N and the node u is said to be

ancestral to v. We will consider only rooted binary genealogies;

every internal node has exactly two descendants, and all

internal nodes but the root have exactly one ancestor.
For CoMs, we use the likelihood given in [17], and we

denote the maximum likelihood estimator (MLE) birth rate l̂
C

.

This likelihood is that of a time-inhomogeneous point

process with a hazard rate that depends on the population

size and number of extant lineages. Specifically, following

the approach in [17], the total population birth rate will be

denoted f (s) ¼ ly(s) and the rate of coalescence is

r(s) ¼ f(s)

A(s)
2

� �

y(s)
(2)

 ! ¼ A(s)
2

� �
2l

y(s)� 1
, (3:1)

where the first equality can be understood as the hypergeo-

metric probability of selecting two lineages that are ancestral

to the sample out of the set of y(s) lineages. Now let x0 denote

the vector of node times (including sampled tips) in ascending

order. The probability of observing the i‘th interval is

Pi ¼
e
�
Ð xiþ1

xi
r(s)ds

xiþ1 is a sample time

r(xiþ1)e
�
Ð xiþ1

xi
r(s)ds

xiþ1 is a coalescent time:

8<
: (3:2)

And the likelihood is

LCoM(l, m, y0jG) ¼
Y2n�2

i¼0

Pi: (3:3)

Note that the number of terms in the likelihood is the number of

internode intervals 2n 2 2 if all sampling times are distinct. One

subtlety arises if more than one lineage is sampled at a single

time point, such as with a homochronous sample, in which

case we simply deduplicate elements in the vector x0 and

adjust the number of terms in the likelihood.

For BDMs, we used the ML framework described in [9].

We denote the MLE birth rate l̂
BD

. The R package expoTree

[26] was used along with the implementation described

here, and all results presented below are based on the best

performing of the two implementations of the BDM likeli-

hood. We simplified the likelihood equations in [9] to two

situations: sampling occurs at a single time point with

sample fraction r, or individuals are sampled with prob-

ability p at the time of death. Let x denote the vector of

times before present for each internal node in G in descending

order. Note that x0 corresponds to the root of the tree. If the

sampling takes place according to the homochronous process,

r will denote the probability of sampling a lineage at a single

point in time. Then,

LBDM(l,m,rjG)¼ln�1(4r)n
Yn�2

i¼0

q(xi,c2)�1

ð1

xor¼x0

q(xor,c2)�1dxor

� �
,

(3:4)

where q(.) is derived from the birth–death-sampling formula:

q(s, c) ¼ 2(1� c2)þ e�c1s(1� c)2 þ ec1s(1þ c)2, (3:5)

and c1 and c2 are the following constants:

c1 ¼ jl� dj (3:6)

and

c2 ¼ �
l� d� 2lr

c1
: (3:7)

Note that the integral in the likelihood equation accounts for

the unobserved time of origin of the birth–death process.



�1

4

3

2

1

0

80

60

40

20

0

time
9.0 10.0 11.0 12.0

sample time
9.0 10.0 11.0 12.0

cu
m

ul
at

iv
e 

nu
m

be
r 

sa
m

pl
ed

in
 n

um
be

r 
sa

m
pl

ed

(b)(a)

Figure 1. (a) Cumulative number of samples through time. (b) Log cumulative samples with regression line.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140945

4

If sampling heterochronously at rate c ¼ mp, the likeli-

hood has a different form. Let x denote the vector times

before present of each node as above, and let y denote the

vector of sample times in any order.

LBDM(l,m,cjG)¼
ð1

xor¼x0

ln�1cn

(
q(xor,c2)�1

Yn�1

i¼0

q(yi,c2)
Yn�2

i¼0

q(xi,c2)

�q(xor,c3)�1
Yn�1

i¼0

q(yi,c3)
Yn�2

i¼0

q(xi,c3)�1

)
dxor,

(3:8)

and c1, c2 and c3 are the following constants:

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l� m)2 þ 4lc

q
, (3:9)

c2 ¼
m� l

c1
(3:10)

and c3 ¼
lþ m

c1
: (3:11)

BDMs and CoMs were fitted according to the same numerical

algorithm, with maximization of the likelihood accomplished

in R using the simplex method. In order to ensure conver-

gence to the global maximum, multiple starting conditions

were drawn from a multivariate uniform distribution, and

the likelihood optimized for each. The best model fit is

reported among the three or five optimizations, although in

general they converged to the same value.

