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Extracting information from S-curves of
language change

Fakhteh Ghanbarnejad†, Martin Gerlach†, José M. Miotto
and Eduardo G. Altmann

Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

It is well accepted that adoption of innovations are described by S-curves (slow

start, accelerating period and slow end). In this paper, we analyse how much

information on the dynamics of innovation spreading can be obtained from a

quantitative description of S-curves. We focus on the adoption of linguistic

innovations for which detailed databases of written texts from the last

200 years allow for an unprecedented statistical precision. Combining data

analysis with simulations of simple models (e.g. the Bass dynamics on com-

plex networks), we identify signatures of endogenous and exogenous factors

in the S-curves of adoption. We propose a measure to quantify the strength

of these factors and three different methods to estimate it from S-curves. We

obtain cases in which the exogenous factors are dominant (in the adoption

of German orthographic reforms and of one irregular verb) and cases in

which endogenous factors are dominant (in the adoption of conventions for

romanization of Russian names and in the regularization of most studied

verbs). These results show that the shape of S-curve is not universal and

contains information on the adoption mechanism.
1. Introduction
The term S-curve often amounts to the qualitative observation that the change

starts slowly, accelerates and ends slowly. Linguists generally accept that ‘the

progress of language change through a community follows a lawful course,

an S-curve from minority to majority to totality’ [1, p. 133] (see [2] for a

recent survey of examples in different linguistic domains). Quantitative analysis

is rare and extremely limited by the quality of the linguistic data, which in the

best cases have ‘up to a dozen points for a single change’ [2]. Going beyond

qualitative observation is essential to address questions like

(i) Are all changes following S-curves?

(ii) Are all S-curves the same (e.g. universal after proper re-scaling)?

(iii) How much information on the process of change can be extracted from

S-curves?

(iv) Based on S-curves, can we identify signatures of endogenous and

exogenous factors responsible for the change?

Large records of written text available for investigation provide a new

opportunity to quantitatively study these questions in language change [3,4].

In figure 1, we show the adoption curves of three linguistic innovations for

which words competing for the same meaning can be identified. Our method-

ology is not restricted to such simple examples of vocabulary replacement

and can be applied to other examples of language change and S-curves more

generally. Here, we restrict ourselves to data of aggregated (macroscopic)

S-curves because only very rarely one has access to detailed data at the individual

(microscopic) level (see [5] for an exception).

Data alone is not enough to address the questions listed above, it is also essential

to consider mechanistic models responsible for the change [2,6–9]. Dynamical pro-

cesses in language can also be described from the more general perspectives of

evolutionary processes [2,6,10] and complex systems [11–13]. In this framework,
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Figure 1. Examples of linguistic changes showing different adoption curves. We estimate the fraction of adopters r(t) by the relative frequency as
r(t) ¼

P
w nw

1 =
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q , where nw
q is the total number of occurrences (tokens) of variant q for the word w at year t. (a) The orthography of German

words that changed to ‘ss’ (q ¼ 1) from ‘ß’ (q ¼ 2) in the orthographic reform of 1996 (many words changed from ‘ss’ to ‘ß’ in the 1901 reform). (b) The
transliteration of Russian names ending with the letter ‘c’ when written in English (Latin alphabet), changed to an ending in ‘v’ (q ¼ 1) from endings in
‘ff ’ (q ¼ 2) or ‘w’ (q ¼ 3) (e.g. w ¼ ‘CapaTOB’ is nowadays almost unanimously written as ‘Saratov’, but it used to be written also as ‘Saratoff ’ or ‘Saratow’).
(c) The past form of the verb spill changed to its regular form ‘spilled’ (q ¼ 1) from the irregular form ‘spilt’ (q ¼ 2). The light curve shows the fit of equation
(1.2). The estimated parameters a and b are (a) â ¼ 0:218, b̂ ¼ 0:000 in 1901, and â ¼ 0:229, b̂ ¼ 0:000 in 1996; (b) â ¼ 0:000, b̂ ¼ 0:099; and
(c) â ¼ 0:001, b̂ ¼ 0:030. The corpus is the Google-ngram [3,4] plotted in the minimum (yearly) resolution, see the electronic supplementary material, section
I, for details on the data and section IIIB for details on the fit. (Online version in colour.)
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the adoption of new words can be seen as the adoption of inno-

vations [9,14–18]. One of the most general and popular models

of innovation adoption showing S-curves is the Bass model

[16,17]. In its simplest case, it considers a homogeneous popu-

lation and prescribes that the fraction of adopters (r) increases

because those that have not adopted yet (1 2 r) meet adopters

(at a rate b) and are subject to an external force (at a rate a).

