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Epithelial cells undergoing epithelial-to-mesenchymal transitions have often

been shown to behave as cancer stem cells, but the precise molecular connec-

tion remains elusive. At the genetic level, stemness is governed by LIN28/let-7

double inhibition switch, whereas EMT/MET is controlled by miR-200/ZEB

double inhibition circuit and LIN28 is inhibited by miR-200, coupling the

two modules. Here, using a specially devised theoretical framework to inves-

tigate the dynamics of the LIN28/let-7 system, we show that it can operate as a

three-way switch (between low, high and intermediate LIN28 levels termed

the D, U and hybrid D/U states) similar to the three-way operation of the

miR-200/ZEB circuit that allows for the existence of a hybrid epithelial/

mesenchymal (E/M) phenotype. We find significant correspondence between

the existence of the three states of the two circuits: E–D, M–U and E/M–D/U.

Incorporating the activation of OCT4 by LIN28, we find that the hybrid E/M

phenotype has high likelihood (when compared with either the E or M states)

to gain stemness. Combining the LIN28/let-7 regulation by NF-kB and

c-MYC, we find that NF-kB, but not c-MYC, elevates the likelihood of E/M

phenotype to gain stemness. Our results are consistent with emerging concept

that partial EMT can lead to stemness.
1. Introduction
Understanding cell fate decisions during tumour progression remains a major

research challenge in modern biology. For instance, metastasis and relapse, the

two deadliest aspects of cancer, continue to elude us and remain clinically insu-

perable [1]. Metastasis involves aberrant transitions between epithelial and

mesenchymal phenotypes, whereas tumour relapse is caused by wake-up of a

few dormant therapy-resistant cancer stem cells (CSCs) [2]. It is now established

that the genetic regulatory network for epithelial–mesenchymal transitions

(EMTs) is interconnected with the stemness regulatory network [2]. However,

the underlying dynamics and operative principles of these interconnections

between metastasis and stemness remain elusive. Understanding these principles

is likely to provide important clues for assisting therapeutic advances.

Metastases of carcinomas typically begin when epithelial (E) cells of the pri-

mary tumour undergo EMT to lose their cell–cell adhesion and gain migratory

and invasive mesenchymal (M) characteristics. These newly transformed motile

cells navigate through the extracellular matrix and enter the bloodstream as cir-

culating tumour cells (CTCs) [3]. These CTCs exit the bloodstream at multiple

organs and undergo a mesenchymal-to-epithelial transition (MET), regaining

their epithelial characteristics to establish micrometastases that later mature

into fully developed secondary tumours. Recent theoretical work has indicated

that the core decision network regulating carcinoma EMT/MET also allows for
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Figure 1. The regulatory network coupling EMT and stemness. (a) Novel modes of regulation in the LIN28/let-7 circuit. LIN28 promotes its own translation (green
solid line), and inhibits let-7 processing (orange solid line); let-7 promotes its own processing (red solid line) and inhibits LIN28 translation (black dashed line).
NF-kB activates both LIN28 and let-7, whereas c-MYC activates LIN28 and inhibits let-7. miR-200 inhibits LIN28, that translationally activates OCT4 (orange solid
arrow) that activates miR-200. (b) Effective circuit showing the LIN28/let-7 double negative feedback loop that receives external input signals from miR-200, c-MYC
and NF-kB; and has OCT4 as the output. The activation of miR-200 by OCT4 has not been considered in our current framework. A blue solid line shows conversion of
one species to another, a solid black arrow shows transcriptional activation, a solid black bar denotes transcriptional repression, and a black dashed line shows
microRNA-mediated translational repression.
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transition into a hybrid epithelial/mesenchymal (E/M) phe-

notype [4]. This hybrid E/M phenotype, often referred to as a

partial EMT (pEMT) state, has also been observed experimen-

tally in ovarian carcinoma cell lines [5]. Cells belonging to this

phenotype have combined epithelial (cell–cell adhesion)

and mesenchymal (motility) traits that enable them to migrate

collectively, as seen during wound healing and branching

morphogenesis [6]. In cancer, such cohort migration is mani-

fested as the migration of clusters of CTCs in the bloodstream,

as observed with lung, prostate and breast cancer patients

[7–10]. Such collective migration obviates the need for all cells

to detect external signals for migration and facilitates sub-

sequent rounds of dissemination [11]. Therefore, collective

migration of CTCs possibly plays an important functional role

in metastatic progression [6].

