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ABSTRACT Sex-biased admixture has been observed in a wide variety of admixed populations. Genetic variation in sex chromosomes
and functions of quantities computed from sex chromosomes and autosomes have often been examined to infer patterns of sex-biased
admixture, typically using statistical approaches that do not mechanistically model the complexity of a sex-specific history of admixture.
Here, expanding on a model of Verdu and Rosenberg (2011) that did not include sex specificity, we develop a model that mecha-
nistically examines sex-specific admixture histories. Under the model, multiple source populations contribute to an admixed population,
potentially with their male and female contributions varying over time. In an admixed population descended from two source groups,
we derive the moments of the distribution of the autosomal admixture fraction from a specific source population as a function of sex-
specific introgression parameters and time. Considering admixture processes that are constant in time, we demonstrate that surpris-
ingly, although the mean autosomal admixture fraction from a specific source population does not reveal a sex bias in the admixture
history, the variance of autosomal admixture is informative about sex bias. Specifically, the long-term variance decreases as the sex bias
from a contributing source population increases. This result can be viewed as analogous to the reduction in effective population size for
populations with an unequal number of breeding males and females. Our approach suggests that it may be possible to use the effect
of sex-biased admixture on autosomal DNA to assist with methods for inference of the history of complex sex-biased admixture
processes.

POPULATIONS often experience sex-biased demographic
processes, in which males and females contributing to

the gene pool of a population are drawn from source groups
in different proportions, owing to patterns of inbreeding
avoidance, dispersal, and mating practices (Pusey 1987;
Lawson Handley and Perrin 2007). In humans, sex-biased
demography has had a particular effect on admixed popu-
lations, populations that have often been founded or influ-
enced by periods of colonization and forced migration
involving an initial or continuing admixture process (Mesa
et al. 2000; Seielstad 2000; Wilkins and Marlowe 2006;
Tremblay and Vezina 2010; Heyer et al. 2012).

Genetic signatures of sex-biased admixture have been
empirically investigated in a variety of human populations.
In the Americas, these include African American, Latino, and

Native American populations (Bolnick et al. 2006; Wang
et al. 2008; Stefflova et al. 2009; Tishkoff et al. 2009; Bryc
et al. 2010a,b; Moreno-Estrada et al. 2013; Verdu et al.
2014). Sex-biased admixture and migration have also been
examined in populations throughout Asia (Oota et al. 2001;
Wen et al. 2004; Chaix et al. 2007; Ségurel et al. 2008;
Chaubey et al. 2011; Pemberton et al. 2012; Pijpe et al.
2013), Austronesia (Kayser et al. 2003, 2006, 2008; Cox
et al. 2010; Lansing et al. 2011), and Africa (Wood et al.
2005; Tishkoff et al. 2007; Berniell-Lee et al. 2008; Beleza
et al. 2013; Petersen et al. 2013; Verdu et al. 2013).

Sex-specific admixture and migration processes have
typically been studied using comparisons of the Y chromo-
some, which is paternally inherited, and the mitochondrial
genome, inherited maternally (Seielstad et al. 1998; Oota
et al. 2001; Wood et al. 2005; Bolnick et al. 2006; Gunnarsdóttir
et al. 2011; Lacan et al. 2011). More recently, as the Y chromo-
some and mitochondrial genome each represent single nonre-
combining loci that provide an incomplete genomic perspective,
sex-biased admixture has been examined by comparisons of
autosomal DNA to the X chromosome (Lind et al. 2007;
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Wang et al. 2008; Bryc et al. 2010a,b; Cox et al. 2010; Beleza
et al. 2013; Verdu et al. 2013).

The Y-mitochondrial and X-autosomal frameworks are
both sensible, as both involve comparisons of two types of
loci that follow different modes of inheritance in males and
females. What has not been clear, however, is that autosomal
data, which have not typically been viewed as the most
informative loci for studies of sex-specific processes, can carry
information about sex-biased admixture, even in the absence
of a comparison with other components of the genome.

We demonstrate this surprising result through an extension
of a mechanistic model for the admixture history of a hybrid
population. In a diploid autosomal framework, Verdu and
Rosenberg (2011) examined contributions of multiple source
populations that varied through time, without considering
sex specificity. Here, expanding on the model of Verdu
and Rosenberg (2011), we develop a model that mecha-
nistically considers sex-specific admixture histories in
which multiple source populations contribute to the admixed
population, potentially with varying female and male
contributions across generations (Figure 1). In an admixed
population descended from two source populations, we
derive the moments of the distribution of the fraction of
autosomal admixture from a specific source population,
as a function of sex-specific admixture parameters and
time. We analyze the behavior of the model, considering
admixture processes that are constant in time, and we
show that the moments contain information about the
sex bias.

The Model

Several studies have described mechanistic models of
admixture (Chakraborty and Weiss 1988; Long 1991; Ewens
and Spielman 1995; Guo et al. 2005; Verdu and Rosenberg
2011; Gravel 2012; Jin et al. 2014). We follow the notation
and style of the model of Verdu and Rosenberg (2011),
studying a hybrid population, H, which consists of immi-
grant individuals from M isolated source populations and
hybrid individuals who have ancestors from two or more
source populations. The source populations are labeled Sa,
for a from 1 to M. We focus on the case of M = 2.

We define the parameters sa,g21 and hg21 as the contri-
butions from source populations Sa and H, respectively, to
the gene pool of the hybrid population H at the next gener-
ation, g. That is, for a random individual at generation g, the
probabilities that a randomly chosen parent of the individual
derives from Sa and H are sa,g21 and hg21, respectively. We
define the sex-specific parameter sda;g21, for d 2 {f, m}, as the
probability that the type-d parent of a randomly chosen in-
dividual from the hybrid population at generation g is from
source population Sa. Similarly, hdg21 is the probability that
the type-d parent of a randomly chosen individual in H at
generation g is from H itself. We consider a two-sex model,
using f for female and m for male. Because each individual
has one parent of each type, female and male, we have

sa;g21 ¼
�
sfa;g21 þ sma;g21

�.
2; (1)

hg21 ¼
�
hfg21 þ hmg21

�.
2: (2)

The contributions to the next generation of the three source
populations (S1, S2, H) sum to one:

s1;g21 þ s2;g21 þ hg21 ¼ 1: (3)

Similarly, the female and male contributions to the next
generation separately sum to one,

sf1;g21 þ sf2;g21 þ hfg21 ¼ sm1;g21 þ sm2;g21 þ hmg21 ¼ 1: (4)

At the first generation, g = 1, the hybrid population has not
previously existed; therefore,

h0 ¼ hf0 ¼ hm0 ¼ 0; (5)

s1;0 þ s2;0 ¼ sf1;0 þ sf2;0 ¼ sm1;0 þ sm2;0 ¼ 1: (6)

The first generation has two independent parameters, sf1;0
and sm1;0. Each subsequent generation contributes four

Figure 1 Schematic of the mechanistic model of admixture. Two source pop-
ulations, S1 and S2, contribute bothmales and females to the next generation of
the hybrid populationH, potentially with time-varying proportions. The fractional
contributions of the source populations and the hybrid population to the next
generation g are s1;g; s2;g, and hg, respectively. Sex-specific contributions from
the populations are sf1;g, s

f
2;g, and sm1;g, s

m
2;g; for females and males respectively.