3.1. Estimating birth rates using times of sampling
Consider the sequence of sample times in increasing order t¼

(t1, . . . ,tn). If the sampling process is known, the sequence of

sample times is informative about population size. We will con-

sider a simplistic sampling process such that individuals are

sampled at a constant rate upon death, which is the sampling

process underlying current BDMs. If sampling occurs at a con-

stant known rate, it is straightforward to estimate the historical

population size from the sample times, since the probability

that a sample will be observed at some point in time is pro-

portional to population size at that time. Therefore, it is

possible to estimate the population size using sample time infor-

mation alone, and not using the genealogy. We show here that it

is possible to estimate the birth rate, even if the sampling rate is

unknown. Two simple estimators are presented. The first is

based on a simple regression with the expected cumulative

number of samples through time. The second is based on treating

the sample times as arising from a point process and using ML.
Let S(t) denote the cumulative number of samples collected

up to time t. We show that the cumulative number of samples

increases at the same rate as the unknown population size.

According to the deterministic model, the expected change in

S over time Dt will be

DS(t) ¼ (Dt)pmy(t)þO((Dt)2)

¼ (Dt)pmy(0)e(l�m)t þO((Dt)2): (3:12)

Consequently, the logarithm of S(t)/ (l 2 m)t. Regressing the

vector log(S(t)) on the vector t yields an estimate of the growth

rate k ¼ l 2 m, and using knowledge of m ¼ 1 we have the

regression estimator

l̂
R ¼ k̂ þ m: (3:13)

Figure 1 shows the number of samples through time, for a

single simulated genealogy along with the regression line.

The likelihood approach is based on modelling the

sequence of sample times as a point process and also makes

use of the deterministic approximation to population size.

The rate of a sample appearing at time t is

f(t) ¼ pmy(0)e(l�m)t ¼ aekst,

with a ¼ pmy(0) and ks ¼ l 2 m. The probability of t is

P(tja, k) ¼
Y
i¼1

f(ti)e
�
Ð ti

ti�1
f (t)dt

: (3:14)

As with the regression estimator,

l̂
S ¼ k̂sþm: (3:15)

3.2. The augmented coalescent model
The genealogy G and the sample times t are conditionally inde-

pendent given demographic and sampling parameters u ¼ (l,m,

p, y(0)). Therefore, the likelihood of both is the product of the

marginal likelihoods given above (equations (3.15) and (3.3)):

P(G, tju) ¼ P(Gju)P(tju): (3:16)

We will denote the MLE birth rate as l̂
A

.

4. Results
The following results demonstrate the level of bias, precision and

efficiency of different inference methods when estimating the

birth rate from genealogies generated by the birth–death process.
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4.1. Constant sampling rate
Figure 2 shows the distribution of MLEs for five estimators

presented above based on 300 simulated genealogies. Simu-

lations were based on a sampling process with constant

sampling probability p ¼ 1% at the time of death.

Estimators based only on the sequence of sample times t

perform well even though they do not use the coalescence

times. The ML estimator l̂
S

consistently outperforms the

simple regression estimator l̂
R

, presumably reflecting that

residuals in the loglinear regression model are not i.i.d. normal.

Comparing a model that only uses sample time infor-

mation (lS) with the CoM that only uses genealogical

information (lC) we find that that the RMSE of l̂
S

is 11.5%

compared with 11.8% for l̂
C

. In this instance, the sample

time sequence is actually more informative than the coalescent

times for inferring birth rates.

Comparing the BDM and coalescent, we find that the

BDM is more precise (RMSE ¼ 0.085) but slightly less accu-

rate; the average bias of the BDM estimator was 0.022

(95% CI: (0.013, 0.031)) compared with 0.009 (95% CI:

(20.022, 0.005)) for the CoM estimator. Comparing the BDM

and augmented CoM (a model that uses both coalescence

and sample times), we find that the augmented CoM is slightly

less precise than the BDM (RMSE of l̂
A

is 0.092), which may

reflect the use of a misspecifed deterministic population size;

however, we did not detect significant bias of l̂
A

(95% CI:

(20.012, 0.009)) in contrast to the BDM.

