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Abstract

Surfactant proteins (SP)-A and SP-D (SP-A/-D) play important
roles in numerous eosinophil-dominated diseases, including
asthma, allergic bronchopulmonary aspergillosis, and
allergic rhinitis. In these settings, SP-A/-D have been shown
to modulate eosinophil chemotaxis, inhibit eosinophil
mediator release, and mediate macrophage clearance of
apoptotic eosinophils. Dysregulation of SP-A/-D function
in eosinophil-dominated diseases is also not uncommon.
Alterations in serum SP-A/-D levels are associated with
disease severity in allergic rhinitis and chronic obstructive
pulmonary disease. Furthermore, oligimerization of SP-A/-D,
necessary for their proper function, can be perturbed by
reactive nitrogen species, which are increased in eosinophilic
disease. In this review, we highlight the associations of

eosinophilic lung diseases with SP-A and SP-D levels and
functions.
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Clinical Relevance

This review summarizes the functions of surfactant proteins A and
D (SP-A/-D) in the lung and proposes several mechanisms by
which SP-A/-D may regulate eosinophil activity and function in
inflammatory airway diseases. Understanding how SP-A/-D
regulate airway inflammation will help us to develop novel
strategies to treat lung diseases in which eosinophils play an
important role in disease pathogenesis.

Surfactant proteins (SP-A, SP-B, SP-C,
and SP-D) make up 5 to 10% of all
pulmonary surfactant. They differ
from one another in their synthesis,
oligomerization, and function. Whereas
SP-B and SP-C are hydrophobic and
function to prevent alveolar collapse by
reducing surface tension in the distal
lung, SP-A and SP-D are hydrophilic and
play unique and important roles in lung
host defense. In this review we focus
on SP-A and SP-D. SP-A and SP-D
belong to the collectin (collagen-like
lectins) family of proteins. Collectins
have four unique regions: an N-terminal

segment with one to three cysteine
residues, a collagen-like region, an
a-coiled neck region, and a C-terminal
carbohydrate recognition domain
(CRD). SP-A and SP-D monomers can
undergo trimerization by disulfide
crosslinking of their N-terminal
domains and additional noncovalent
hydrogen bonding. In addition, the
neck region of SP-D, which is an
a-helical coiled-coil with a centrally
place tyrosine ring, can mediate
oligomerization of its three CRDs
into a trimeric assembly (1). Upon
complete oligomerization, SP-D forms

a cruciform-like structure composed of
four-trimeric subunits (dodecamer),
which can participate in higher orders of
multimerization to form astral bodies
(2), and SP-A assembles into a bouquet-
like structure of six-trimeric subunits
(octadecamer). Unlike SP-A, the
collagen-like tails of SP-D are buried
under normal conditions.

The CRDs of SP-A and SP-D
mediate binding to a variety of ligands
that exhibit glycosylation motifs,
including pathogens, lipids, cells, and
receptors. Despite the similarities and
some shared functions of SP-A and SP-D,
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they have distinct characteristics and
roles as well (3). For decades, the most
notable immune function of SP-A and
SP-D was attributed to their opsonic
activity to bind and aggregate pathogens
via their CRDs and to aid in pathogen
uptake by immune cells, such as
macrophages and neutrophils. More
recently, SP-A/-D have been shown to
act as direct mediators of cellular signal
transduction. Altered SP-A/-D levels
are commonly observed as markers of
airway and lung diseases. However, the
clinical associations with disease are
ambiguous as to whether SP-A/-D
dysregulation/dysfunction is important
for disease pathology or rather
a byproduct of the diseased lung
environment (4). In this review we highlight
the association of altered surfactant
protein levels in eosinophil-dominated
lung diseases and speculate on possible
mechanisms by which SP-A/-D may
regulate or be regulated by eosinophil
functions, thus highlighting a lesser-
appreciated area of SP-A/-D immunobiology.