The adoption is thus described by

dr(t)
dt
¼ (aþ br(t))(1� r(t)): (1:1)

The solution (considering r(t0) ¼ r0 and r(1) ¼ 1) is

r(t) ¼ a(1� r0)� (aþ br0)e(aþb)(t�t0)

�b(1� r0)� (aþ br0)e(aþb)(t�t0)
: (1:2)

It contains as limiting cases a symmetric S-curve (for a ¼ 0)

and an exponential relaxation (for b ¼ 0). The fitting of

equation (1.2) to the data in figure 1 leads to very different

a and b in the three different examples, strongly suggesting

that the S-curves are not universal and contain information

on the adoption process. For instance, orthographic reforms

are known to be exogenously driven (by language academies)

in agreement with b ¼ 0 obtained from the fit in panel (a).

In this paper, we investigate the shape and significance of

S-curves in models of adoption of innovations and in data

of language change. In particular, we estimate the contribution of

endogenous and exogenous factors in S-curves, a popular ques-

tion which has been addressed in complex systems more

generally [19–22]. The different values of a and b in equation

(1.1) are an insufficient quantification, e.g. because they fail to

indicate which factor is stronger. Here, we introduce a definition

for the relevance of different factors in a change. We then show

how this quantity can be exactly computed in different models

and propose three different methods to estimate it from the

time series of r(t). We compare the accuracy of the methods

using simulations of different network models and we apply

the methods to linguistic changes. We obtain that the exogenous
factors are responsible for the change in the German ortho-

graphic reforms, but it plays a minor role in the case of

romanized Russian names and in most of the studied English

verbs which are moving towards regularization.
2. Theoretical framework
Consider that i¼ 1, . . . , N!1 identical agents (assumption 1)

adopt an innovation. The central quantity of interest for us here

is r(t) ¼ N(t)=N, the fraction of adopters at time t. We assume

that r(t) is monotonically increasing from r0 ; r(0) � 0 to

r(1)¼ 1 and agents after adopting the innovation do not

change back to non-adopted status (assumption 2).

2.1. Endogenous and exogenous factors
In theories of language and cultural change, the importance of

different factors is a topic of major relevance, e.g. Labov’s

internal and external factors [1] and Boyd and Richerson’s differ-

ent types of biases in cultural transmission [10]. The first

question we address is how to measure the contribution of

different factors to the change. To the best of our knowledge,

no general answer to this question has been proposed and com-

puted in adoption models. As a representative case, we divide

factors as endogenous and exogenous to the population. Mass

media and decisions from language academies count as exogen-

ous factors while grassroots spreading as an endogenous factor.

In our simplified classification, Labov’s internal (external)

factors (to properties of the language [1]) are counted by us as

exogenous (endogenous), while Boyd & Richerson’s [10] direct

bias count as exogenous, whereas the indirect bias and

frequency-dependent bias count as endogenous.

Our proposal is to quantify the importance of a factor j as

the number of agents that adopted the innovation because of

j. More formally, let gi(t) be the adoption probability at time t
for agent i (who is in the non-adopted status). We assume

that gi can be decomposed in contributions of the diff-

erent factors j as gi(t) ¼
P

jg
j
i(t), where gj

i(t) is the adoption
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probability of agent i at time t because of factor j. If t�i denotes

the time agent i adopts the innovation, gj
i(t
�
i )=gi(t�i ) quantifies

the contribution of factor j to the adoption of agent i (the

adoption does not explicitly depends on t , t* and therefore

values of gj
i(t) for t , t* are only relevant in the extent that

they influence gj
i(t ¼ t�). In principle, the factor gj

i(t
�
i )=gi(t�i )

can be obtained empirically by asking recent adopters for

their reasons for changing, e.g. for j ¼ exogenous (endogen-

ous) one could ask: How much advertisement (peer pressure)

affected your decision? We define the normalized quantification

of the change in the whole population due to factor j as an

average over all agents

Gj ¼ 1

N

XN

i¼1

gj
i(t
�
i )

gi(t�i )
: (2:1)