To successfully complete the last step of metastasis, i.e.

colonization, the CTCs that exit the bloodstream should self-

renew as well as regenerate the heterogeneity of the parental

tumour. These two traits are usually considered to be associ-

ated with stemness characterizing CSCs [2]. Recent studies

have shown that cells undergoing EMT acquire these stem-

cell- or tumour-initiating capabilities [12,13], through aberrant

activation of several pathways such as NF-kB, Notch, Wnt and

TGF-b [2]. However, how these signalling networks mediate

this interconnection between EMT and stemness has not yet

been elucidated. For example, it has been shown that mesench-

ymal cells can adopt stemness [12,13], yet the fundamental

question, whether hybrid E/M cells can also adopt stem-cell

characters, remains open. This fundamental question is also

associated with a major dilemma in the clinic—whether to iso-

late single CSCs or a cluster of CSCs in the bloodstream to

characterize the prognostic risk.

Addressing this question calls for understanding regula-

tion of both EMT/MET and stemness and elucidating the

operating principles of the connection between them. EMTs

are regulated by the miR-200/ZEB mutually inhibitory circuit

that operates as a three-way switch with the three possible

states being the epithelial, mesenchymal and hybrid E/M phe-

notypes [4]. Similarly, stemness is regulated by a mutually

inhibitory circuit between RNA binding factor LIN28 and

microRNA let-7 [14]. The LIN28/let-7 system is connected to

the miR-200/ZEB circuit in multiple ways—miR-200 inhibits

LIN28 directly [15], and LIN28 activates the pluripotency
marker OCT4 [16] that is linked to miR-200 [17]. Studies in

both embryonic development and reprogramming indicate

that cells with intermediate levels of OCT4 are closely

associated with maximum stemness (or pluripotency). Con-

sistently, both very high and very low levels of OCT4 lead to

differentiation into specific phenotypes [18–20]. Here, we

focus on the coupling of OCT4, LIN28/let-7 and miR-200/

ZEB. In addition, because the LIN28/let-7 circuit receives

external signals from the oncogene c-MYC and the inflamma-

tory response regulator NF-kB [21–24] (figure 1a,b), we also

investigate the effect of these signals on the coupling between

LIN28/let-7 and miR-200/ZEB circuits.

Here, we have devised a specific theoretical framework to

investigate the dynamics of the LIN28/let-7 double inhibi-

tory circuit and show that it can operate as a three-way

switch. Several previous studies show that mutually inhibi-

tory circuits—either those comprising two transcription

factors (canonical TF–TF toggle switch) or those comprising

a transcription factor and a microRNA (chimera TF-miR

toggle switch)—can act as three-way switches when one or

two of the components are self-activating [4,25–29]. Motiv-

ated by these studies, we expected the LIN28/let-7 circuit

will also allow tristability, because both LIN28 and let-7 are

self-activating elements [30–32]. However, because the

modes of regulation in the LIN28/let-7 circuit present

unique dynamical properties that are different from those of

the previously studied circuits, we had to devise a new theor-

etical framework. More specifically, modelling the dynamics of

the LIN28/let-7 circuit poses a special theoretical challenge

because it involves three unique regulatory mechanisms that

have not been modelled before: (i) translational self-activation

(of LIN28) [30,31], (ii) inhibition of microRNA processing

(of let-7 by LIN28) [14], and (iii) self-activation of microRNA

processing (of let-7) [32] (see table S1 in the electronic

supplementary material, §S1, for circuit details).