Roles of SP-A/-D in
Cell-Mediated Immunity

Numerous studies have examined the
roles of SP-A and SP-D as opsonins
and their participation in pathogen
phagocytosis (5–15). Most often,
increased phagocytosis of opsonized
pathogens is beneficial to the host as
a mode of clearance. However, in some
instances, pathogens are able to subvert
the normal phagocyte clearance
machinery and utilize the protective
environment of the phagocyte. In these
rare cases, enhanced SP-A/-D binding
may be a risk factor contributing to
worsening of disease and increased
pathogen burden (16–19). As an
example, SP-D–deficient mice infected
with the fungus Cryptococcus
neoformans (CN) have decreased
pulmonary eosinophils and lower IL-5
levels in lung lavage fluid compared with
control wild-type (WT) mice. Moreover,
CN-infected SP-D mice have decreased
fungal burden and improved survival
compared with the WT controls (20).
These findings support the concept that
SP-D is a virulence factor for CN and
facilitates its infection in mice. This is of
clinical interest in the HIV-seropositive

population, who are disproportionately
infected by this fungus. Studies
examining SP-D levels in lung fluid have
found significantly higher levels of SP-D
in HIV-seropositive/AIDs subjects with
low CD4 T cell counts (, 200 cells/ml)
as compared with those with high CD4
T cell counts (. 200 cells/ml) (21).
Additionally, IL-5 is often reported to be
elevated in HIV-seropositive individuals
(22), further suggesting a link between
SP-D regulation of IL-5 and risk for
CN infection in HIV-seropositive
individuals (22).

In addition to aiding in clearance of
bacteria and viruses via opsonization,
surfactant proteins bind to other
biological/abiotic particles and to
various cell populations and participate
in their clearance from the pulmonary
environment. SP-A has been shown to
enhance phagocytosis of IgG-opsonized
particles (23) and complement-coated
particles (24) and to preferentially bind
apoptotic neutrophils, which aides in
their removal from the inflamed lung
(25, 26). SP-D is known to aggregate
and aid in the removal of pollen starch
granules (27, 28), to bind and enhance
clearance of genomic DNA and
apoptotic cells (29), and to aggregate
and remove nanoparticles (30).

Apart from the more traditional role
of phagocytosis, neutrophils can extrude
neutrophil extracellular traps (NETs) as
a last mode of defense to directly combat
microbes (31). NETs are composed of
decondensed chromatin fibers coated
with antimicrobial histones and
granular proteins and can be released
upon stimulation by a variety of agents
(e.g., protozoa, fungi, viruses, bacteria,
and endotoxin) (reviewed in Reference
32). Recent studies have demonstrated
that SP-D can bind to NET-DNA and
to bacteria simultaneously, thereby
promoting bacterial trapping by the
NETs (33). SP-D–NET binding is also
thought to promote NET clearance by
macrophages. Extracellular DNA traps
can also be generated from eosinophils
(eosinophil extracellular traps [EETs])
(34) and have been found in several
eosinophil-associated diseases,
including bronchial asthma, contact
dermatitis, spirochetosis, and scabies
(reviewed in Reference 35). Thus far,
the function of SP-A/-D in mediating
EETs has not been defined. However,

SP-A/-D bind eosinophils, and, during
allergic inflammation when functional SP-
A/-D levels are decreased, the association
with and regulation of eosinophils may be
diminished. In the absence of functional
SP-A/-D, we speculate that EETs will then
be stimulated more readily by factors
commonly elevated in the allergic lung
environment, such as IL-5, thymic stromal
lymphopoietin, eotaxin, and C5a (reviewed
in Reference 35). Additionally, if either SP-A
or SP-D aides in EET-DNA removal by
macrophages, lack of functional SP-A/-D
may lead to prolonged presence of EETs,
which could contribute to worsened
symptoms due to extracellular localization
of cytotoxic granular agents.

SP-A/-D Role in Signaling

Although the globular head domain
of SP-A/-D binds to pathogens and
pathogen-associated molecular patterns,
their collagen-like tails are left exposed
to initiate phagocytosis by interactions
with phagocytes. However, the
interaction of the SP-A/-D tail region
is also capable of initiating cellular
signaling cascades by specific receptor
interactions. Gardai and colleagues (36)
showed that SP-A and SP-D bind SIRP-
a through the globular head region
to initiate a signaling pathway that
attenuates proinflammatory cytokine
production. In contrast, the collagenous
tail, by interacting with CD91/
calreticulin, stimulates proinflammatory
mediator production.