In order to show the significance of definition (2.1), and

how it can be applied in practice, we discuss how gj
i and Gj

can be considered in different models. Endogenous (endo) fac-

tors happen due to the interaction of an agent with other

agents (internal to the population). They are therefore expected

to become more relevant as the adoption progress (for increas-

ing r). Exogenous factors (exo), on the other hand, are related

to a source of information (external to the population) which

has no dependence on r or time (assumption 3). For simplicity,

we report G ; Gexo (as Gendo ¼ 1� Gexo).
2.2. Population dynamics models
Consider as a more general form of equation (1.1)

_r(t) ;
dr(t)

dt
¼ g(r(t))(1� r(t)), (2:2)

where g(r(t)) is the probability that the population of non-

adopters (1 2 r(t)) switches from non-adopted status (0) to

adopted status (1) at a given density of r. In epidemiology,

g(r) is known as force of infection [23]. As agents are identical

(assumption 1) and r(t) is invertible (assumption 2), we can

associate gj
i(t
�
i ) with gj(r) and gi(t�i ) with g(r). Introducing

g(r(t)) from equation (2.2) in the continuous time extension

of definition (2.1), we obtain

Gj ;
ð1

0

gj(r)

g(r)
dr ¼

ð1

0

gj(r)
1� r

_r
dr ¼

ð1

0

gj(t)
g(t)

_r(t) dt: (2:3)

This equation shows that the strength of factor j is obtained

by averaging its normalized strength gj(r)=g(r) over the

whole population or, equivalently, over time (considering

the rate of adoption _r(t)).
When only exogenous and endogenous factors are taken

into consideration, g(r) ¼ gexo þ gendo in equation (2.2).

Here, assumption 3 mentioned above corresponds to con-

sider that the adoption happens much faster than the

changes in the exogenous factors so that it can be considered

independent of time. Therefore, gexo ¼ g(r ¼ 0). Any change

of g with r is an endogenous factor and gendo(r) increases

with r because the pressure for adoption increases with the

number of adopters.

For the case of the Bass model defined in equation (1.1),

g(r) ¼ aþ br, gendo ¼ a, gexo ¼ br and from equation (2.3)

we obtain

G ; Gexo ¼ a
b

loge
aþ b

a

� �
: (2:4)
The correspondence of a and br to exogenous (innovators)

and endogenous (imitators) is a basic ingredient of the Bass

model [16] (In our simple model, all agents are identical.

The first adopters (innovators) are determined stochastically

by the exogenous factor a, while agents adopting at the end

of the S-curve (imitators) are more susceptible to the

endogenous factor br). However, it is only through equation

(2.4) that the importance of these factors to the change can be

properly quantified. For instance, the case a ¼ b suggests

equal contribution of the factors, but equation (2.4) leads to

G ¼ loge 2 � 0:69 . 0:5 and therefore shows that the exogen-

ous factors dominate (are responsible for a larger number of

adoptions than the endogenous factors). This new insight on

the interpretation of the classical Bass model illustrates the

significance of equation (2.1) and our general approach to

quantify the contribution of factors.

2.3. Binary-state models on networks
Another well-studied class of models inside our framework

considers agents characterized by a binary variable s ¼ f0, 1g
connected to each other through a network. We focus on

models with a monotone dynamics (assumption 2), such as

the Bass, Voter and Susceptible Infected models, which are

defined by the probability Fk,m of switching from 0 to 1 given

that the agent has k neighbours and m neighbours in state 1

[24]. The one-dimensional population dynamics model in

equation (2.2) can be retrieved for simple networks (e.g. fully

connected or fixed degree). In the general case, we use the

framework of approximate master equations (AME) [25,26]

(see the electronic supplementary material, section II), which

describes the stochastic binary dynamics in a random network

with a given degree distribution Pk. Assuming as before

(assumption 3) that the exogenous contribution is given by

transitions that occur when no neighbour is infected, i.e.