To devise the theoretical framework presented here, we

started from our previously devised framework for model-

ling miRNA-mediated translational repression [4,29]. We

have generalized this framework to include the novel

modes of regulation in the LIN28/let-7 circuit mentioned

earlier. With the new framework at hand, first, we investigate

the dynamics of the LIN28/let-7 system as a stand-alone cir-

cuit (i.e. when driven by miR-200 alone). Subsequently, we
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investigate the dynamics of the circuit when it is driven by

miR-200 in combination with external inputs from c-MYC

and NF-kB. It may be noted that we do not include the

regulation of miR-200 by OCT4 in our current model.

Exploiting our new model, we find that LIN28/let-7 can

operate as a three-way (ternary) switch between three poss-

ible states: (i) (high LIN28, low let-7) state—(1, 0) or up (U)

state, (ii) (low LIN28, high let-7) state—(0, 1) or down (D)

state, and (iii) (medium LIN28, medium let-7) state—(1/2,

1/2) or down/up (D/U) state. Importantly, we show that

these three states can typically be expected to correspond to

the mesenchymal, epithelial and hybrid E/M phenotypes,

respectively. Analysing the effects of external signals on

LIN28/let-7 circuit, we found that c-MYC and NF-kB drive

the circuit to (1, 0) and (1/2, 1/2) states, respectively. We

also show that intermediate levels of OCT4, the proposed read-

out for stemness, can be attained by intermediate levels of

LIN28, i.e. (1/2, 1/2) or D/U state. Because the (1/2, 1/2) or

D/U state can correspond to the hybrid E/M phenotype,

especially under the influence of NF-kB, we indicate that

E/M state is also likely to be associated with stemness.
2. Material and methods
2.1. Model formulation
We generalized and extended the recent theoretical framework

devised by Lu et al. [29] to incorporate the special modes of

regulation operative in the LIN28/let-7 circuit—inhibition and

self-activation of microRNA processing, and translational self-

activation. Effects of miR-200, c-MYC and NF-kB are incorporated

as external signals. The indirect feedback of LIN28 on miR-200

through OCT4 is not included in the current framework. Equations

(2.1) and (2.2) represent time evolution of the levels of mature

microRNA let-7 (m) and LIN28 protein (B), respectively.

We use shifted Hill functions to describe the effect of regu-

lation of one species by the other. Shifted Hill functions [4] are

defined as weighted sum of excitatory Hill function Hþ(X ) and

inhibitory Hill function H2(X ), thus Hs(X,l) ¼ H2(X ) þ
lHþ(X ), where the weight factor l represents the fold-change

in production rate owing to the regulation. Therefore, for acti-

vation, l . 1; for repression, l , 1; and for no effect, l ¼ 1. As

per our notation, lX,Y denotes the weight factor (l) for the

regulation of X on Y.

More specifically, the concentration of mature miRNA let-7 (m)

depends on the innate degradation rate of mature let-7 (depicted

by km), and innate processing rate of the precursors to mature

miRNAs (depicted by gm). This innate processing rate is affected

in two ways—it is decreased due to the inhibition of processing

by LIN28 (B), but it is increased owing to autocatalytic activity of

mature let-7 (m; figure 1a). Thus, two shifted Hill functions are mul-

tiplied to gm: Hs(B,lB,m) with lB,m , 1 (denoting inhibition by

LIN28 (B)), and Hs(m,lm,m) with lm,m . 1 (denoting self-activation

of let-7 (m)).

Therefore, the dynamics of the level of mature let-7 (m) is

governed by equation (2.1) given as

dm

dt
¼ gmHs(B, lB,m)Hs(m, lm,m)� kmm: (2:1)

Typically, miRNAs are more stable than the mRNAs [4], so we

can assume that mRNA always reaches steady states. The

steady-state level of the LIN28 mRNA (m) can be determined

simply by m ¼ gm/km, where gm and km are the production

and degradation rates for LIN28 mRNA (m), respectively.