As shown by Nguyen and colleagues
(37), SP-A and surfactant lipids up-
regulate IRAK-M, a negative regulator
of Toll-like receptor (TLR)-mediated
inflammation, and inhibit LPS-induced
cytokine production in human
macrophages. More recently, SP-A has
been shown to mediate LPS–TLR-4
signaling by interactions with b-arrestin
2 (38). By enhancing the colocalization
of TLR-4 with the post-Golgi
compartment in alveolar macrophages,
SP-A significantly reduces the LPS-
induced colocalization of TLR-4 with
the early endosome antigen, leading to
attenuation of the proinflammatory
response. SP-A is unable to exert this
affect in b-arrestin 22/2 mice, which
demonstrates that SP-A modulates LPS-
induced TLR-4 trafficking by interacting
with b-arrestin 2.
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Increases in exhaled nitric oxide
(NO) are associated with eosinophilic
inflammation and correlate with other
indices of inflammation in asthma.
Under these conditions, posttranslational
modifications of SP-D appear to modulate
the inflammatory properties of SP-D. For
example, NO can modify key cysteine
residues in the tail domain of SP-D, which
leads to a dissociation of SP-Dmultimers into
trimers, thus exposing the S-nitrosylated
N-termini (see discussion below). This
exposed S-nitrosylated tail domain can then
bind to the calreticulin/CD91 receptor
complex and potentiate this proinflammatory
pathway, which occurs via phosphorylation
of p38 and NF-kB activation (39).

Metabolism of SP-A/-D in
the Normal Lung

The majority of SP-A is synthesized by
alveolar type (AT)II cells in the distal
airways. Newly synthesized SP-A is
packaged into lamellar bodies by the
ATII cells for storage and ensuing
secretion via regulated exocytosis
(40). Upon release of SP-A into the
extracellular milieu, it begins to form
tubular myelin (lipid transport system
unique to the lungs) in conjunction
with lipids (41–43). SP-A is not only
synthesized and secreted from the ATII
cells; it is also predominantly recycled
by them (44, 45). Although SP-D is
synthesized and secreted constitutively
by ATII cells, it is also produced by
nonciliated Clara cells in the upper
airways (46). Similar to SP-A, SP-D
release is regulated by granule exocytosis
(47, 48). Although the majority of
surfactant phospholipid and protein
are removed from the alveolus by
ATII cell uptake (49–51), evidence
suggests that alveolar macrophages
are also important participants in the
uptake and degradation of exhausted
surfactant protein (52–54). Uptake by
macrophages and ATII cells is mediated
predominantly by endocytosis via
clathin-coated pits (55, 56).

Metabolism of SP-A/-D May
Be Altered in Eosinophilic
Diseases

Accumulating evidence suggests that
dysregulated SP-A/-D metabolism and

signaling play key roles in the
pathobiology of lung diseases. Indeed,
changes in SP-A/-D levels in serum
(57) and bronchoalveolar lavage (BAL)
are seen in a variety of lung diseases
(Table 1). Below, we focus on eosinophilic
diseases in which aberrant SP-A/-D levels or
function have recently been implicated.

Asthma
Asthma is a common chronic disease
of the airways characterized by
inflammation and reversible airflow
obstruction caused by a combination of
genetic and environmental factors. Based
on studies in murine models of allergic
inflammation and in studies of patients
with asthma, it has become increasingly
evident that SP-A and SP-D play
important regulatory roles in allergic
airways diseases. Mice challenged with
OVA, house dust mite (HDM), or fungi
have alterations in SP-A/-D levels at
the height of eosinophilia (58–60). An
increase in SP-A/-D during eosinophilic
inflammation is likely a key defense
mechanism for eosinophil regulation:
SP-D inhibits eosinophil chemotaxis,
SP-A and SP-D bind eosinophils and
attenuate degranulation, and SP-A
suppresses IL-8 production from
eosinophils (61–63). In support of these
findings, when mice lacking SP-A or SP-
D are challenged with allergen, they
develop severely enhanced eosinophilia
compared with WT control mice and
display worsened symptoms of allergic
airways inflammation tied to Th2-
dominant disease (64, 65).

In studies of segmental antigen
challenge in atopic and individuals with
asthma, the ability of total surfactant
(lipoproteins and proteins) extracted
from the antigen-challenged lobe was
found to be dysfunctional in its ability to
maintain airway patency as compared
with surfactant from a control (saline
challenged) lobe (66, 67). Normal
activity could be achieved by removing
water-soluble inhibitors from the
extracted surfactant, which was
attributed to leakage of plasma proteins
into the lumen during inflammation.
Studies have demonstrated that plasma
proteins, albumin, and fibrinogen
impair surfactant function at
physiological concentrations (68).
Additionally, a product released from
activated eosinophils, eosinophil

