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Abstract

Big data has transformed fields such as physics and genomics. Neuroscience is set to collect its 

own big data sets, but to exploit its full potential, there need to be ways to standardize, integrate 

and synthesize diverse types of data from different levels of analysis and across species. This will 

require a cultural shift in sharing data across labs, as well as to a central role for theorists in 

neuroscience research.

Big data, the buzz phrase of our time, has arrived on the neuroscientific scene, as it has 

already in physics, astronomy and genomics. It offers enlightenment and new depths of 

understanding, but it can also be a bane if it obscures, obstructs and overwhelms. The arrival 

of big data also marks a cultural transition in neuroscience, from many isolated ‘vertical’ 

efforts applying single techniques to single problems in single species to more ‘horizontal’ 

efforts that integrate data collected using a wide range of techniques, problems and species. 

We face five main issues in making big data work for us.

First, data in neuroscience exist at an astonishing range of scales of both space and time. 

Neuroscientific data are obtained from a wide range of techniques, from patch clamping to 

optogenetics to fMRI (Fig. 1). Most of these techniques are used one at a time. One lab will 

record spikes from an array of neurons, but not be able to determine which types of neurons 

they are or how they are connected to other neurons. Another lab will reconstruct the wiring 

diagram of the same circuit, but without recording data to identify the properties of the 

reconstructed neurons. In some heroic cases, functional data have been laboriously 

combined with anatomical reconstructions1, but rarely if ever in a broad behavioral context.
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Different techniques differ also in concepts and vocabularies, in background assumptions 

and experimental norms. Decision-making, for example, might be studied at the level of 

populations of single-cell recordings in monkeys or by fMRI in humans or by lesions in rats 

or by molecular and optical techniques in mice. These differences mean that standardization 

in neuroscience must be made relative to a technique and that cross-level and cross-

technique data integration cannot easily be automated. Standardizing data collected with a 

single technology is not trivial, making meaningful causal relationships among data sets 

obtained with very different technologies even more difficult to achieve.

Second, different animal models are used to study different problems: flies, worms, fish, 

mice, rats, monkeys and humans all have their place. It is often unclear how to extrapolate 

from worm data to a mammalian nervous system, for example, or from in vitro preparations 

to in vivo preparations. Each model has its distinct virtues, and new efforts to integrate 

information across species and technologies may pay off handsomely. But this will require a 

deepened appreciation of comparative and evolutionary neurobiology.

It has been said that “nothing in neuroscience makes sense except in the light of behavior”2. 

Traditionally, neuroscientists have restricted the range and richness of behavioral 

measurements to keep the collection and interpretation of correlated data from neurons 

manageable. This strategy constrains our understanding of how the brain supports the full 

range of behaviors. Big data is making it possible to record from the same set of neurons 

while the subject engages in a much richer set of behaviors. Behavioral research will greatly 

benefit from the application of machine learning techniques that allow fully automated 

analysis of behavior in freely moving animals3-5. The challenge is to discover the causal 

relationships between big neural data and big behavioral data.

Third, as things stand in neuroscience, integration of functional data is mainly tackled by 

individual labs and by those with whom they collaborate. Such a strategy of ‘every tub on its 

own bottom’ depends on individuals to absorb information, communicate with others in the 

same subfield, and otherwise keep up. Meetings, lab visits, publications, review articles and 

so forth have been the mainstay of this form of integration. Although powerful and 

productive and a source of innovation, this style has limits. With increases in numbers of 

laboratories and publications, it is hard for individuals to keep up with the latest technology 

and harder still to keep data from slipping into oblivion, including data whose significance 

can be appreciated only later when the science catches up with the technology. This will 

require a cultural shift in the way that data are shared across labs.

Note too that this kind of integration is essentially vertical, in the sense that it is largely 

directed toward one particular problem, going up and down the organizational levels on that 

problem. Horizontal integration of data across a range of problems—for example, learning, 

decision-making, perception, emotion and motor control—is even harder to achieve in one 

laboratory. There is just too much data for one laboratory to get its collective head around.