gexo(k, m) ¼ Fk, 0, we obtain the exogenous contribution as

(see the electronic supplementary material, section IIB)

G ¼
X

k

Pk

Xk

m¼0

ð1

0

sk,mFk,0dt, (2:5)

where sk,m ¼ sk,m(t) is the fraction of agents of the k,m class in

state 0.
3. Time-series estimators
In reality, one usually has no access to information on indi-

vidual agents and only the aggregated curve r(t) is

available. This means that G cannot be estimated by

equations (2.1) or (2.5). Here, we propose and critically dis-

cuss the accuracy of three different methods to estimate G
from the S-curve r(t) obtained from either empirical or surro-

gate data. All methods are inspired by the simple population

model discussed above, but can be expected to hold also in

more general cases. Below we summarize the main idea of

the three methods, details on the implementation appear in

the electronic supplementary material, section III.

Method 1, fit of S- and exponential curves: We fit equation

(1.2) by minimizing the least-square error with respect to

the observed time series in the two limiting cases: (i) a ¼ 0,

symmetric S-curve (endogenous factors only) and (ii) b ¼ 0,

exponential curve (exogenous factors only). Assuming
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Figure 2. Application of time-series estimations to surrogate data. The Bass (a,b) and threshold (c,d ) dynamics with parameters a ¼ 0.1 and b ¼ 0.5 were
numerically solved in the AME framework for scale-free networks (with degree distribution P(k) � k�g with g � 2:47 for k [ [2, 50] such that kkl ¼ 4).
(a,c) Adoption curve r(t) ( fraction of adopted agents over time). (b,d ) Numerical estimate of g(r), obtained from r(t) by inverting equation (2.2). Dashed
curves correspond to the fit of equation (1.2) to r(t). Estimations of G correspond to the area between the horizontal grey line (g(r) ¼ â) and the solid (~G)
or dashed (Ĝ) curves in (b,d ). Results: Bass G ¼ 0:397, L ¼ 0:999, Ĝ ¼ 0:415, ~G ¼ 0:400; threshold G ¼ 0:347, L ¼ 0:988, Ĝ ¼ 0:314, ~G ¼ 0:352.
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normally distributed errors (which generically vary in time),

we calculate the likelihood of the data given each model [27].

The normalized likelihood ratio L of the two models indicates

which curve provides a better description of the data [28].

The critical assumption in this method (to be tested below)

is to consider the value of L as an indication of the predomi-

nance of the corresponding factor, i.e. L . 0.5 indicates

stronger exogenous factors (G . 0.5) and L , 0.5 stronger

endogenous factors (G , 0.5). This method does not allow

for an estimation of G, but it provides an answer to the ques-

tion of the most relevant factors. The two simple one-

parameter curves are unlikely to precisely describe many

real adoption curves r(t). However, we expect that they will

distinguish between cases showing a rather fast/abrupt

start at t0 (as in the exponential/exogenous case) from the

ones showing a slow/smooth start (as in the S-curve/

endogenous case). For this distinction, the t �. 0 is the crucial

part of the r(t) curve because for t!1 the symmetric

S-curve approaches r ¼ 1 also exponentially.

Method 2, fit of generalized S-curve: We fit equation (1.2) by

minimizing the least-square error with respect to the time

series and obtain the estimated parameters â and b̂. By insert-

ing these parameters in equation (2.4), we compute Ĝ as an

estimation of G.

Method 3, estimation of g(r): We estimate g(r) from equation

(2.2) by calculating a (discrete) time derivative _r at every point

r(t). From a (smoothed) curve of g(r), we consider g(0) to be

the exogenous factors, write gendo¼ g(r) 2 g(0) and obtain

an estimation ~G of G from equation (2.3). The advantage of

this non-parametric method is that it is not a priory attached

to a specific g(r) and therefore it is expected to work whenever

a population dynamics equation (2.2) provides a good

approximation of the data.
4. Application to network models
Here, we investigate time-series r(t) obtained from simulations

of models in which we have access to the microscopic
dynamics of agents. Our goal is to measure G on different

models and to test the estimators (L, ~G, Ĝ) defined in the pre-

vious section. We consider two specific network models in the

framework described in §2.3, which are defined fixing the net-

work topology (in our case random scale-free) and the

function Fk,m (the adoption rate of an agent having m out of

k neighbours that already adopted) as [24,25]