cationic protein, had a profound effect
on the arrangement of phospholipids
within the surfactant biofilm due to
what appeared to be unwinding of
the lamellar bodies (68). Normally,
SP-A will partially protect from this
surfactant-inhibiting effect. However, in
chronic inflammatory lung conditions
such as asthma, functional SP-A levels
may be decreased and unable to
adequately regulate this interaction.
Indeed, SP-A isolated from subjects
with asthma has been shown to be less
effective at inhibiting Muc5AC and IL-8
production by stimulated epithelial
cells versus SP-A isolated from normal
healthy control subjects (69). Although
the mechanisms for asthma-derived
SP-A dysfunction are unclear, the increased
eosinophilia and eosinophil-derived
factors (eosinophil peroxidase,
eosinophil cationic protein, eosinophil
associated RNase, and major basic
protein) associated with Th2-predominant
asthma may alter SP-A oligomerization
and render SP-A incapable of carrying out
normal host protective functions.

Acute Eosinophilic Pneumonia
Acute eosinophilic pneumonia (AEP)
is a rare disease of unknown etiology
characterized by acute respiratory
failure, bilateral infiltrates, hypoxemia
(PaO2

, 60 mm Hg), and eosinophilic
infiltration of the lung (70). Unfortunately,
no animal models for AEP exist. Although
the pathophysiology of AEP is unknown,
eosinophils are believed to play a role
because they comprise greater than 25% of
BAL cells and because IL-5 and IL-1ra are
detected at increased levels in the BAL of
affected patients (71). Levels of SP-A and
SP-D in BAL and serum are reported to be
significantly elevated in patients with AEP
compared with healthy control subjects (72).
It is not clear what the implications of these
observations are for the pathobiology of
AEP. One may speculate that, during AEP,
the increase in eosinophilia would lead to
SP-A/-D breakdown and dysfunction, and
therefore, as a compensatory mechanism,
more SP-A/-D would be produced and
secreted in an attempt to regulate eosinophil
activities.

Allergic Bronchopulmonary
Aspergillosis
The ability of SP-A and SP-D to interact
with the glycosylated antigens and
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allergens of the fungal pathogen
Aspergilous fumigatus (AFU) to inhibit
specific IgE binding to these allergens

makes them an attractive therapeutic
target for AFU-associated diseases
(73–75). Murine models of pulmonary

hypersensitivity induced by AFU
immunologically resemble the human
disease allergic bronchopulmonary

Table 1. Bronchoalveolar Lavage Surfactant Proteins in Human Lung Disease

Lung Diseases Change in SP-A/-D Number of Subjects Reference

Lung diseases with increased SP-A/-D –
Asthma* ↑↑SP-A asthma (6.1 6 0.8 mg/ml);

versus healthy control subjects (4.4 6
0.5 mg/ml); and

n = 10 patients with asthma; n = 11
healthy control subjects

139

↑↑SP-D asthma (0.62 6 0.04 mg/ml)
versus healthy control subjects
(0.42 6 0.06 mg/ml)

n = 10 patients with asthma; n = 11
healthy control subjects

139

Asthma (segmental challenge)* ↑↑SP-D n = 23 patients with asthma; n = 10
healthy control subjects

140

jjSP-A
AEP* ↑↑SP-A AEP (3.461 mg/ml 6 2.449)

versus healthy control subjects
(1.209 6 28 mg/ml)

n = 5 patients with AEP; n = 7 healthy
control subjects

72

↑↑SP-D AEP (1.693 mg/ml 6 2.233)
versus healthy control subjects
(0.196 6 0.0024 mg/ml)

n = 5 patients with AEP; n = 7 healthy
control subjects

72

Pulmonary Langerhans cell
histiocytosis*

↑↑SP-A versus healthy control subjects
or COPD

n = 1 each 141

HP* ↑↑SP-A (8 6 0.7 mg/ml) HP versus
healthy control subjects (4 6 0.3
mg/ml)

n = 10 patients with HP; n = 21 healthy
control subjects

91

PAP ↑↑SP-A PAP (39.3 6 12.5 mg/l) versus
healthy control subjects (3.5 6 1.1
mg/ml)

n = 6 patients with PAP; n = 13 healthy
control subjects

142

Lung diseases with decreased SP-A/-D
Asbestos exposure ↑↑SP-D PAP (19.3 6 9.3 mg/ml) versus

healthy control subjects (0.88 6 0.13
mg/ml)