A goal of the BRAIN Initiative6 is to record and manipulate a large number of neurons 

during extended, behavioral experiments, to identify the neurons recorded from, to 

reconstruct the circuit that gave rise to the activity, and to relate the combined data to 
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behavior—all in the same individual. Although this may seem like a pie-in-the-sky 

experiment, it is within reach in some species, such as the nematode worm Caenorhabditis 

elegans, whose neuronal connectivity is already known, and the transparent larval zebrafish, 

where it is possible to record simultaneously from most of its 100,000 or so neurons. To 

accomplish these ambitious goals will take teams of closely coordinated researchers with 

complementary expertise.

Fourth, as data sets grow and become more complex, it will become more and more difficult 

to analyze and extract conclusions. In the worst case scenario, the data may not be reducible 

to simpler descriptions. Here we need to rely on new approaches to analyzing data in high-

dimensional spaces using pattern-searching algorithms that have been developed in statistics 

and machine learning.

To illustrate, consider the project of Vogelstein et al.7, whose aim was to understand in 

Drosophila larvae the causal role of each of 10,000 neurons in producing a simple behavior 

in the animal’s repertoire, such as turning or going backwards. Drawing on over 1,000 

genetic lines and using optogenetic techniques to stimulate individual neurons in each line, 

they generated a basic data set consisting of correlations between stimulated identified 

neurons and a behavioral output. (Notice that the data set would have been far more massive 

had they stimulated neurons two or three or more at a time.) To find patterns in their huge 

accumulation of correlational data, they fed the data to an unsupervised learning program, 

which yielded a potential understanding of links between neurons and behavior. 

Correlational data could enhance understanding of the connectional structure to address 

questions of circuitry. Nevertheless, the methodological significance of the project is that is 

shows how new tools can be put to work to find patterns in data obtained from networks of 

neurons, patterns that emerge only from using new analytic tools on very large data sets.

The statistical design of these experiments will be critical to insure that data sets are 

carefully calibrated, are of sufficient power to admit analysis, and can be used by other 

researchers who want to ask different questions. This is not an easy process and requires a 

level of planning and quality control that goes beyond most exploratory experiments that are 

undertaken in most laboratories8. Here again, a modest cultural change can make a large 

impact.

Fifth, at some point along the Baconian rise of ever larger and more complex data sets, a 

deeper understanding should emerge from the accumulated knowledge, as it has in other 

areas of science. What we have today is a lot of small models that encompass limited data 

sets. These models are more descriptive than explanatory. Theory has been slow in coming. 

One obstacle is that sometimes theorists do not clearly convey what they propose, perhaps 

because they seek safety in needlessly complex mathematics or because they are too remote 

from the experimental base to undergird their theoretical ideas. Any of these issues can 

detract from productive ideas. This can change.

What we contemplate are modest cultural changes, wherein some neuroscientists are mainly 

theorists, with appropriate grant support to make the research feasible. The term “theorist” 

enjoys an uneven reputation in neuroscience, but serious scholars with this portfolio do now 
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exist, although they tend to be in short supply. We need to cultivate a new generation of 

computationally trained researchers who are aware of the richness of data and can draw on 

knowledge from many laboratories, courageous enough to make judicious simplifications 

and to have their ideas tested, and imaginative enough to generate interesting, testable large-

scale ideas.
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Figure 1. 
The spatiotemporal domain of neuroscience and of the main methods available for the study 

of the nervous system in 2014. Each colored region represents the useful domain of spatial 

and temporal resolution for one method available for the study of the brain. Open regions 

represent measurement techniques; filled regions, perturbation techniques. Inset, a cartoon 

rendition of the methods available in 1988, notable for the large gaps where no useful 

method existed9. The regions allocated to each domain are somewhat arbitrary and represent 

our own estimates. EEG, electroencephalography; MEG, magnetoencephalography; PET, 

positron emission tomography; VSD, voltage-sensitive dye; TMS, transcranial magnetic 

stimulation; 2-DG, 2-deoxyglucose.
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