Bass model: Fk,m ¼ aþ b
m
k

, (4:1)

and

Threshold: Fk,m ¼
a, m=k , 1� b
1, m=k � 1� b

�
: (4:2)

In both cases, when no infected neighbour is present

(m ¼ 0), the rate is Fk,0 ¼ a and therefore the parameter a con-

trols the strength of exogenous factors. Analogously, b controls

the increase of Fk,m with m and therefore the strength of

endogenous factors. Given a network and values of a and b,

we obtain numerically both the time-series r(t) (using the

AME formalism [25,26]; electronic supplementary material,

section IIC), and the strength of exogenous factors G from

equation (2.5). Typically, these models cannot be reduced to

a one-dimensional population dynamics model and therefore

the estimators Ĝ and ~G (based on r(t)) differ from the

actual G. As a test of our methods, we compare the exact G
to L, Ĝ and ~G.

In figure 2, we apply our time-series analysis to the two

models defined above with parameters a ¼ 0.1 and b ¼ 0.5.

Method 1 provides L . 0.5 in both cases, incorrectly identify-

ing that the exogenous factor is stronger. Furthermore, ~G
(Method 3) provides a better estimation of G than Ĝ
(Method 2). This is expected since the estimation Ĝ is based

on a straight line estimation of g(r), (âþ b̂r), while ~G admits

more general function (see figure 2b,d). The estimations are

better for the Bass model than for the threshold dynamics, con-

sistent with the better agreement between r(t) and the fit of

equation (1.2) in panel (a) than in panel (c).
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In figure 3, we repeat the analysis of figure 2 varying the par-

ameters a,b in equation (4.1) and (4.2), while equation (2.5) gives

the true value of G. The parameter space a,b is divided into two

regions: one for which the exogenous factors dominate G . 0.5

(below the red dashed line G¼ 0.5) and one for which the

endogenous factors dominate G , 0.5 (above the red dashed

line G ¼ 0.5). In the Bass dynamics, the division between these

regions corresponds to a smooth (roughly straight) line. In the

threshold model, a more intricate curve is obtained, with pla-

teaus on rational values of b reflecting the discretization of the

threshold dynamics in equation (4.2) (particularly strong for

the large number of agents with few neighbours). A strong indi-

cation of the limitations of the L and Ĝ estimators is that the L ¼
0.5 (panel (d)) and Ĝ ¼ 0:5 (panel (e)) lines show non-monotonic

growth in the a,b space. This artefact disappears using the ~G esti-

mator. Regarding the relative errors of the methods 2 and 3

(colour code), the results confirm that ~G is the best method

and provides a surprisingly accurate estimation of G. Compar-

ing the different models, the estimations for Bass are better

than for the threshold dynamics (for the same parameters

(a,b)). The minimum errors are obtained for b � 0, while for a
� 0 maximum errors for both methods are observed.
5. Application to data
We now turn to the analysis of empirical data taken from

the Google-ngram corpus [3,4], see [29] and the electronic
supplementary material, section I. We focus on the three

cases reported in figure 1.

(a) German orthographic reforms: The 1996, orthography

reform aimed to simplify the spelling of the German

language based on phonetic unification. According to this

reform, after a short vocal one should write ‘ss’ instead of

‘ß’, which predominated since the previous reform in 1901.

This rule makes up over 90% of the words changed by the

reform [30]. We combine all words affected by this rule to

estimate the strength of adoption of the orthographic

reform, i.e. r(t) is the fraction of word tokens in the list of

affected words written with ‘ss’.

Although following the reform was obligatory at schools,

strong resistance against it led to debates even in the Federal

Constitutional Court of Germany [31]. For example, ‘6 years

after the reform, 77% of Germans consider the spelling

reform not to be sensible’ [30]. These debates show that

besides the exogenous pressure of language academies,

endogenous factors can be important in this case also, either

for or against the change.