Ha,g,d represents the fraction of admixture from source population a 2 {1, 2} in
generation g for a random individual of sex d 2 {f, m} in population H.
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independent parameters ðsf1;g21; s
f
2;g21; s

m
1;g21; s

m
2;g21Þ, and

considering g generations, there are 4g 2 2 independent
parameters. The model is discrete in time with nonoverlap-
ping generations. As in Verdu and Rosenberg (2011), our
deterministic treatment amounts to an assumption of infin-
ite population size.

Our model enables us to consider complex sex-biased
admixture processes by allowing uneven sex-specific contri-
butions from each source population at each generation. It
reduces to the Verdu and Rosenberg (2011) model when the
sex-specific contributions are equal within source popula-
tions, that is, if for each g, sf1;g21 ¼ sm1;g21 and sf2;g21 ¼
sm2;g21. We perform similar computations to those of Verdu
and Rosenberg (2011), finding that in certain cases, our
results reduce to those obtained when sex specificity is
not considered.

We let L be a random variable indicating the source pop-
ulations of the parents of a random individual from the
hybrid population, H. L takes its values from the set of all
possible ordered parental combinations, {S1S1, S1H, S1S2,
HS1, HH, HS2, S2S1, S2H, S2S2}, listing the female parent
first. We assume random mating in the hybrid population
at each generation, so that the probability that an offspring
has a particular pair of source populations for his or her
parents is simply the product of separate probabilities asso-
ciated with the female and male parents (Table 1).

We define the fraction of admixture, the random variable
Ha,g,d, as the probability that an autosomal genetic locus in
a random individual of sex d from the hybrid population in
generation g ultimately originates from source population a.
The sex-specific fractions of admixture are related to the
total fraction of admixture Ha,g from source population a

in generation g by Ha,g = (Ha,g,f + Ha,g,m)/2.
Under the model, we derive expressions for the moments

of the fraction of admixture. Autosomal DNA is inherited non-
sex-specifically and from both parents; therefore, female and
male offspring have identical distributions of admixture, and
Ha,g,f and Ha,g,m are identically distributed. Each of these
quantities depends on both the female and male fractions
of admixture in the previous generation, but conditional on
the previous generation (that is, on Ha,g21,f and Ha,g21,m),
they are independent. For our two-population model, we
consider the non-sex-specific fraction of admixture, H1,g,d,
treating d here as representing either f or m, but retaining
the same meaning through a calculation. The quantity H1,g,d

depends on both sex-specific fractions of admixture from the
previous generation, H1,g21,f and H1,g21,m.

Distribution of the Admixture Fraction from a
Specific Source

The definition of the model parameters and the values from
Table 1 allow us to write a recursion relation for the fraction
of admixture from source population 1 for a random indi-
vidual of sex d from the hybrid population at generation g,
or H1,g,d. For the first generation, g = 1, we have

H1;1;d ¼

8>>>>>>>>><
>>>>>>>>>:

1 if   L ¼ S1S1;with  ℙ½L ¼ S1S1� ¼ sf1;0s
m
1;0

1
2

if   L ¼ S1S2;with  ℙ½L ¼ S1S2� ¼ sf1;0s
m
2;0

1
2

if   L ¼ S2S1;with  ℙ½L ¼ S2S1� ¼ sf2;0s
m
1;0

0 if   L ¼ S2S2;with  ℙ½L ¼ S2S2� ¼ sf2;0s
m
2;0:

(7)

For all subsequent generations, g $ 2, we have

H1;g;d ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1 if   L ¼ S1S1;with  ℙ½L ¼ S1S1� ¼ sf1;g21s
m
1;g21

1þ H1;g21;m

2
if   L ¼ S1H;with  ℙ½L ¼ S1H� ¼ sf1;g21h

m
g21

1
2

if   L ¼ S1S2;with  ℙ½L ¼ S1S2� ¼ sf1;g21s
m
2;g21

1þ H1;g21; f

2
if   L ¼ HS1;with  ℙ½L ¼ HS1� ¼ hfg21s

m
1;g21

H1;g21; f þ H1;g21;m

2
if   L ¼ HH;with  ℙ½L ¼ HH� ¼ hfg21h

m
g21

H1;g21; f

2
if   L ¼ HS2;with  ℙ½L ¼ HS2� ¼ hfg21s

m
2;g21

1
2

if   L ¼ S2S1;with  ℙ½L ¼ S2S1� ¼ sf2;g21s
m
1;g21

H1;g21;m

2
if   L ¼ S2H;with  ℙ½L ¼ S2H� ¼ sf2;g21h

m
g21

0 if   L ¼ S2S2;with  ℙ½L ¼ S2S2� ¼ sf2;g21s
m
2;g21:

(8)

Using Equations 7 and 8, we can analyze the distribution
of the fraction of admixture as a function of the time g and
the parameters sf1;g; s

m
1;g; s

f
2;g; s

m
2;g. Under our model, H1,g,d

takes its values in Qg = {0, 1/2g, . . ., 121/2g, 1}. There-
fore, using Equations 7 and 8, and recalling that H1,g,f and
H1,g,m are identically distributed, for a value q in the set
Qg, we can compute the probability ℙ(H1,g,d = q) that
a random individual from the hybrid population at gener-
ation g has admixture fraction q. For g = 1, Q1 ¼ �0; 12; 1�,
and

Table 1 Probabilities that an individual from the hybrid population
at generation g has one of nine possible sets of parents from
S1, S2, or H, assuming random mating

Case
Female parent’s

population
Male parent’s
population Probability

1 S1 S1 sf1;g21s
m
1;g21

2 S1 H sf1;g21h
m
g21

3 S1 S2 sf1;g21s
m
2;g21

4 H S1 hfg21s
m
1;g21

5 H H hfg21s
m
g21

6 H S2 hfg21s
m
2;g21

7 S2 S1 sf2;g21s
m
1;g21

8 S2 H sf2;g21h
m
g21

9 S2 S2 sf2;g21s
m
2;g21

The parameter sda;g is the probability that the parent of sex d for a randomly chosen
individual from the hybrid population, at generation g, is from the source popula-
tion a. Similarly, the probability that this parent is from H is hdg.
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ℙ
�
H1;1;d ¼ q