Next, the concentration of LIN28 protein (B) depends on the

innate degradation rate of LIN28 (depicted by kB), and the
steady-state mRNA (m) levels times the innate translation rate of

m to B (depicted by gB). But, this innate translation rate is

decreased owing to the interference of mature let-7 (m) with the

translation, and increased due to the binding of LIN28 (B) to its

own mRNA promoting translation (figure 1a). Thus, two shifted

Hill functions are multiplied to mgB: Hs(m,lm,B) with lm,B , 1

(denoting inhibition by mature let-7 (m)), and Hs(B,lB,B) with

lB,B . 1 (denoting translational self-activation of LIN28 (B)).

Therefore, the dynamics of the level of LIN28 protein (B) is

governed by equation (2.2) given as

dB
dt
¼ gBmHs(m, lm,B)Hs(B, lB,B)� kBB: (2:2)

2.2. Incorporating the effects of input from miR-200,
NF-kB and c-MYC

When studying these effects, we incorporate in equations (2.1) and

(2.2), using the proper Hill functions, inhibition of LIN28 by miR-

200, activation of LIN28 by NF-kB and c-MYC, activation of let-7

by NF-kB and inhibition of let-7 by c-MYC. See the electronic

supplementary material, §2, for details on model formulation.

2.3. Computational methods
Matlab continuation method MATCONT [33] was used to calcu-

late the nullclines and bifurcations. All model parameters can

be found in the electronic supplementary material, §2, and

sensitivity analysis in the electronic supplementary material, §3.
3. Results
3.1. LIN28/let-7 can operate as a three-way switch
We start by analysing the LIN28/let-7 circuit when LIN28 is

inhibited by a constant level of miR-200 as an input signal. A

typical phase-space diagram (figure 2a) shows that the circuit

can have three coexisting stable states (three green solid cir-

cles). These states are (i) high LIN28 with low let-7—(1, 0)

or up (U) state, (ii) low LIN28 with high let-7—(0, 1) or

down (D) state, and (iii) medium LIN28 with medium

let-7—(1/2, 1/2) or down/up (D/U) state. This result is

consistent with experiments that identify not only the cells

with (high LIN28, low let-7) and (low LIN28, high let-7)

expression, but also the cells with concomitant expression

of both LIN28 and let-7—(medium LIN28, medium let-7)

[30,31]. Therefore, the LIN28/let-7 circuit can operate as a

three-way switch.

The EMT regulatory circuit miR-200/ZEB can also

operate as a three-way switch between epithelial (E),

mesenchymal (M) and hybrid E/M phenotypes [4]. These

phenotypes correspond to (high miR-200, low ZEB), (low

miR-200, high ZEB) and (medium miR-200, medium ZEB)

states, respectively [4]. Because miR-200 directly inhibits

LIN28, we expect to discover a correspondence between (E,

E/M, M), and the three states of the LIN28/let-7 circuit. To

test the expectation, we have analysed the range of existence

of the three possible states of LIN28/let-7 for miR-200 ran-

ging from pure epithelial levels to pure mesenchymal levels

(figure 2b). As seen in figure 2b, at very high levels of miR-

200 corresponding to the E phenotype, only the D—(0, 1)

state exists. Oppositely, at very low levels of miR-200 corre-

sponding to the M phenotype, only the U—(1, 0) state exists.

Conversely, at intermediate levels of miR-200 corresponding to

the hybrid E/M phenotype (approx. 5000–15 000 molecules
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[4]), the D/U—(1/2, 1/2) state can coexist with the U and D

states. In addition, for some range of intermediate miR-200

levels, the U and D states coexist. The bifurcation diagrams

also explain the asymmetry between EMT (reducing miR-200

levels) and MET (increasing miR-200 levels) as observed in

some experimental studies where the hybrid E/M phenotype

was attained during EMT [34], but not during MET [35].