Figure 3 sheds some light on why the estimators perform

differently by comparing the ML estimated by each method

on each simulated genealogy. Electronic supplementary

material, figure S1, shows a similar scatter plot of MLE

birth rates. The BDM likelihood is highly correlated with

that of all other estimators. By contrast, the CoM likelihood

is almost independent of the estimators that use sample

times only (Pearson correlation ¼ 0.066). The highest corre-

lation is found between the BDM and the augmented CoM

(Pearson correlation ¼ 0.95). This illustrates that the CoM is

not using sample time information, but the BDM and aug-

mented CoM are using information from both the sample

times and genealogy.

4.2. Homochronous sampling
If all samples are collected at a single point in time, and if the

sampling proportion is unknown, then the time of sampling

and sample size confer no information about population size.

The homochronous sampling case with unknown sampling
rate therefore provides a fair comparison for BDMs and

CoMs. Here, we consider 300 simulations of the birth–death

process with a sample of n ¼ 100 at t ¼ 9.2, so that the sample

fraction is around 1%, though it differs between replicates.

The birth rate used in the simulations was l ¼ 2.

Figure 4 shows the distribution of MLE birth rates. The

distributions are very similar and have similar precision

(RMSE of l̂
BD

is 0.106 and RMSE of l̂
C

is 0.101). The CoM

estimator does not have detectable bias (95% CI of bias:

(20.0183, 0.0048)), but the BD model slightly overestimates

birth rates (average bias ¼ 0.036, 95% CI: (0.0242, 0.0470)).

Figure 4 also shows that the log likelihoods of the MLEs gen-

erated by both methods are highly concordant up to a

constant factor. The Pearson correlation of BDM and CoM

MLs is 99.6%. The estimated birth rates also have a high

correlation coefficient of 86.6%.

Comparing the RMSE of the BDM estimator in both the

homochronous and constant sampling rate cases, it appears

that having informative sample time information decreases

the residual sums-of-squares of the BDM estimator by

about 36%, but this gain in precision will certainly depend

on parameters of the system and sample size.

We repeated the simulation exercise with a smaller birth

rate (l ¼ 1.25) in order to assess if the CoM estimator

would be less accurate if the population is growing more

slowly. The MLEs are depicted in the electronic supplemen-

tary material, figure S2. With the smaller birth rate, we do

not detect significant bias of the BDM estimator (average

bias less than l � 1023, 95% CI: (20.0069, 0.0077)), or with

the CoM estimator (average bias 0.002, 95% CI of bias:

(20.0057, 0.0096)). The RMSE of the BDM and CoM

estimators are similar (0.037 and 0.039, respectively).

4.3. Coverage
To assess the ability of both estimators to estimate accurate

confidence intervals, we computed likelihood profiles with the

bbmle package in R. We also computed confidence intervals

using a parametric bootstrap method for the CoM estimator.

95% CIs were computed for each of 300 simulations with l ¼ 2

and 1.25 and homochronous sampling. The BDM estimator

provides excellent coverage with profile likelihoods. When

l¼ 2, BDM has 95.3% coverage, and when l ¼ 1.25, BDM has

95.5% coverage. By contrast, when l ¼ 2, the deterministic

CoM has 80.5% coverage, and when l¼ 1.25, the deterministic

CoM has 75.1% coverage using profile likelihoods.

Because the RMSE of the CoM estimator is similar to that of

the BDM estimator, we hypothesized that a bootstrap method

would provide more reliable confidence intervals for CoM. For

each MLE based on CoM, we simulated 100 coalescent trees

using MLE parameters, re-estimated l for each, and computed

confidence intervals based on quantiles of the bootstrap distri-

bution. In order to maximize speed of the bootstrap algorithm,

we simulated node heights using the approximate coalescent

rates described in §4.8. We find that the CoM estimator has

very good coverage with the parametric bootstrap method.

When l ¼ 2, the deterministic CoM has 95.0% coverage, and

when l ¼ 1.25, the deterministic CoM has 93.8% coverage.

4.4. Comparison of estimated sample rates
An alternative parametrization of the coalescent is in terms of

the population size at the time of sampling in a homochro-

nous scenario. In this case, we can calculate a deterministic
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approximation to the population size at time s in the past as

y(s) ¼ n
r

e�s(l�m),

where n is the sample size and r is the sample proportion,

and n/r is the population size at the time of sampling.