� ¼
8>>>>><
>>>>>:

sf1;0s
m
1;0 if   q ¼ 1

sf1;0s
m
2;0 þ sf2;0s

m
1;0 if   q ¼ 1

2

sf2;0s
m
2;0 if   q ¼ 0:

(9)

For all subsequent generations, g $ 2, for q in Qg,

ℙ
�
H1;g;d ¼ q

� ¼ hfg21h
m
g21

P2g21

r¼0

�
ℙ
�
H1;g21;d1 ¼ r

2g21

�
ℙ

	
H1;g21;d2 ¼ 2gq2 r

2g21


�

þ
�
sf1;g21h

m
g21 þ hfg21s

m
1;g21

�
ℙ
�
H1;g21;d ¼ 2q2 1

�
þ
�
sf2;g21h

m
g21 þ hfg21s

m
2;g21

�
ℙ
�
H1;g21;d ¼ 2q

�þ IgðqÞ:
(10)

The function Ig is defined for all values of q in Qg and is equal to

IgðqÞ ¼

8>>>>>>>><
>>>>>>>>:

sf1;g21s
m
1;g21 if   q ¼ 1

sf1;g21s
m
2;g21 þ sf2;g21s

m
1;g21 if   q ¼ 1

2

sf2;g21s
m
2;g21 if   q ¼ 0

0 otherwise:

(11)

In Equation 10, we calculate the probability distribution of H1,g,d

by taking a sum over all possible parental pairings at the pre-
vious generation that would lead to an admixture fraction q at
generation g. Only three values of q allow for a history without
a single hybrid ancestor—q = 0, q ¼ 1

2, and q = 1—producing
the terms in Equation 11. When there is no sex bias and sf1;g21 ¼
sm1;g21; h

f
g21 ¼ hmg21; and sf2;g21 ¼ sm2;g21, Equations 9–11 reduce

to the corresponding Equations 3–5 from Verdu and Rosenberg
(2011).

Equations 9–11 can be used to analyze the behavior of the
distribution of H1,g21,d over time. In Figure 2, we consider
constant admixture processes after the founding of the hybrid
population (sda;g ¼ sda for each a 2 {1, 2}, d 2 {f, m}, and g $
1), plotting ℙ(H1,g,d) for the first six generations, as computed
recursively using Equation 10. In Figure 2, A and B, we con-
sider a hybrid population founded with equal contributions
from source populations S1 and S2, but with no further con-
tributions after g = 1. In both of these cases, the distribution
of the autosomal admixture fraction contracts around the
mean of 1

2. However, whereas Figure 2A has equal contribu-
tions from each sex in the founding generation, Figure 2B has
a large initial sex bias. We see that the width of the distribu-
tion is smaller with the sex-biased contributions, despite
equality of the total contributions s1,0 and s2,0.

In Figures 2, C–E, we consider admixture scenarios in which
the founding of the hybrid population is followed by constant
contributions from the source populations over time, s1 = 0.1
and s2 = 0.3. Because the two source populations contribute
after the founding, the distribution does not contract around
the mean as in Figures 2, A and B. Also, because the total
contributions from S1 and S2 are unequal, the distribution of
H1,g,d is no longer symmetrical. Rather, because the contribu-
tion from S2 is greater, the distribution is shifted toward zero.

Figures 2, C and D, have the same continuing contribu-
tions for g $ 2, with no sex bias in the founding generation for
Figure 2C, and a large initial sex bias for Figure 2D. Despite
different founding contributions, Figures 2, C and D, have sim-
ilar distributions of H1,g,d after a few generations. In Figure 2E,
the hybrid population is founded without a sex bias and with
equal contributions from the two source populations. The total
contributions s1 and s2 are the same as in Figures 2, C and D, but
unlike in Figures 2, C and D, the continuing contributions are
sex biased, with sf1 6¼ sm1 and sf2 6¼ sm2 . Even with s1 and s2 held
constant, the distribution of H1,g,d depends on the sda. Notably,
the probability of H1,6,d = 0 drops from 0.157 in Figure 2C to
0.000 in Figure 2E. Similarly, ℙ(H1,6,d = 1) drops to zero in
Figure 2E as well. With these reductions at the extremes, we
see a rise in the probability of intermediate values for H1,g,d.

Expectation of the Fraction of Admixture

Using the law of total expectation, we write the expectation of
the fraction of admixture from source population 1 for a random
individual of sex d in population H at generation g as a function
of conditional expectations for all possible pairs of parents L,

E
�
H1;g;d


 ¼ EL
�
E
�
H1;g;d

��L

 ¼ X

ℓ2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

S1S1
S1H

S1S2
HS1
HH

HS2
S2S1
S2H

S2S2

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ℙðL ¼ ℓÞE�H1;g;d
��L ¼ ℓ



:

(12)
We can simplify this recursion relation. For g = 1,

E
�
H1;1;d


 ¼ ℙðL ¼ S1S1ÞE
�
H1;1;d

��L ¼ S1S1



þℙðL ¼ S1S2ÞE
�
H1;1;d

��L ¼ S1S2



þℙðL ¼ S2S1ÞE
�
H1;1;d

��L ¼ S2S1



þℙðL ¼ S2S2ÞE
�
H1;1;d

��L ¼ S2S2


: (13)

For all subsequent generations, g $ 2, we have

E
�
H1;g;d


 ¼ ℙðL ¼ S1S1ÞE
�
H1;g;d

��L ¼ S1S1



þ ℙðL ¼ S1HÞE
�
H1;g;d

��L ¼ S1H



þ ℙðL ¼ S1S2ÞE
�
H1;g;d

��L ¼ S1S2



þ ℙðL ¼ HS1ÞE
�
H1;g;d

��L ¼ HS1



þ ℙðL ¼ HHÞE�H1;g;d
��L ¼ HH



þ ℙðL ¼ HS2ÞE

�
H1;g;d

��L ¼ HS2



þ ℙðL ¼ S2S1ÞE
�
H1;g;d

��L ¼ S2S1



þ ℙðL ¼ S2HÞE
�
H1;g;d

��L ¼ S2H



þ ℙðL ¼ S2S2ÞE
�
H1;g;d

��L ¼ S2S2


: (14)