(b) Russian names: Since the nineteenth century, there have

been different systems for the romanization of Russian

names, i.e. for mapping names from the Cyrillic to the

Latin alphabet [32]. These systems can be seen as exogenous

factors. Alternatively, imitation from other authors can be

considered as endogenous factors. All of the systems suggest

a unique mapping from letter ‘c’ to ‘v’ (e.g. Lpmnpdprpc to
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Kolmogorov). Variants to this official romanization system

are ‘ff’ or ‘w’ (e.g. Kolmogorow and Kolmogoroff ) which

were used in different languages such as German and Eng-

lish. Here, we study an ensemble of 50 Russian names

ending in either ‘-pc’ or ‘-ec’ that were used often in English

(en) and German (de). For each of these two languages, we

combine all words (tokens) in order to obtain a single curve

r(t) measuring the adoption of the ‘v’ convention.

(c) Regularization verbs in English: A classical studied case

of grammatical changes is regularization of English verbs

[33,34]. From 177 irregular verbs in Old English, 145 cases

survived in Middle English and only 98 are still alive [33].

Irregular verbs coexist with their regular (past tense written

by -ed) competitors, even if dictionaries may only present

irregular forms [3]. Having an easier grammar rule or a

rule aligned with a larger grammatical class are good motiv-

ations to use more often regular forms. Other potential

exogenous factors which favour works against regularization

can be dictionaries and grammars. However, there are also

cases of verbs that become irregular [3,35]. We analyse 10

verbs that exhibit the largest relative change. In eight cases,

regularization is observed.

Besides the linguistic and historical interest in these three

cases, there are also two practical reasons for choosing these

three simple spelling changes: (i) they provide data with high

resolution and frequency and (ii) they allow for an unam-

biguous identification of ‘competing variants’, a difficult

problem in language change [36]. The last point allows us

to concentrate on the relative word frequency (as defined in

figure 1) which we identify with the relative number of adop-

ters r(t) in the models of previous sections. The advantage of

investigating relative frequencies, instead of the absolute
frequency of usage of one specific variation, is that they are

not affected by absolute changes in the usage of the word.

Figure 4 shows estimations of the strength of exogenous

factors G (using the methods of §3) in the three examples of lin-

guistic change described above. In line with the definition

proposed in §2, G is interpreted as the fraction of adoptions

because of exogenous factors. Besides the most likely estimation

obtained for the complete datasets (red �), we have performed

a careful statistical analysis (based on bootstrapping) in order to

determine the confidence of our estimations (grey box plots).

We first discuss the performance of the three methods

Method 1: The estimation of the likelihood L that the

exponential fit (exogenous factors) is better than the symmetric

S-curve fit (endogenous factors) resulted almost always in a cat-

egorical decision (i.e. L ¼ 0 or L ¼ 1). This is explained by the

large amount of data that makes any small advantage for one

of the fits to be statistically significant. Naively, one could inter-

pret this as a clear selection of the best model. However, our

bootstrap analysis shows that in most cases the decision is not

robust against small fluctuations in the data (grey boxes fill

the interval L [ [0, 1]). In these cases, our conclusion is that

the method is unable to determine the dominant factors

(endogenous or exogenous).

Method 2: It generated the most tightly constrained esti-

mates of G. The precision of the estimations of the strength

of the exogenous factors G varied from case to case but

remained typically much smaller than 1 (with the exception

of the verb cleave). In all cases for which Method 1 provided

a definite result, Method 2 was consistent with it. This is not

completely surprising considering that the fit of the curve

used in Method 2 has as limiting cases the curves used in



10−2

103 104 105 106 107 108 109 103 104 105 106 107 108 109

10−1 1 10 10−2 10−1 1 10
time sampling: Dt time sampling: Dt

0

0.2

0.4

0.6

0.8

1.0

G

0

0.2

0.4

0.6

0.8

1.0

G

(Bass dynamics)

method 2
method 3

(threshold dynamics)

finite population: N finite population: N

(a) (b)

(c) (d)
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the fit by Method 1. The advantage of Method 2 is that

it works in additional cases (e.g. the Russian names), it

provides an estimation of G (not only a decision whether

G . 0.5), and it distinguishes cases in which both factors con-

tribute equally (verb smell) from those that data is unable to

decide (verb cleave).

Method 3: The results show large uncertainties and are

shifted towards large values of G (in comparison to the two

previous methods). In the few cases showing narrower uncer-

tainties, an agreement with Method 2 is obtained in the

estimated G (verbs wake and burn) or in the tendency G ,

0.5 (Russian names in German). However, for most of the

cases the uncertainty is too large to allow for any conclusion.