Concurrently, the bifurcation diagram shows that cells have a

significantly lower likelihood to enter the D/U—(1/2, 1/2)

state during METs.

The results are consistent with experimental obser-

vations that epithelial cells typically have low LIN28 levels

with high let-7 levels; and mesenchymal cells typically

have high LIN28 levels with low let-7 levels [15,36]. There-

fore, we propose that cells belonging to the hybrid E/M

phenotype are likely to be in the (medium LIN28,

medium let-7) or D/U—(1/2, 1/2) state. To indicate this,

we added the cartoon of the hybrid E/M cells near the

D/U—(1/2, 1/2) state (for completeness, we added the car-

toon of the mesenchymal cells near the U—(1, 0) state and

that of the epithelial cells near the D—(0, 1) state). More

specifically, we expect this to be the case when the miR-

200 levels of the cells in the D/U state fall within the

range of miR-200 levels that correspond to the hybrid E/M

phenotype, i.e. 5000–15 000 molecules of miR-200 [4].
3.2. The effect of c-MYC
As is illustrated in figure 1b, c-MYC activates LIN28 and inhi-

bits let-7. The effect of c-MYC at different levels of miR-200 is

shown in figure 3. As can be seen, when miR-200 levels are

set to be 7000 molecules, a typical level for the E/M pheno-

type, the D/U—(1/2, 1/2) state exists for finite range of

c-MYC, and at higher c-MYC values, only the U state exists
and the circuit becomes monostable (figure 3a). However,

when the levels of miR-200 do not correspond to the E/M

phenotype, the range of existence of the D/U state decreases

significantly and the circuit becomes bistable or even

monostable (electronic supplementary material, §4).

Notably, even at intermediate levels of miR-200 (the blue

region highlighted in figure 3b), the D/U state can be main-

tained only at low levels of c-MYC. As c-MYC increases,

the miR-200 levels required to maintain the D/U state

increase significantly (figure 3b). These required levels of

miR-200 at high values of c-MYC, as suggested by the

model, are much larger than the levels of miR-200 that

define the E/M phenotype, i.e. 5000–15 000 molecules [4],

and rather correspond to the epithelial phenotype. Therefore,

at c-MYC levels higher than typical levels (approx. 30 000

molecules [37], vertical dotted brown line in figure 3b),

D/U state corresponds to the epithelial phenotype and not

to the hybrid E/M phenotype, i.e. high levels of c-MYC

drive the cell into the U state. These results are consistent

with experiments showing that overexpression of c-MYC

impairs wound healing [38], a typical example of transition

to E/M phenotype and then re-epithelialization.
3.3. The effect of NF-kB
As is illustrated in figure 1, NF-kB activates both LIN28 and

let-7. The effect of NF-kB at different levels of miR-200 is

shown in figure 4.

For intermediate levels of miR-200, the D/U—(1/2, 1/2)

state exists for a significant range of NF-kB levels as can be

seen from the bifurcation diagram of the dependence of

the LIN28 levels on NF-kB (figure 4a). Complementarily, for

intermediate levels of NF-kB, a bifurcation diagram of the

dependence of LIN28 levels on miR-200 points out that the
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than 60 000 molecules. Brown horizontal dotted line denotes the maximum estimated levels of NF-kB in a cell (50 000 molecules [39]). Areas within the green dashed
lines—horizontal in (c) and vertical in (d )—represent miR-200 levels that are associated with the hybrid E/M phenotype.
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D/U state exists for a significant range of miR-200 levels

(4000–12 000 molecules; figure 4b). This bifurcation diagram

also indicates an asymmetry between EMT (reducing the
level of miR-200) and MET (increasing the level of miR-200),

an asymmetry which has also been observed in previous

experimental and theoretical analysis [4,34,35].
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Figure 4c shows that with increasing NF-kB, the D/U

state exists for an increasing range of miR-200 levels. Impor-

tantly, for larger NF-kB values, this range of miR-200 levels

almost entirely overlaps with the range of miR-200 levels

that defines the hybrid E/M phenotype [4], thereby implying

that high levels of NF-kB tend to maintain cells in the D/U

state, and promote the correspondence between the D/U

state and the E/M phenotype. This result is consistent with

experiments showing that overexpression of NF-kB, which

maintains D/U state, promotes wound healing [40], an

example of cells moving collectively in the E/M phenotype.