Using Equations 7 and 8, for the first generation, g= 1, we have
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Figure 2 Probability distribution of the fraction of admixture from source population S1, ℙðH1;g;dÞ, for a random individual from the hybrid population
for the first six generations (Equations 9–11). Each column (A, B, C, D, E) corresponds to a specified admixture scenario, with constant contributions
from the source populations over time after founding (sda;g ¼ sda for each a 2 {1, 2}, d 2 {f, m}, and g $ 2).
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E
�
H1;1;d


 ¼ sf1;0s
m
1;0E½1�

þ
�
sf1;0s

m
2;0 þ sf2;0s

m
1;0

�
E

�
1
2

�

þsf2;0s
m
2;0E½0�: (15)

For all subsequent generations, g $ 2, we have

E
�
H1;g;d


 ¼ sf1;g21s
m
1;g21E½1�

þ sf1;g21h
m
g21E

�
1þ H1;g21;m

2

�

þ hfg21s
m
1;g21E

�
1þ H1;g21;f

2

�

þ
�
sf1;g21s

m
2;g21 þ sf2;g21s

m
1;g21

�
E

�
1
2

�

þ hfg21h
m
g21E

�
H1;g21;f þ H1;g21;m

2

�

þ sf2;g21h
m
g21E

�
H1;g21;m

2

�

þ hfg21s
m
2;g21E

�
H1;g21;f

2

�

þ sf2;g21s
m
2;g21E½0�: (16)

Recalling Equations 1, 2, and 4, we can simplify the
expectation of the fraction of admixture in a random
individual of sex d from the hybrid population. For g = 1,
Equation 15 gives

E
�
H1;1;d


 ¼ s1;0; (17)

the same expression found by Verdu and Rosenberg (2011,
Equation 10). For g $ 2, by Equation 16,

E
�
H1;g;d


 ¼ s1;g21 þ 1
2

�
hfg21E

�
H1;g21;f


þ hmg21E
�
H1;g21;m


�
:

(18)

Because H1,g,f and H1,g,m are identically distributed, recalling
Equation 2, we can simplify the expectation using
E½H1;g;f � ¼ E½H1;g;m� ¼ E½H1;g;d�, where d is left as an unspec-
ified sex (f or m). For g $ 2, the expectation of the fraction of
admixture from source population 1 is

E
�
H1;g;d


 ¼ s1;g21 þ hg21E
�
H1;g21;d



: (19)

We see in Equations 17 and 19 that the expectation of the
fraction of admixture for a random individual of sex d from
the hybrid population at generation g, E½H1;g;d�, depends on
the total contributions of the source populations (S1, S2, H) at
each generation, s1,g21 and hg21, and not on the sex-specific
parameters, sf1;g21, sm1;g21, hfg21, and hmg21. This recursion

(Equations 17 and 19) is the same as in the non-sex-specific
model of Verdu and Rosenberg (2011, Equations 10 and 11).

Higher Moments of the Fraction of Admixture

We can write a general recursion for the higher moments of
the admixture fraction from population S1 in a randomly
chosen individual of sex d from the hybrid population. For
k $ 1, in generation g = 1,

Hk
1;1;d ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

1k if L ¼ S1S1;with ℙ½L ¼ S1S1� ¼ sf1;0s
m
1;0�

1
2

�k
if L ¼ S1S2;with ℙ½L ¼ S1S2� ¼ sf1;0s

m
2;0

�
1
2

�k
if L ¼ S2S1;with ℙ½L ¼ S2S1� ¼ sf2;0s

m
1;0

0k if L ¼ S2S2;with ℙ½L ¼ S2S2� ¼ sf2;0s
m
2;0:

(20)

For all subsequent generations, g $ 2,

Hk
1;g;d ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1k if L ¼ S1S1;with ℙ½L ¼ S1S1� ¼ sf1;g21s
m
1;g21	

1þH1; g21;m
2


k

if L ¼ S1H;with ℙ½L ¼ S1H� ¼ sf1;g21h
m
g21

	
1
2


k

if L ¼ S1S2;with ℙ½L ¼ S1S2� ¼ sf1;g21s
m
2;g21

	
1þH1; g21; f

2


k

if L ¼ HS1;with ℙ½L ¼ HS1� ¼ hfg21s
m
1;g21

	
H1; g21; f þH1; g21;m

2


k

if L ¼ HH;with ℙ½L ¼ HS1� ¼ hfg21h
m
g21

	
H1; g21; f

2


k

if L ¼ HS2;with ℙ½L ¼ HS2� ¼ hfg21s
m
2;g21

	
1
2


k

if L ¼ S2S1;with ℙ½L ¼ S2S1� ¼ sf2;g21s
m
1;g21

	
H1; g21;m

2


k

if L ¼ S2H;with ℙ½L ¼ S2H� ¼ sf2;g21h
m
g21

0k if L ¼ S2S2;with ℙ½L ¼ S2S2� ¼ sf2;g21s
m
2;g21:

(21)

As in the case of k= 1, we use the law of total expectation to
write a recursion for higher moments of the distribution of
the fraction of admixture for all k $ 1. Using the values for
the recursion for the fraction of admixture, Equations 7 and
8, in the first generation, g = 1, we have

E

h
Hk
1;1;d

i
¼ sf1;0s

m
1;0E

�
1k



þ
�
sf1;0s

m
2;0 þ sf2;0s

m
1;0

�
E
��

1
2

�k

þ sf2;0s

m
2;0E½0k�: (22)

For g $ 2, we have
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E

h
Hk
1;g;d

i
¼ sf1;g21s

m
1;g21E

h
1k
i

þ sf1;g21h
m
g21E

"	
1þ H1;g21;m

2


k
#

þ hfg21s
m
1;g21E

"	
1þ H1;g21;f

2


k
#

þ
�
sf1;g21s

m
2;g21 þ sf2;g21s

m
1;g21

�
E

"	
1
2


k
#

þ hfg21h
m
g21E

"	
H1;g21;f þ H1;g21;m

2


k
#

þ sf2;g21h
m
g21E

"	
H1;g21;m

2


k
#

þ hfg21s
m
2;g21E

"	
H1;g21;f

2


k
#

þ sf2;g21s
m
2;g21E

h
0k
i
:

(23)

Recalling Equation 3 and noting that h0 = 0, we use the
binomial theorem to simplify the recursion for the moments
of H1,g,d. For g = 1, we have

E

h
Hk
1;1;d

i
¼ sf1;0s

m
1;0 þ

sf1;0s
m
2;0 þ sf2;0s

m
1;0

2k
: (24)

For g $ 2, we have

E

h
Hk
1;g;d

i
¼ sf1;g21s

m
1;g21 þ

sf1;g21s
m
2;g21 þ sf2;g21s

m
1;g21

2k

þ sf1;g21h
m
g21

2k

 Xk
i¼0

 
k

i

!
E

h
Hi
1;g21;m

i!