The reason of this disappointing result is that Method 3 is

very sensitive against fluctuations. For instance, it requires

the computation of the temporal derivative of r. In simu-

lations, this can be done exactly and the method provided

the best results in §4. However in empirical data, discretiza-

tion is unavoidable (in our case we have yearly resolution).

Furthermore, fluctuations in the time series become magni-

fied when discrete time differences are computed (see the

electronic supplementary material, section IIIC for a descrip-

tion of the careful combination of data selection and

smoothing used in our data analysis). In order to test these

hypotheses, in figure 5 we test the robustness of Methods 2

and 3 against discretization in time—panels (a,b)—and popu-

lation—panels (c,d )—for the model systems treated in §4. We

observe that Method 3 is less robust than Method 2, showing

a bias towards larger G for temporal discretizations and

broad fluctuations for population discretizations. These find-

ings can be expected to hold for other types of noise and are

consistent with our observations in the data.
We now interpret the results of figure 4 for our three

examples (see the electronic supplementary material, figures

S1–S4, for the adoption curves of individual words)

(a) Results for the German orthographic reform indicate a

stronger presence of exogenous factors, consistent with

the interpretation of the (exogenous) role of language

academies in language change being dominant.

(b) The romanization of Russian names indicates a prevalence of

endogenous factors. Most systems that aim at making the

romanization uniform have been implemented when the

process of change was already taking place (The change

starts around 1900 and first agreement is from 1950).

Moreover, the implementation of these international

agreements is expected to be less efficient than the legally

binding decisions of language academies (such as in

orthographic reforms).

(c) The regularization of English verbs shows a much richer

behaviour. Besides some unresolved cases (e.g. the verb

cleave), the general tendency is for a predominance of

endogenous factors (e.g. the verbs spill and light), with

some exceptions (e.g. the verb wake).

6. Discussions and conclusion
In summary, in this paper we combined data analysis and

simple models to quantitatively investigate S-curves of voca-

bulary replacement. Our data analysis shows that linguistic

changes do not follow universal S-curves (e.g. some curves

are better described by an exponential than by a symmetric

S-curve and fittings of equation (1.2) leads to different

values of â and b̂). These conclusions are independent of
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theoretical models and should be taken into account in future

quantitative investigations of language change.

Non-universal features in S-curves suggest that infor-

mation on the mechanism underlying the change can be

obtained from these curves. To address this point, we con-

sidered simple mechanistic models of innovation adoption

and three simplifying assumptions (identical agents, mono-

tonic change and constant strength of exogenous factors).

We introduced a measure (equation (2.1)) of the strength of

exogenous factors in the change and we discussed three

methods to estimate it from S-curves. Our results show a con-

nection between the shape of the S-curves and the strength of

the factors (figure 3). Exogenous factors typically break sym-

metries of the microscopic dynamics and lead to asymmetric

S-curves. Thus the crucial point in all methods is to quantify

how abrupt (exogenous) or smooth (endogenous) the curve is

at the beginning of the change. We verified that both our pro-

posed measure and methods correctly quantify the role of

exogenous factors in binary-state network models. In empiri-

cal data, the finite temporal resolution and other fluctuations

have to be taken into account in order to ensure the results of

the methods are reliable. These findings and the methods
introduced in this paper—data analysis and measure of

exogenous factors—can be directly applied also to other

problems in which S-curves are observed [14–17].

S-curves provide only a very coarse-grained description

of the spreading of linguistic innovations in a population.

For those interested in understanding the spreading mechan-

ism, the relevance of our work is to show that S-curves can be

used to discriminate between different mechanistic descrip-

tions and to quantify the importance of different factors

known to act on language change. In view of the proliferation

of competing models and factors, it is essential to compare

them to empirical studies, which are often limited to aggre-

gated data such as S-curves. Furthermore, quantitative

descriptions of S-curves quantify the speed of change and

predict future developments. These features are particularly

important whenever one is interested in favouring conver-

gence (e.g. the agreement on scientific terms can be crucial

for scientific progress [37] and dissemination [38]).
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