According to this parametrization, we replace the nuisance

parameter y(0) with r, and the coalescent estimates of the

sample proportion can be directly compared to estimates

with the BDM.
We fit the reparametrized CoM to the same genealogies used

in §3.2 withl ¼ 1.25 andm ¼ 1. Figure 5 shows that the estimates

are highly concordant with Pearson correlation of 99.7%.
4.5. Small reproduction number and high
sample fraction

The CoM based on a deterministic demographic process may

be most biased when the population size is small and subject

to large stochastic fluctuations. We generated 300 trees from
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the BD process with l ¼ 1.1, m ¼ 1 and homochronous

sampling with n ¼ 100 and a variable sample fraction around

50%. The distribution of MLE birth rates is shown in figure 6.

We found small but significant bias in the estimated birth

rates using both BDM and CoM methods. The mean bias of

the BDM estimator was 0.019 (95% CI: (0.0148, 0.0244)),

and the mean bias of the CoM was 0.021 (95% CI of bias:

(0.0160, 0.0265)). The BDM had smaller RMSE (0.043 versus

0.47), and the Pearson correlation of estimated birth rates

was 95%. A comparison of estimated birth rates is shown in

the electronic supplementary material, figure S3.

4.6. Decreasing sample rate and small sample fraction
When the sampling model implicit to the BDM approach is

misspecified, the BDM may yield highly biased results.

Figure 7 shows the MLE birth rates for both the BDM and

CoM estimators when the sampling rate changes through

time according to eat (see §2). One hundred and twenty simu-

lations were carried out, and the sampling rate decreased at a

rate of a ¼ 20.44. This value was chosen so that the expected

sample size would be 100 if taking a weighted sample of all

lineages at the time of death. Note that the sampling rate is an

exponential function of time, so that the sequence of sample

times still appears as though it arises from an exponentially

increasing population, and there would be no warning from

the sequence of sample times alone that the rate is changing.

The BDM estimates are biased downwards by 0.23 (95% CI:

(20.2488, 20.2207)).

In this scenario, the CoM is robust to changing sample

rate, since the CoM conditions on observed sample times.

The CoM estimates did not have significant bias (95% CI of

bias: (20.0443, 0.0045)).

4.7. Increasing sample rate and large sample fraction
In these experiments, we examine bias in the coalescent due to

sampling a large fraction of lineages from a small population

growing stochastically. Three hundred genealogies with n ¼
100 were simulated from a birth–death process. Simulations

were terminated when the number of deceased lineages

reached 200, so that the sample fraction was 50% of deceased

lineages and about 25% of all lineages. In the same exper-

iments, we examined bias in BDMs due to a misspecified

sampling process. In these experiments, the sampling rate

increases from zero at time zero at a rate of r ¼ m.
Figure 8 shows the distribution of MLE birth rates. We do

not find detectable bias with the CoM estimator (95% CI:

(20.0271, 0.0260)), despite using a misspecified deterministic

approximation to the demographic process, and despite that

a large sample of the population was taken and that the

population size was only around 400 on average at the time

of the last sample.

Because the BDM relies on a misspecified sampling pro-

cess, the BDM estimator gives highly biased estimates in this

scenario. The average bias was 0.46 (95% CI: (0.4460, 0.4920)).
4.8. Asymptotic distribution of coalescent times
Some insight into why CoM and BDM give similar estimates

can be gained by comparing the asymptotic distribution of

coalescent times predicted by both models in the case of

homochronous sampling. The distribution of coalescent

times in the limit of large sample size for a deterministic

CoM can be easily computed, and we show that this distri-

bution is equivalent to the marginal likelihood of a node

given by the birth–death model.

In [27,28], an approximation to the lineages through time

for the coalescent process was presented for a population

under exponential growth:

d

ds
A ¼ � A(s)

2

� �
2l

y(s)
: (4:1)

If sampling occurs at a single time point, such that A(0) ¼ n,

this has the unique solution

A(s) ¼ 1

1� (1=n)(n� 1)e�l(es(l�m)�1)=y0(l�m)
, (4:2)

where y0 is the population size at the time of sampling. We

will call this a doubly deterministic coalescent model

(DDCoM) because both the demographic and genealogical

processes are modelled with deterministic approximations.