þ hfg21s
m
1;g21

2k

 Xk
i¼0

 
k

i

!
E

h
Hi
1;g21;f

i!

þ hfg21h
m
g21

2k

 Xk
i¼0

 
k

i

!
E

h
Hk2i
1;g21;f H

i
1;g21;m

i!

þ sf2;g21h
m
g21

2k
E

h
Hk
1;g21;m

i
þ hfg21s

m
2;g21

2k
E

h
Hk
1;g21;f

i
:

(25)

Because H1,g21,f and H1,g21,m are conditionally independent
given H1,g22,f and H1,g22,m, we can simplify the kth moment

of the distribution of the fraction of admixture from S1, for
d 2 {f, m}, to give

E

h
Hk
1;g;d

i
¼ sf1;g21s

m
1;g21 þ

sf1;g21s
m
2;g21 þ sf2;g21s

m
1;g21

2k

þ sf1;g21h
m
g21 þ hfg21s

m
1;g21

2k

 Xk
i¼0

 
k

i

!
E

h
Hi
1;g21;d

i!

þ hfg21h
m
g21

2k

 Xk
i¼0

 
k

i

!
E

h
Hk2i
1;g21;d

i
E

h
Hi
1;g21;d

i!

þ sf2;g21h
m
g21 þ hfg21s

m
2;g21

2k
E

h
Hk
1;g21;d

i
:

(26)

For k = 1, Equations 24 and 26 should produce the expec-
tation that we have already derived for k = 1. For k = 1,
using Equations 1, 2, and 4, Equation 24 gives

E
�
H1;1;d


 ¼ sf1;0s
m
1;0 þ

sf1;0s
m
2;0 þ sf2;0s

m
1;0

2
¼ s1;0; (27)

which matches Equation 17. For g $ 2 and k = 1, Equation
26 gives

E
�
H1;g;d


 ¼ sf1;g21s
m
1;g21

þ sf1;g21s
m
2;g21 þ sf2;g21s

m
1;g21 þ sf1;g21h

m
g21 þ hfg21s

m
1;g21

2

þ
 
2hfg21h

m
g21 þ sf1;g21h

m
g21 þ hfg21s

m
1;g21 þ hfg21s

m
2;g21 þ sf2;g21h

m
g21

2

!

3E
�
H1;g21;d



;

(28)

which simplifies to match Equation 19. Finally, with equal
contributions in each population from females and males, so
that sf1;g21 ¼ sm1;g21 ¼ s1;g21 and sf2;g21 ¼ sm2;g21 ¼ s2;g21,
Equations 24 and 26 reduce to Equations 16 and 17 from
Verdu and Rosenberg (2011).

Variance of the Fraction of Admixture

When k = 2, Equations 24 and 26 produce a recursion for
the second moment of H1,g,d. Recalling Equations 1–6, for
g = 1, we have

E

h
H2
1;1;d

i
¼

sf1;0
�
1þ sm1;0

�
þ sm1;0

�
1þ sf1;0

�
4

: (29)

For g $ 2, we have
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E

h
H2
1;g;d

i
¼ sf1;g21s

m
1;g21 þ

sf1;g21s
m
2;g21 þ sf2;g21s

m
1;g21

4

þ sf1;g21h
m
g21

4

�
1þ 2E

�
H1;g21;m


þ E

h
H2
1;g21;m

i�

þ hfg21s
m
1;g21

4

�
1þ 2E

�
H1;g21;f


þ E

h
H2
1;g21;f

i�

þ hfg21h
m
g21

4

�
E

h
H2
1;g21;f

i
þ 2E

�
H1;g21;f



E
�
H1;g21;m




þ E

h
H2
1;g21;m

i�
þ sf2;g21h

m
g21

4
E

h
H2
1;g21;m

i

þ hfg21s
m
2;g21

4
E

h
H2
1;g21;f

i
:

(30)

Recalling that H1,g,f and H1,g,m are identically distributed,
Equation 30 simplifies to give

E

h
H2
1;g;d

i
¼

sf1;g21

�
1þ sm1;g21

�
þ sm1;g21

�
1þ sf1;g21

�
4

þ sf1;g21h
m
g21 þ hfg21s

m
1;g21

2
E
�
H1;g21;d




þ hfg21h
m
g21

2

�
E
�
H1;g21;d


�2

þ hfg21 þ hmg21

4
E

h
H2
1;g21;d

i
: (31)

Using the definition of the variance V½H1;g;d� ¼ E½H2
1;g;d�2

ðE½H1;g;d�Þ2, and Equations 17, 19, 29, and 31, for the first
generation, for the variance of the fraction of admixture, we
have

V
�
H1;1;d


 ¼ sf1;0
�
12 sf1;0

�
þ sm1;0

�
12 sm1;0

�
4

: (32)

For all subsequent generations, g $ 2, we have

V
�
H1;g;d


 ¼ sf1;g21

�
12 sf1;g21

�
þ sm1;g21

�
12 sm1;g21

�
4

2
sf1;g21h

f
g21 þ sm1;g21h

m
g21

2
E
�
H1;g21;d




þ
hfg21

�
12 hfg21

�
þ hmg21

�
12 hmg21

�
4

�
E
�
H1;g21;d


�2

þ hfg21 þ hmg21

4
V
�
H1;g21;d



:

(33)

With no sex bias, so that sf1;g ¼ sm1;g ¼ s1;g and sf2;g ¼
sm2;g ¼ s2;g, Equations 32 and 33 are equivalent to Equations
22 and 23 from Verdu and Rosenberg (2011).

The recursion for the variance of the fraction of admix-
ture of a random individual of sex d from the hybrid pop-
ulation is dependent on the variance from the previous
generation, the expectation from the previous generation,
and its square. By contrast with the expectation, the vari-
ance of the fraction of admixture depends on the sex-specific
contributions from the source populations.

Equations 32 and 33 are invariant with respect to an
exchange of all variables corresponding to males (super-
script m) with those corresponding with females (super-
script f). Thus, although the variance is affected by the
sex-specific admixture contributions, it does not identify
the direction of the bias. Despite the dependence of the
variance of the autosomal fraction of admixture on sex-
specific contributions, under the model, the symmetry
demonstrates that autosomal DNA alone does not iden-
tify which sex contributes more to the hybrid population
from a given source population. This result is reasonable
given the non-sex-specific inheritance pattern of autoso-
mal DNA.