n = 9 patients with PAP; n = 28 healthy
control subjects

143

ARDS ↓↓SP-A ARDS (29.88 6 6.18 mg/ml)
versus healthy control subjects
(123.64 6 118.04 mg/ml)

n = 67 patients with ARDS; n = 29
healthy control subjects

144

COPD/smoker ↓↓SP-D never-smoker (0.558 6 309
mg/ml) versus smoker/COPD (0.2356
0.203 mg/ml)

n = 65 never-smokers; n = 22 COPD/
smokers

99

IPCD zSP-D IPCD (0.62 6 0.16 mg/ml)
versus healthy control subjects
(0.88 6 0.13 mg/ml)

n = 7 patients with IPCD; n = 28 healthy
control subjects

143

IPF* zSP-D IPF (0.58 6 0.06 mg/ml) versus
healthy control subjects (0.88 6 0.13
mg/ml)

n = 33 patients with IPF; n = 28 healthy
control subjects

143

↓↓SP-A IPF (1.13 6 0.252 mg/ml) versus
healthy control subjects (1.536 0.136
mg/ml)

n = 34 patients with IPF; n = 25 healthy
control subjects

93

Sarcoidosis zSP-D sarcoidosis (0.97 6 0.08 mg/ml)
versus healthy control subjects
(0.88 6 0.13 mg/ml)

n = 60 patients with sarcoidosis; n = 28
healthy control subjects

143

↑↑SP-A sarcoidosis (9.0 6 1.7 mg/ml)
versus healthy control subjects (4.0 6
0.3 mg/ml)

n = 35 patients with sarcoidosis; n = 21
healthy control subjects

91

Smokers ↓↓SP-A smoker (1.86 0.4 mg/ml) versus
nonsmoker (3.1 6 0.4 mg/ml)

n = 10 nonsmokers; n = 8 smokers 100

↓↓SP-D smoker (0.5 6 0.1 mg/ml)
versus nonsmoker (1.3 6 0.2 mg/ml)

n = 12 nonsmokers; n = 7 smokers 100

↓↓SP-D never-smoker (0.558 6 309
mg/ml) versus smoker (0.287 6 0.204
mg/ml)

n = 65 never-smokers; n = 23 smokers 99

Definition of abbreviations: AEP, acute eosinophilic pneumonia; ARDS, acute respiratory distress syndrome; COPD, chronic obstructive pulmonary
disease; HP, hypersensitivity pneumonitis; IPCD, interstitial pneumonia with collagen disease; IPF, idiopathic pulmonary fibrosis; PAP, pulmonary alveolar
proteinosis; SP-A/-D, surfactant proteins A and D.
*Eosinophilic disease.

TRANSLATIONAL REVIEW

Translational Review 607



aspergillosis (ABPA) a condition
characterized by serum and pulmonary
eosinophilia, hypersensitivity to
AFU, and increased total IgE. These
models have successfully established
a protective role for SP-A and SP-D
in the treatment of ABPA. Expression
of SP-D is increased in BAL in AFU-
sensitized mice (76) and in serum of
humans with ABPA (77). Ablation
of SP-A and SP-D leads to enhanced
eosinophilia and increases total IgE
in AFU-sensitized mice (65, 78).
Additionally, evidence is accumulating
that genetic polymorphisms of SP-A1 and
SP-A2 are associated with increased
susceptibility to ABPA (79, 80). Moreover,
treatment of AFU-sensitized WT and
SP-A– and SP-D–deficient mice with
“rescue” SP-A and SP-D, respectively,
has been shown to suppress IgE levels,
eosinophilia, cellular inflammation in
the lung, and shift the pathogenic TH2
cytokine profile to a protective TH1 profile
(75, 81).

Allergic Rhinitis
Allergic rhinitis (AR) is an IgE-mediated
chronic inflammatory disease
characterized by the recruitment of
eosinophils, basophils, and T cells
expressing TH2 cytokines to the nasal
mucosa (82). In a murine model of
AR, treatment with exogenous SP-A
decreased eosinophil number in nasal
epithelium, corrected the TH1/TH2
imbalance, and blocked ovalbumin
(OVA)-specific IgE (83); these findings
strongly suggest a protective role for
SP-A in AR.