Figure 4d shows the range of NF-kB values for which the

D/U state exists, at different fixed levels of miR-200. As can

be seen, for higher levels of miR-200, the D/U—(1/2, 1/2)

state exists for an increasing range of NF-kB levels. However,

at very high miR-200 levels that are associated with the epi-

thelial phenotype (more than 15 000 molecules [4]), the

minimum NF-kB levels required to enable the existence of the

D/U state are close to the maximum experimentally observed

levels of NF-kB (35 000 molecules in normal cells and probably

higher, up to 50 000 molecules, in cancer cells [39]).

3.4. The association between the hybrid E/M phenotype
and stemness

To further reveal the dependence of stemness likelihood on both

miR-200 and NF-kB, we construct the phase-space diagram

(two-parameter bifurcation diagram) shown in figure 5a. Each

phase corresponds to the coexistence of one or more phenotypes.

More specifically, the possible states are (i) phases with only one

phenotype—fDg and fUg, (ii) phases in which two phenotypes

coexist—fD, Ug and fD/U, Ug, and (iii) a phase in which all

three phenotypes can coexist—fD, D/U, Ug. The diverse

phases recapitulate the plasticity of cell phenotypes as driven
differently by miR-200 and NF-kB. The phases containing the

D/U state—fD, D/U, Ug and fD/U, Ug—exist for intermediate

values of miR-200, and become more prominent with increasing

levels of NF-kB, thus showing again that increasing values

of NF-kB stabilize the D/U state for intermediate levels of

miR-200 that correspond to the hybrid E/M phenotype.

It has been suggested that stemness is associated with inter-

mediate levels of OCT4—both too high and too low levels of

OCT4 lead the cell to different differentiation paths, thereby

depriving the cell of pluripotency [18–20]. Motivated by these

observations, we proceed to compute the dependence of the

levels of the pluripotency (stemness) marker OCT4 on its activa-

tor LIN28. OCT4 levels were calculated as a Hill’s function of

LIN28 levels (see electronic supplementary material, §2). We

chose a representative range of relative OCT4 levels that corre-

spond to high likelihood for stemness (0.25–0.65 relative to the

saturation level of OCT4 when it is activated by the maximum

level of LIN28) and mapped regions of likelihood for stemness

defined this way in the phase diagram. Note that the range of

OCT4 levels is expected to be cancer and even patient specific.

The results here for the specific ‘guessed range’ are presented

to illustrate the concept. We find high stemness likelihood in

the entire region of the fD, D/U, Ug phase, in part of the

region of the fD/U, Ug phase and in a part of the region of

the fD, Ug phase (figure 5b). Notably, the area associated with

stemness when cells are in the D/U state (area marked by

black dotted lines in figure 5b) is significantly larger than that

when cells are in the U state (area marked by red dotted lines

in figure 5b), especially when let-7 levels are not too low

(see the sensitivity analysis in the electronic supplementary

material, §3). Therefore, we propose that cells in the hybrid D/

U state are also likely to adopt stemness and not only cells in

the U state. In addition, with increasing NF-kB, the area associ-

ated with stemness decreases for the U state, but not for the
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D/U state (figure 5b), thereby implying that NF-kB can facilitate

the association of the D/U state and/or the E/M phenotype

with stemness.