Special Case: A Single Admixture Event

Using the recursions in Equations 17, 19, 32, and 33, we can
study specific cases in which the contributions are specified.
We first consider the case in which the source populations S1
and S2 do not contribute to the hybrid population after its
founding: sf1;g ¼ sm1;g ¼ sf2;g ¼ sm2;g ¼ 0, and h ¼ ðhfg þ hmg Þ=
2 ¼ 1, for all g $ 1. As before, at the first generation, the
hybrid population is not yet formed, and h0 = 0. Therefore,
s1;0 þ s2;0 ¼ sf1;0 þ sf2;0 ¼ sm1;0 þ sm2;0 ¼ 1.

Under this scenario, we can derive the exact expectation
and variance of the autosomal fraction of admixture of
a random individual from the hybrid population. In the case
of a single admixture event, the expectation of the admix-
ture fraction is equal to the expectation at the first
generation, because the further contributions are all zero.
Using Equation 19, s1,g21 = s2,g21 = 0 for all g $ 2. There-
fore, from Equation 17, in the case of a single admixture
event, for all g $ 1,

E
�
H1;g;d


 ¼ s1;0: (34)

The expectation of the autosomal fraction of admixture from
S1 is constant over time, and it depends on the total—not
the sex-specific—contribution from the source population
S1. As in the general case in Equation 19, for a single ad-
mixture event, a sex bias does not affect the expectation.
Because the source populations provide no further contribu-
tions after the founding generation, unlike in the general
case, the mean admixture fraction does not change with
time.

Using Equations 32 and 33, because sf1 ¼ sm1 ¼ sf2 ¼
sm2 ¼ 0 for all g$ 2, the variance of the fraction of admixture
follows a geometric sequence with ratio 1

2. For all genera-
tions g $ 1,
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V
�
H1;g;d


 ¼ sf1;0
�
12 sf1;0

�
þ sm1;0

�
12 sm1;0

�
2gþ1 : (35)

For sf1;0 ¼ sm1;0, by Equations 1 and 2, the variance matches
Equation 25 of Verdu and Rosenberg (2011).

With a single admixture event, the variance decreases
monotonically, and its limit is zero for all parameter values.
Individuals from the hybrid population mate only within the
population, decreasing the variance by a factor of 2 each
generation. Thus, Equation 35 predicts that the distribution
of the admixture fraction for a random individual in the
hybrid population contracts around the mean, converging
to a constant equal to the mean admixture from the first
generation.

In Equation 35, considering all possible pairs ðsf1;0; sm1;0Þ,
with each entry in [0, 1], the maximal V½H1;g;d� occurs at
ðsf1;0; sm1;0Þ ¼

�
1
2;

1
2

�
, a scenario with equal contributions from

the two source populations and no sex bias. At the maxi-
mum, the variance is V½H1;g;d� ¼ 1=2gþ2. Four minima occur,
at ðsf1;0; sm1;0Þ ¼ ð0; 0Þ, (0, 1), (1, 0), and (1, 1), cases in
which all individuals in generation g = 1 have the same pair
of source populations for their two parents, and in later
generations, all individuals continue to have the same value
of H1,g,d. In these cases, V½H1;g;d� ¼ 0.

Figure 3 plots the variance in Equation 35 as a function of
the sex-specific parameters sf1;0 and sm1;0 for three values of g.
For g = 1, a maximum of V½H1;1;d� ¼ 1

8 occurs at ðsf1;0; sm1;0Þ ¼�
1
2;

1
2

�
, and a minimum, V½H1;1;d� ¼ 0, at ðsf1;0; sm1;0Þ ¼ ð0; 0Þ;

ð0; 1Þ; ð1; 0Þ; or (1, 1). After one generation of mixing within
the hybrid population, with no further contributions from
the source populations, the maximum and minima occur
at the same values of ðsf1;0; sm1;0Þ, but the variance is halved
(Figure 3B). That is, for a given set of values ðsf1;0; sm1;0Þ,
V½H1;2;d� ¼ V½H1;1;d�=2. Similarly, for g = 8 in Figure 3C,
V½H1;8;d� ¼ V½H1;1;d�=27. By g = 8, the hybrid population is
quite homogeneous in admixture, and the variance of the
admixture fraction has decreased to near zero for all sets of
founding parameters. Therefore, the admixture fraction dis-
tribution is close to constant, with H1,8,d � s1,0.

We can analyze the dependence of the variance on the sex-
specific parameters by considering constant total contribu-
tions s1,0 and allowing the sex-specific contributions to vary,
constrained by Equation 1 so that 0# sf1;0; s

m
1;0 #minð1; 2s1;0Þ.

Rewriting Equation 35 in terms of s1,0 and sf1;0,

V
�
H1;g;d


 ¼ sf1;0
�
2s1;0 2 sf1;0

�
2 s1;0

�
2s1;0 2 1

�
2g

: (36)

From this expression, it is possible to observe that given
a constant s1,0 in [0, 1], the maximal variance is produced
when sf1;0 ¼ sm1;0 ¼ s1;0. The minimal variance occurs when
ðsf1;0; sm1;0Þ ¼ ð0; 2s1;0Þ or (2s1,0, 0), for s1;0 # 1

2, or (1, 2s1,0 2
1) or (2s1,0 2 1, 1), for s1;0 $ 1

2. This minimum takes the
value V½H1;g;d� ¼ 0 only when s1,0 equals 0, 1

2, or 1.

For the specific case of s1;0 ¼ 1
2, the total contribution for

which the maximal variance occurs in Figure 3, we illus-
trate the variance at several locations in the allowed range
for sf1;0 and sm1;0 (Figure 4). Four scenarios are plotted with
the same total founding contribution from source popula-
tion 1, s1;0 ¼ 1

2, but with different levels of sex bias. As the
female and male contributions become increasingly dif-
ferent, the initial variance decreases. The largest variance
for s1;0 ¼ 1

2 occurs at sf1;0 ¼ sm1;0 ¼ s1;0, with no sex bias.
The minimum occurs when males all come from one
source population and females all from the other. In this
extreme sex-biased case, the variance is zero constantly
over time, as each individual has a male parent from one
population, a female parent from the other, and an admix-
ture fraction of 1

2.