The asymptotic distribution of coalescent times for the

DDCoM is given by the derivative of A(s) (equation (4.1))

and expanding y(s) and normalizing

PDDCoM(sjl, m, r, n) ¼ � d

ds
A

n� 1
(4:3)

¼ lrelr(es(l�m)�1)=n(l�m)þs(l�m)

(nelr(es(l�m)�1)=n(l�m) � nþ 1)
2
: (4:4)

The factor of n 2 1 normalizes the distribution since there are

n 2 1 nodes in the tree. In [29], the DDCoM was found to be

an excellent approximation to the stochastic coalescent for

large populations.

The BDM likelihood takes the form of a product over

coalescent times and sample times, including the time of

origin. Conditioning on the time of origin, and given a homo-

chronous sample, the likelihood is given by the product of

marginal probabilities for each coalescent time. From

equation (3.4), expanding c1,c2 and simplifying,

PBDM(sjl, m, r) ¼ 4lr

q(s, c2)

¼ 4lr

2(1� c2
2)þ e�c1s(1� c2)2 þ ec1s(1þ c2)2

,

(4:5)

where c1 and c2 are the following constants:

c1 ¼ jl� mj (4:6)
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and

c2 ¼ �
l� m� 2lr

c1

� �
: (4:7)

Theorem 4.1. Given a homochronous sample of a proportion r

lineages from a population growing exponentially according to
the birth–death process with birth rate l, death rate m, and l . m,

lim
n!1

PDDCoM(sjn, l, m, r) ¼ PBDM(sjl, m, r),

for all times s.
Proof. By Taylor expansion of the denominator of equation

(4.4), we have

(nelr(es(l�m)�1)=n(l�m)�nþ1)
2
¼ 1þlr(es(l�m)�1)

(l�m)
þO

1

n

� �� �2

:

(4:8)

The limit of the numerator of equation (4.4) is

lim
n!1

lrelr(es(l�m)�1)=n(l�m)þs(l�m)

¼ lres(l�m): (4:9)

Taking the large n limit of equation (4.8) and computing the

ratio of (4.8) and (4.9), and rearranging, we have

lim
n!1

PDDCoM(sjl, m, r) ¼ lr(l� m)2es(l�m)

(l� m� lrþ lres(l�m))
2
: (4:10)

It may be verified that this is equivalent to PBDM (equation

(4.5)). B

Note that this result applies to the DDCoM and not the

CoM used elsewhere in the text. In [29,30], it was shown

that the lineages through time given by DDCoMs are gener-

ally excellent approximations to lineages through time given

by standard CoMs if the sample size is large.

Outside of the large-n limit, we can investigate the simi-

larity of PBDM and PDDCoM numerically. To summarize the
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difference between distributions PBDM and PDDCoM, we

compute the Kullback–Leibler divergence

D(PDDCoM, PBDMjl, m, r, n)

¼
ð1

s¼0

log
PDDCoM(sjl, m, r, n)

PBDM(sjl, m, r)

� �
PDDCoM(sjl, m, r, n)ds:

Figure 9 shows the divergence as a function of sample sizes

ranging from n ¼ 2 to 214 and with l ¼ 1.1, m ¼ 1 and r ¼

0.9. We find that divergence is very insensitive to birth

rates and sample proportion, so results are only shown for

one scenario. When n ¼ 2, the divergence is quite high, but

it rapidly converges to zero. We observe that, to excellent

approximation, the divergence scales in a very simple way

as a function of sample size: D(PDDCoM, PBDMjlm, r, n) �
e23/2/n, and this is shown by the red line in figure 9.

Figure 9 also shows a comparison of the DDCoM mar-

ginal density of coalescent times with the BDM marginal

likelihood with several different sample sizes and a smaller

sample fraction of r ¼ 0.01. When n ¼ 2, the distributions

are quite different, but when n ¼ 10 they are very similar

and when n � 100 they are almost indistinguishable.
5. Discussion
Two distinct areas of concern have arisen related to phylody-