In humans, SP-A, -B, -C, and -D
are components of healthy nasal mucosa
and have been shown to increase with
inflammation, with the exception of SP-
C (84). Expression of SP-A is much
higher in patients with AR and nasal
polyps than in control subjects, and the
level of SP-A positively correlates with
eosinophil number within the basement
membrane of epithelium (85). Because
these findings are somewhat in contrast
to studies in mice showing that
a decrease in eosinophilia results when
exogenous SP-A is given, one may
speculate that the increased level of
SP-A detected in the patients with AR
is compensating for defective SP-A,
which is unable to adequately regulate
eosinophil functions. This potentially

defective SP-A may be a direct product
of the inflammatory milieu associated
with activated eosinophils and their
proteolytic mediators that can alter the
oligomeric structure of SP-A. A lack of
protective SP-A would likely lead to
localized enhanced production of SP-A
in an attempt to compensate for the
decreased immune function.

To date, only SP-A expression
in nasal mucosa has been shown to
correlate with severity of disease as
measured by the Rhinitis Symptom
Utility Index in patients with AR (86),
suggesting that it plays a key role in the
inflammatory process regulating AR and
nasal polyp formation in these patients.
Indeed, early studies using liposomes,
which consist of phospholipids that
make up 75% of the nasal surfactant
layer, have been found to be comparable
to cromoglycolate therapy in the
treatment of patients with AR (87). In
patients with chronic rhinosinusitis
associated with cystic fibrosis,
expression of SP-A, SP-B, and SP-D
is also increased (88, 89).

Idiopathic Lung Disease
Interstitial lung diseases are a
heterogeneous group of lung diseases
resulting from damage to lung
parenchyma by varying patterns of
inflammation and fibrosis. These
diseases involve not only the interstitium
of the lung but also the vessels and
airways and are frequently associated
with increased BAL eosinophils and
peripheral blood eosinophilia (90).
Hypersensitivity pneumonitis (HP), also
known as extrinsic allergic alveolitis,
is an immune mediated interstitial
lung disease induced by inhalation of
antigens to which a person is already
sensitized. The clinical presentation and
radiographic imaging findings of HP
overlap broadly with other interstitial
lung diseases, making it difficult
to diagnosis, especially because
identification of the antigen exposure is
often challenging. Elevated serum SP-A
levels have been reported in patients
diagnosed with HP and idiopathic
pulmonary fibrosis (IPF), an interstitial
lung disease of unknown etiology
(91–93); however, SP-A levels are not
consistently elevated in the BAL of these
patients (93). Findings in IPF show
a significant negative correlation

between BAL SP-A levels and the
presence of BAL eosinophils. Low levels
of BAL SP-A in subjects with enhanced
eosinophilia associated with IPF suggest
that SP-A may be involved in the
regulation of eosinophil recruitment,
survival, or resolution in the lung in
response to environmental stresses (94).
An alternative explanation could be that
in patients with IPF with associated
eosinophilia, degradation of SP-A
occurs, lowering the detectable levels
of SP-A.

Chronic Obstructive
Pulmonary Disease
Chronic obstructive pulmonary disease
(COPD) is generally considered to be
a neutrophilic disease. However, there
is increasing evidence to suggest that
a subgroup of patients with stable
COPD exists that have chronic airway
eosinophilia and steroid responsive
disease (95, 96).

Cigarette smoke is the major risk
factor for COPD and is known to
adversely affect surfactant (97, 98).
Decreased levels of BAL SP-A and SP-D
have been detected in healthy smokers
compared with nonsmoking control
subjects. The decreased concentration
of SP-A and SP-D in lung lavage in
smokers (99, 100) is speculated to
impair the host defense functions of
surfactant in the peripheral airways and
may contribute to the development of
chronic obstructive lung disease.

In patients with COPD, sputum
SP-A/-D (101) and serum SP-D
levels associate with lung function
and with health status (102) and
increase significantly during COPD
exacerbations (103), suggesting that SP-
D may be a biomarker of disease severity
for COPD. In a recent candidate gene
association study by Kim and colleagues,
SP-D was identified as one of two risk
loci for COPD from among circulating
COPD biomarkers measured in the
ECLIPSE (Evaluation of COPD
Longitudinally to Identify Predictive
Surrogate Endpoints) study (104). These
findings support the relevance of SP-D
in the pathogenesis of COPD. There
is no direct evidence linking changes
in SP-A/-D expression/function and
eosinophil activity in COPD. However,
cigarette smoke has been shown to lead
to disruption of the quaternary structure

TRANSLATIONAL REVIEW

608 American Journal of Respiratory Cell and Molecular Biology Volume 51 Number 5 | November 2014



of SP-D (105), which supports the
“translocation hypothesis” that
dissociation of pulmonary SP-D into
smaller subunits can lead to rapid
increases in serum SP-D. Because SP-D
has been shown to inhibit eosinophil
chemotaxis (62), a loss of pulmonary-
associated SP-D may facilitate
subsequent recruitment of eosinophils
into the airspace and induced sputum, as
observed in smokers with COPD (106).