In the light of the above, we predict that for some cancer

types, cells in the hybrid E/M phenotype might even be more

likely to adopt stemness when compared with cells in the

mesenchymal phenotype. This prediction is consistent with

some non-cancer cases: recent studies found that adult stem

cells such as epithelial stem cells (those that give rise to all

three layers of the skin), hepatic stellate cells (epithelial progeni-

tors in adult mouse livers) and trophoblast stem cells (precursors

of differentiated cells of the placenta) co-express both epithelial

and mesenchymal markers, and define the ‘metastable’ hybrid

E/M phenotype with stemness characteristics [41–43].
3.5. Association between dynamics of epithelial-
to-mesenchymal transition and stemness

We proceed to investigate the dynamics of LIN28/let-7 circuit

in response to external signal miR-200 that decreases in time

representing EMT (figure 6). The circuit starts in the D state,

and exhibits a transition from this state into the D/U state as

the levels of miR-200 decrease from levels corresponding to

epithelial phenotype (more than 15 000 molecules) to levels

corresponding to the E/M hybrid phenotype (5000–15 000

molecules). It stays at the D/U state for 4.25–6 days and

then goes through another transition into the U state as the

levels of miR-200 continue to decrease towards levels that

correspond to the mesenchymal phenotype (figure 6a).

More specifically, the miR-200 levels continue to decrease

until t ¼ 7 days (which is consistent with the typical time

for EMT [12]); therefore, we see that LIN28 levels saturate
only at t ¼ 7 days, and that they continue to increase even

after the cell enters the mesenchymal phenotype at t ¼ 6

days. A similar treatment of the circuit with miR-200 at

lower values of NF-kB significantly shortens the duration of

stay in the hybrid state before transitioning into the mesen-

chymal state (figure 6c). This behaviour is explained by our

previous observation that high levels of NF-kB maintain

cells in the hybrid or the D/U—(1/2, 1/2) state.

We also plot the relative levels of OCT4 during EMT. Some

cells in the E/M phenotype are likely to be in the D/U state

and thus have intermediate levels of OCT4 that represent like-

lihood for stemness (pluripotency). On the other hand, cells in

the mesenchymal phenotype are likely to be in the U state with

quite high levels of OCT4 and hence might have lower likeli-

hood for stemness (figure 6b,d). Because the exact levels of

LIN28 (and hence OCT4) depend on the level of NF-kB, the

latter determines the likelihood of cells in the hybrid E/M

and mesenchymal phenotypes to adopt stemness. However,

it is less probable that cells in the mesenchymal phenotype

will retain pluripotency (stemness), at least for the ‘guessed

range’ of OCT4 levels used here and along the specific path

of circuit dynamics as taken during these dynamic simulations.
4. Discussion
The LIN28/let-7 mutually inhibitory circuit is a key player in

connecting EMT and stemness. Although its recognized impor-

tance has led to intense experimental efforts [14–16], it has been

given limited theoretical attention to date. We have constructed a

theoretical framework to study the LIN28/let-7 circuit as a

stand-alone module, including its response to other players

connecting EMT and stemness: c-MYC and NF-kB.
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We find that the LIN28/let-7 circuit can act as a three-way

switch giving rise to three possible states—D, U and D/U that

we typically associate with the epithelial, mesenchymal and

hybrid E/M phenotypes, respectively. Experiments validate

our association of epithelial and mesenchymal cells with D

and U states, respectively [15,36]; however, direct measurements

of both LIN28 and let-7 are needed to validate our proposed

association of the D/U state with the E/M phenotype.

We also show that while c-MYC drives the cells towards a U

state, NF-kB can help to maintain the cells in a D/U state,

which corresponds to the hybrid E/M phenotype for high

NF-kB levels. Further, NF-kB also activates both miR-200 [44]

and ZEB [45], two sides of the EMT decision-making circuit,

thereby possibly stabilizing the E/M phenotype. Therefore,

we predict that NF-kB might facilitate the migration of CTCs

as a cluster of hybrid E/M cells. Our predictions are consistent

with the fact that triple negative breast cancer that has a consti-

tutively higher expression of NF-kB among different breast

cancer subtypes [46] has the highest percentage of hybrid

E/M cells in the CTCs [5].