Special Case: Constant Nonzero Contributions

Next, we consider the case in which an initial admixture
event founds the hybrid population and is then followed by
constant nonzero contributions from the source popula-
tions. After the founding, for each g $ 1, all admixture
parameters are constant in time: sda;g ¼ sda for each a 2
{1, 2} and d 2 {f, m}, and hdg ¼ hd for each d. Thus, we
have parameter values for the founding and constant con-
tinuing admixture parameters sf1, s

m
1 , s

f
2, and sm2 . Each pa-

rameter takes its value in [0, 1], as do s1 and s2. By
contrast, h takes its value in (0, 1). The case of h = 1 is
a single admixture event, analyzed above. The h= 0 case is
trivial because the hybrid population is refounded at each
generation, and the distribution of the admixture fraction
thus depends only on the contribution in the previous gen-
eration. Therefore, we require s1 + s2 6¼ 0 and s1 + s2 6¼ 1.
Individually, however, hf and hm can each vary in [0, 1], as
long as they are not both zero or one.

The recursion for the expectation of the autosomal
fraction of admixture, Equations 17 and 19, is equivalent
to that derived by Verdu and Rosenberg (2011). There-
fore, the closed form of the expectation is equivalent as
well. From Verdu and Rosenberg (2011, Equation 30) we
have

E
�
H1;g;d


 ¼
8><
>:

s1;0; g ¼ 1

s1;0hg21 þ s1
12 hg21

12 h
; g$2:

(37)

We can use the same method as Verdu and Rosenberg
(2011) to simplify the second moment. Under the special
case of constant contributions across generations, for g = 1,
Equation 29 gives

E

h
H2
1;1;d

i
¼

sf1;0
�
1þ sm1;0

�
þ sm1;0

�
1þ sf1;0

�
4

: (38)

For g $ 2, Equation 31 gives
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E

h
H2
1;g;d

i
¼

sf1
�
1þ sm1

�þ sm1
�
1þ sf1

�
4

þ sf1h
m þ hfsm1
2

E
�
H1;g21;d




þ hfhm

2

�
E
�
H1;g21;d


�2 þ hf þ hm

4
E

h
H2
1;g21;d

i
:

(39)

Because this equation is a nonhomogenous first-order re-
currence with the form

E

h
H2
1;g;d

i
¼ cðgÞ þ lE

h
H2
1;g21;d

i
; (40)

we can use Theorem 3.1.2 of Cull et al. (2005) to solve for
a unique solution for E½H2

1;g;d�, as in Verdu and Rosenberg
(2011). For the initial condition, we have

a0 ¼ E

h
H2
1;1;d

i
¼

sf1;0
�
1þ sm1;0

�
þ sm1;0

�
1þ sf1;0

�
4

: (41)

We define l= (hf + hm)/4 = h/2, and for all g$ 2, we have

cðgÞ ¼
sf1
�
1þ sm1

�þ sm1
�
1þ sf1

�
4

þ sf1h
m þ hfsm1
2

E
�
H1;g21;d



þ hfhm

2

�
E
�
H1;g21;d


�2
:

(42)

Using the expected admixture fraction from Equation 37, we
can simplify Equation 42. For all g $ 2,

cðgÞ ¼
sf1
�
1þ sm1

�þ sm1
�
1þ sf1

�
4

þ sf1h
m þ hfsm1
2

	
s1;0hg22 þ s1

12 hg22

12 h




þ hfhm

2

	
s1;0hg22 þ s1

12hg22

12h


2

: (43)

Therefore, using Theorem 3.1.2 of Cull et al. (2005), we
have a unique solution for E½H2

1;g;d�:

E

h
H2
1;g;d

i
¼

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

a0; g ¼ 1

a0

�
h
2

�g21

þPg
i¼2

2
4sf1
�
1þ sm1

�þ sm1
�
1þ sf1

�
4

þ sf1h
m þ hfsm1
2

	
s1;0hi22 þ s1

12 hi22

12 h




þ hfhm

2

	
s1;0hi22 þ s1

12hi22

12h


2#	h
2


g2i

; g$ 2:

(44)

Equation 44 can be simplified by separating the sum and
summing the resulting geometric series,

E

h
H2
1;g;d

i
¼

8>><
>>:

a0; g ¼ 1;

A1 þ A2hg21 þ
 
A3 þ A4

Pg21

i¼1
ð2hÞi

!�
h
2

�g21

; g$ 2;
(45)

where a0 is defined in Equation 41, and

A1 ¼ s1 þ sf1s
m
1

ð22hÞ þ
s1
�
sf1h

m þ hfsm1
�

ð12 hÞð22 hÞ þ s21h
fhm

ð12 hÞ2ð22 hÞ; (46)

A2 ¼ 1
h

	
sf1h

m þ hfsm1 þ 2hfhms1
12 h


�
s1;0 2

s1
12 h

�
; (47)

A3 ¼ a0 þ hfhms1
12 h

�
2
h

� s1
12h

2 s1;0
�
2

s1
ð12hÞð22 hÞ

�

þ
�
sf1h

m þ hf sm1
�� s1h

12 h
2 s1;0h2

s1
ð12 hÞð22 hÞ

�
2

s1 þ sf1s
m
1

22 h
; (48)

A4 ¼ hfhm

2h2
h
s21;0 þ

s1
12 h

� s1
12 h

22s1;0
�i

: (49)

Figure 3 The variance of the fraction of admixture, V[H1,g,d], as a function of female and male contributions from source population S1 in the first
generation, sf1;0 and sm1;0, in the case of hybrid isolation. (A) g = 1. (B) g = 2. (C) g = 8. At each generation, the variance decreases toward zero by a factor
of 2. Considering all ðsf1;0; sm1;0Þ in [0, 1] 3 [0, 1], the maximal variance occurs when ðsf1;0; sm1;0Þ ¼

�
1
2;

1
2

�
, and the minimal variance when

ðsf1;0; sm1;0Þ ¼ ð0;0Þ; ð0; 1Þ; ð1; 0Þ; or (1, 1). The variance is calculated using Equation 35.
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When sf1 ¼ sm1 and sf2 ¼ sm2 , A1, A2, A3, and A4 are equal to the
corresponding quantities in Verdu and Rosenberg (2011, Equa-
tions 39–42). Therefore, without sex bias, the closed form of
the second moment of the admixture fraction, Equation 45, is
equal to Equation 38 in Verdu and Rosenberg (2011).