Alterations of SP-A/-D in
Eosinophil-Predominant
Diseases

SP-A and SP-D come into contact with
a wide range of inhaled allergens.
Binding of SP to these foreign allergens
leads to a competitive interaction for
cell-sequestered IgE, resulting in an
attenuation of mast cell degranulation.
HDM allergens, a major cause of allergic
asthma in developed countries, have
cysteine protease activity that leads to
degradation of SP-A and SP-D under
physiological conditions (107). More
generally, SP-A and SP-D can be
degraded by a range of host- and
pathogen-derived proteases, including
Pseudomonas aeruginosa and human

neutrophil elastases (108, 109),
cathepsin-S (110), and matrix
metalloproteinase-9 (111), and it is
therefore plausible that increased
proteolytic activity might serve to
inactivate SP-A in eosinophil-
dominated diseases.

SP-D and SP-A oligomeric
structures can be altered by HDM
protease, and SP-D is altered by many
of the neutrophil derived proteinases
(elastase, proteinase-3, and cathepsin-G)
(107, 112). These altered oligomers limit
the SP ability to bind carbohydrates
and agglutinate bacteria. In addition,
reactive oxygen and nitrogen species
may also affect posttranslational
modifications of SP-D that alter its
structure and function at sites of
inflammation (39, 113). For example,
NO, produced locally by airway
epithelial cells and increased in asthma
(114), has been shown to S-nitrosylate
two free Cys thiols in the N-terminus of
dodecameric SP-D (Cys-15 and Cys-20)
and to affect dissociation into SP-D
trimers (115). Consequences of this
structural perturbation include the
activation of SP-D proinflammatory
chemoattractant function and the loss of
control TLR4 blockade (39). Tyrosine
nitration of SP-A and SP-D and Tyr-Tyr

crosslinking of SP-D have been also
found in protein exposed in vitro to
peroxynitrite (116–119) and in
inflammatory lung diseases (120).
Nitration of SP-A has been detected at
Tyr164, Tyr166, and Tyr220 (116), and
these modifications decrease lectin
activity (117, 121). Reactive nitrogen
species cause nitration of SP-D at
Tyr341 and crosslinking of Tyr228
(119). In addition to increases in FeNO,
increased tyrosine nitration has been
demonstrated in allergic asthma (122),
which may be a specific activity of
eosinophils and eosinophil peroxidase
(123–125). Thus, although the effects
associated with posttranslational
modification of Tyr have not been link to
a particular oligomeric state, these data
nonetheless suggest an additional mechanism
for modulation of SP-D activity under
conditions of eosinophilic inflammation.

Modification of SP-D oligimerization
and Tyr crosslinking have been
investigated in the context of allergic
asthma (126). SP-D in BAL fluid collected
from subjects with asthma before and
after allergen challenge or the combination
of allergen and LPS challenge had
increases in both monomeric and in
tyrosine-crosslinked SP-D. These
effects, which were correlated with high
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Figure 1. Proposed model of eosinophil associated lung disease and surfactant protein A and D regulation. (A) In the airway, irritants are bound and
cleared by surfactant protein (SP)-A, and cigarette smoke can alter the multimeric structure of SP-D. (B) Cytokines (IL-3, IL-5, and granulocyte
macrophage-colony stimulating factor [GM-CSF]) released by T cells recruit eosinophils to the lung. Unbound eosinophils release proteolytic enzymes
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levels of BAL eosinophils, NO, SNO–
SP-D, and Th2-dominant cytokines,
were not observed after challenge of
nonasthmatics or with LPS alone.
These data suggest, for the first time,
a correlation between regulatory
posttranslational modifications of SP-D
and allergic airway inflammation.

In addition to posttranslational
modification, surfactant levels are altered
after subsegmental allergen challenge in
asthma (67). Also, purified eosinophil
cationic protein has been shown to
alter surfactant structure and function
(68, 127), although these in vitro studies
used Alveofact (Boehringer Ingelheim,
Ingelheim, Germany), a natural bovine
surfactant devoid of SP-A (128). Leakage
of plasma and serum proteins in the
airway space, which is more likely during
lung inflammation, can accelerate the
conversion of functional surfactant large
aggregates into poorly functional small
aggregates (129). This conversion is
typically regulated by SP-A and is consistent
with dysfunctional SP-A in asthma.