namic inference using CoMs and BDMs. CoMs based on a

deterministic demographic process may be subject to induc-

tive bias if the deterministic process is a bad approximation

to the true stochastic demographic process. Similarly, BDMs

are subject to bias if the model of the sampling process is

misspecified. We have found that the bias due to the determi-

nistic approximation is generally very small for populations

growing exponentially, even when sampling 50% of individ-

uals from a small population. Furthermore, errors in CoMs

due to a deterministic process can be resolved with additional

computational effort, as it is possible to use the coalescent

with a stochastic demographic process [19,31]. Such methods

may be necessary for populations with very small and noisy

population dynamics. Bias is likely to be greatest if the popu-

lation is small and growing slowly such that population

dynamics are relatively noisy. Indeed, we found only one

situation where the BDM was noticeably more precise than

CoM estimators, which occured with a small R0 of 1.1 and a
large sample fraction; however, we did not find a situation

where the BDM estimator was substantially less biased than

the CoM estimator. Confidence intervals based on profile like-

lihoods have superior coverage if using BDMs rather than

deterministic CoMs, which may reflect the explicit incorpor-

ation of stochastic population dynamics in the BDM

estimator. However, the combined use of the CoM with confi-

dence intervals based on parametric bootstrapping gave

estimates with low bias and very good coverage.

We have found that BDMs can yield highly biased estimates

if the sampling process is misspecified. It may be hard to detect if

the sampling process deviates from the modelled form in many

real-world situations, and most real datasets are likely to violate

the BDM sampling process assumptions to some degree. An

example heterogeneous sampling through time is shown in

figure 10 for a dataset which has previously been analysed

with BDMs in [32]. Figure 10 shows the sampling proportion

through time of HIV sequence samples in the UK HIV Drug

Resistance Database [33]. Typical for HIV sequence databases,

the sample proportion is essentially zero throughout the

1980s, and there is a rapid increase in sampling effort through-

out the late 1990s and early 2000s, followed by a plateau after

2010 due to reporting delays. In [32], a BDM susceptible–

infected–recovered (SIR) model was fitted to HIV sequence

data from the UK under the assumption that the sampling rate
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jumped from zero to a constant rate, but the time span of the esti-

mated phylogenies ranged from 1978 to 2003 over which the

true sampling rate varied greatly.

Future work should explore how violation of sampling

assumptions may bias estimates of R0 when fitting BDM

SIR models.

The sequence of sample times may be informative about

the population size through time if the sampling process can

be correctly specified. We have shown how birth rates may

be estimated from the sequence of sample times if sampling

occurs according to the BDM assumptions, and this is possible

even if the sample rate is not known. BDMs implicitly use the

sequence of sample times to estimate birth and/or death rates,

and this is the case even if the sampling rate is not given, but

estimated. Comparisons of CoMs and BDMs should account

for the effects of sampling, and a fair comparison can be

obtained in the case of homochronous or serial-homochronous

sampling with unknown sample rate, so that the sample times

contain no information about population size and birth rates.

Previous simulation-based studies on fitting SIR epidemio-

logical models to sequence data [31] have purported to show

increased statistical efficiency of BDMs relative to CoMs, but

these studies did not control for the informativeness of

sample times, and the supposed advantage of BDM in these

simulations is likely to be due to the sampling model and not

the genealogical model. For example, the simulation studies

in [31] did not consider a homochronous sample, a misspeci-

fied sampling process, or the possibility of extending the

coalescent estimators to use sample time information. The

study in [31] used a Bayesian method, in contrast to our ML

methods, so some differences may also be due to the choice

of priors. Popinga et al. [31] hypothesized that the difference
in performance of BDMs and CoMs was due to the latter’s

use of a misspecified deterministic demographic process, but

in the context of exponential growth, we found very little

bias due to the deterministic approximations of the coalescent,

but large biases due to the effects of sampling.

Future research on BDMs may reveal ways to accommodate

more realistic sampling processes. For example, in [22], a piece-

wise constant sampling process was presented; however, this

also required the introduction of many more parameters to

describe the sampling process. If the sampling process is

known, a useful alternative to BDMs is to model the sampling

process in tandem with the coalescent. As we have shown, the

coalescent likelihood of a genealogy is approximately indepen-

dent of the likelihood of the sample times, and for complex

sampling processes it is much easier to model the genealogical

and sampling process separately and combine likelihoods than

to derive a joint likelihood. In the case where stochasticity is

important but the sampling process is complex, the combined

use of the CoM likelihood and parametric bootstrapping offers

a means to obtain reliable parameter estimates and associated

confidence intervals.
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