Based on intermediate OCT4 levels as the readout for

pluripotency, we predict that cells belonging to the hybrid

E/M phenotype or equivalently those in the D/U—(1/2, 1/2)

state have relatively high likelihood to adopt stemness.

Moreover, for some cancers, the cells in the hybrid E/M pheno-

type might even show higher stemness likelihood than cells

of mesenchymal phenotype. Indeed, adult epithelial, tropho-

blast and hepatic stem/progenitor cells, as well as neoplastic

stem cells, co-express epithelial and mesenchymal markers

[41–43,47] in agreement with our model prediction. In

addition, our predictions are consistent with experiments

showing that clusters of CTCs (hybrid E/M phenotype)

have higher metastatic potential than the individual CTCs

(mesenchymal phenotype) [48] and the recent ‘EMT gradient

model’ proposing that cells undergoing pEMT, but not necess-

arily those undergoing complete EMT, lie in the ‘stemness

window’ [49].

Our proposed association of E/M phenotype with stem-

ness likelihood is also consistent with the fact that: during

metazoan development (type I EMT), glomerular epithelial

cells in the kidney undergo pEMT to attain traits of bipotent

kidney progenitors [50]; during tissue repair (type II EMT),

hybrid E/M cells function as bipotent adult hepatic progeni-

tors and repopulate the rat liver upon injury [51]; and during

metastases in ovarian and breast cancer (type III EMT), some

cells in hybrid E/M phenotype acquire stem-cell features and

can drive in vivo tumour growth, but mesenchymal cells lose

these properties significantly [52,53]. Furthermore, recent

studies show that the bipotent CSCs in breast and squamous

cell carcinoma often co-express both epithelial and mesench-

ymal markers [54,55] (see detailed discussion in the electronic
supplementary material, §5). These results support our

prediction that hybrid E/M cells can gain stemness.

Yet, to avoid possible confusion, it is important to clarify

that our results, showing significant likelihood of the hybrid

cells to adopt stemness, do not imply that epithelial pheno-

type cannot adopt stemness. More specifically, we show

that for high c-MYC levels, the D/U state is associated with

the epithelial phenotype, and not with the hybrid E/M one.

Given the association of the D/U state with stemness, this

result implies that epithelial cells are also likely to possess

stemness, especially when c-MYC is overexpressed. Indeed,

c-MYC is known to be overexpressed in cases where stemness

is associated with the epithelial phenotype—embryonic stem

cells [56] and induced pluripotent stem cells [35].

Our results indicate that tristability in LIN28/let-7 circuit

affords higher plasticity to the cells in both their epithelial–

hybrid–mesenchymal transitions as well as modulating

their stemness. Because EMT is no longer considered to be a

binary process [6,57,58], and stemness is being understood as

a reversible trait of cells rather than their fixed state [59], such

multistability, as also observed during transitions between

amoeboid and mesenchymal phenotypes [60], might be used

by cancer cells to adapt to their changing microenvironments.

Future theoretical studies of the circuits studying EMT

and stemness should consider the effect of activation of

OCT4 by miR-200 [17], inhibition of EMT by let-7 through

HMGA2 [36] and mutual inhibition between ZEB1/2 and

MET-inducing transcription factor OVOL1/2 [61], all of

which can introduce feedback loops in the regulatory circuit

we analysed and affect its dynamics.

To conclude, we present the first step towards compu-

tational modelling of the important interconnections between

EMT and stemness. More external signals from the tumour

microenvironment such as TGF-b and HIF-1a, along with

cell–cell communication through Notch signalling pathway,

can also be incorporated into our theoretical framework to

elucidate their effect on this interconnection. A better under-

standing of these interconnections holds promise for

improved therapeutic strategies to target therapy-resistant

CSCs as well as CTCs [2].
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