Possibility of Therapeutic
Surfactants in Eosinophilic
Diseases

Although surfactant therapy in preterm
neonates had dramatically changed their
long-term outcome, the current formulation
is devoid of SP-A and SP-D. Additionally,
preterm neonates often suffer from
respiratory distress syndrome and have
a higher risk for development of infection
and bronchopulmonary dysplasia. Given
our current knowledge of the protective
roles of SP-A and SP-D in these areas,
clinicians using new surfactant therapies
may consider the addition of SP in the
treatment of these patients.

Much of what we know about the
potential use of SP-A/-D therapy has
arisen from studies using SP-A– or
SP-D–deficient mice that are given
exogenous SP as a “rescue” treatment.
Although the oligomeric structure of

SP-A and SP-D is thought to be essential
for some SP function, several research
publications have also found specific
regions and fragments with activity. An
animal model using AFU-allergen in SP-
D–deficient mice shows that exogenous
SP-D treatment given to the mice can
rescue their allergic phenotype (75, 130).
Additional studies have determined that
SP-D given as a full-sized dodecamer
oligomer or as a shorter fragment
containing the trimeric subunit and
CRD are capable of alleviating allergic
inflammation in an OVA mouse model
(131). Likewise, SP-D fragments were
capable of reducing early airway
responses to AFU allergen and led
to significantly decreased airway
hyperresponsiveness, eosinophilia, and
histamine levels as compared with
placebo (132). In fact, studies examining
the mechanisms behind the difference in
allergic airways phenotype between
Balb/c and C57Bl/6 mice revealed that
SP-D levels were significantly elevated in
the C57BL/6 mice as compared with
Balb/c mice, which could account for the
attenuation of response (133).

Fewer studies have examined the
consequence of SP-A rescue therapy
in allergic airways. Although SP-D is
commonly synthesized recombinantly
from cell lines, SP-A is typically
extracted from the lavage of patients with
alveolar proteinosis. Several studies have
given SP-A from APP as a rescue in other
murine models, including the bleomycin
model of pulmonary fibrosis and in LPS-
driven inflammation. In both cases,
exogenous given SP-A led to “rescue”
of the innate and adaptive immune
phenotypes observed in SP-A–deficient
mice (134–137). More recently, Awasthi
and colleagues has found that a specific
fragment of SP-A (20-mer) has the
ability to inhibit LPS-induced cytokine
production and lung inflammation by
interaction with TLR-4 (138). This
finding suggests the possibility of other
SP-A fragments that may be active

against a specific receptor target for
which SP-A is known to associate, such
as TLR-2, SIRP-a, and CD91. Because
SP-A and SP-D are known to bind the
FCgRII/III (CD16/32) complex, this
receptor should also be examined in SP-
A/-D–mediated eosinophil activities,
including cytokine regulation,
degranulation, apoptosis, and chemotaxis.

Conclusions

Pulmonary surfactant proteins are
critical in mediating a variety of immune
and physiological responses during
health and disease. Many lung diseases
associated with eosinophilia also have
dysregulated SP-A/-D metabolism, as
detected by altered levels in serum, BAL,
or both. Although the etiology of altered
levels of SP-A/-D is unclear in each of
the diseases mentioned, SP-A and SP-
D bind eosinophils and regulate their
degranulation. Additionally, SP-D
inhibits eosinophil chemotaxis, and SP-
A binds apoptotic eosinophils and aides
in their engulfment by macrophages. A
proposed model (Figure 1) suggests that
a common underlying mechanism for
dealing with enhanced eosinophilia may
be to up-regulate SP-A/-D production.
Alternatively, eosinophil-derived
proteases, environmental irritants, or
NO produced in the inflamed lung
milieu may alter the oligomeric
structures and render SP-A/-D
dysfunctional.

Although rescue treatments that give
exogenous full-length or peptides of
SP-A or SP-D have shown promising
results in allergic animal models, to the
best of our knowledge, no studies have
examined the therapeutic potential of
purified SP-A/-D or targeted SP-A/-D
peptides in human lung diseases in which
eosinophils are thought to play an
important role in pathogenesis. n

Author disclosures are available with the
text of this article at www.atsjournals.org.
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