Using the relation V½H1;g;d� ¼ E½H2
1;g;d�2 ðE½H1;g;d�Þ2 and

Equations 37 and 45, for the variance of the autosomal
fraction of admixture, we have

V
�
H1;g;d


 ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

sf1;0
�
12 sf1;0

�þ sm1;0
�
12 sm1;0

�
4

; g ¼ 1;

A1 þ A2hg21 þ
"
A3 þ A4

Pg21

i¼1
ð2hÞi

#�
h
2

�g21

2
�
s1;0hg21 þ s112hg21

12h

�2
; g$2:

(50)
For h 6¼ 1

2, we have

V
�
H1;g;d


 ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

sf1;0
�
12 sf1;0

�
þ sm1;0

�
12 sm1;0

�
4

; g ¼ 1;

A1 þ A2hg21 þ
�
A3 þ A4

	
2h2 ð2hÞg
12 2h


�	
h
2


g21

2

	
s1;0hg21 þ s112 hg21

12 h


2

; g$ 2:

(51)
For h ¼ 1

2, Equation 50 gives

V
�
H1;g;d


 ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

sf1;0
�
12 sf1;0

�
þ sm1;0

�
12 sm1;0

�
4

; g ¼ 1;

A1 þ A2

�
1
2

�g21
þ A3

�
1
4

�g21
þ A4ðg2 1Þ

�
1
4

�g21

2
h
2s1 þ

�
s1;022s1

��
1
2

�g21i2
; g$ 2:

(52)

Equations 50–52 simplify to Equations 43–45 of Verdu and
Rosenberg (2011) when sf1 ¼ sm1 and sf2 ¼ sm2 .

Limiting variance of admixture over time

Figure 5 illustrates the variance of the autosomal fraction
of admixture as a function of g when the contributions
from the source populations are constant over time, com-
puted using Equation 50. The figure shows that if the
continuing contributions are held constant, then the long-
term limiting variance does not depend on the founding
parameters. Unlike in the hybrid isolation case, with con-
stant, nonzero contributions from the source populations
over time, h 6¼ 0 and h 6¼ 1, a nonzero limit is reached.
Applying Equation 50,

lim
g/N

V
�
H1;g;d


 ¼ A12
� s1
12 h

�2
; (53)

which does not depend on the founding parameters. The
limit matches that of Verdu and Rosenberg (2011, Equation
46) in the absence of sex bias (sf1 ¼ sm1 ¼ s1, hf = hm = h,
and sf2 ¼ sm2 ¼ s2).

The maxima and minima of the limiting variance

Using Equations 1, 2, 4, and 46, the limit in Equation 53 can
be equivalently written in terms of the two female sex-
specific contributions, sf1 and sf2, and the total contributions
from the two source populations, s1 and s2. Considering
admixture scenarios with constant s1, s2, with s1 + s2 2
(0, 1], but allowing sf1 and sf2 to range over the closed unit
interval, the limiting variance depends on two indepen-
dent parameters, sf1; s

f
2 2 ½0; 1�, subject to the constraint in

Equation 1:

lim
g/N

V
�
H1;g;d


 ¼ 2
�
sf1s22sf2s1

�2 þ s1s2ðs1 þ s2Þ
ðs1 þ s2Þ2ð1þ s1 þ s2Þ

: (54)

Treating s1 and s2 as constants in [0,1], the critical points of
Equation 54 are the same as those of

f
�
sf1; s

f
2

�
¼ 2

�
sf1s22sf2s1

�2
: (55)

First we consider the maximum. Because fðsf1; sf2Þ is always
negative or zero, the maximal variance given s1 and s2
occurs when f ðsf1; sf2Þ ¼ 0, which occurs on the line sf1s2 ¼ sf2s1.
Equivalently, recalling Equation 1,

sf1
sf2

¼ sm1
sm2

¼ s1
s2
: (56)

Equation 56 has many solutions for ðsf1; sm1 ; sf2; sm2 Þ given s1
and s2. One solution is ðsf1; sf2Þ ¼ ðs1; s2Þ, which by Equation
1 is equivalent to ðsf1; sf2Þ ¼ ðsm1 ; sm2 Þ. Therefore, the limiting
variance of the admixture fraction is maximized when there
is no sex bias. Figure 6 plots two examples of the variance
for constant s1 and s2, but increasingly different sex-specific

Figure 4 The variance of the fraction of admixture, V[H1,g,d], when con-
tributions from the source populations occur only in the founding generation
and the total contribution from source population 1 is held constant at
s1;0 ¼ 1

2. The limit of the variance of the fraction of admixture over time is
zero for any choice of ðsf1;0; sm1;0Þ. The magnitude of the variance, calculated
from Equation 35, is inversely related to the level of sex bias. For all four
scenarios, s1 = s2 = 0 and s1;0 ¼ s2;0 ¼ 1

2.
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contributions from the source populations. In Figure 6, A
and B, the admixture history with no sex bias produces
the greatest limit.

For fixed s1 and s2, however, the case without sex bias is
not the only maximum of the limiting variance. Figure 7
plots the variance over time for four different admixture
histories, each with the same total contributions s1 and s2,
but quite different sex-specific contributions ðsf1; sm1 ; sf2; sm2 Þ.
Each of the four scenarios plotted reaches the same limit
because each provides a solution to Equation 56. Because
f ðsf1; sf2Þ ¼ 0, Equation 54 depends only on the total contri-
butions s1 and s2. For constant s1 and s2, any admixture
history whose contributions solve f ðsf1; sf2Þ ¼ 0 has limiting
variance

lim
g/N

V
�
H1;g;d


 ¼ s1s2
ðs1 þ s2Þð1þ s1 þ s2Þ: (57)

This maximal limiting variance depends on the total con-
tributions from the source populations, but not on the sex-
specific contributions; it is equivalent to Equation 47 of
Verdu and Rosenberg (2011).

Thus far, we have considered the maximal limiting
variance as a function of the sex-specific parameters given
constant total contributions s1 and s2. We can also identify
the values of s1 and s2 that maximize the limiting variance,
considering all s1, s2 2 [0, 1]. For each choice of s1 and s2,
the maximal variance over values of sf1 and sf2 is given by
Equation 57. We can therefore find the s1 and s2 that max-
imize Equation 57. As shown by Verdu and Rosenberg
(2011), given s1 + s2, the maximal limiting variance occurs
when s1 = s2. Over the range of possible choices for s1 + s2 2
(0, 1), the maximum occurs when s1 ¼ s2 ¼ 1

2. Unlike in
Verdu and Rosenberg (2011), however, this maximum
requires the sex-specific contributions to solve fðsf1; sf2Þ ¼ 0.

Interestingly, one of the minima of the limiting
variance occurs when s1 ¼ s2 ¼ 1

2, but with fðsf1; sf2Þ 6¼ 0.
Specifically, when s1 ¼ s2 ¼ 1

2, but all males come from
one source population and all females from the other,
ðsf1; sm1 ; sf2; sm2 Þ ¼ ð1; 0; 0; 1Þ or (0, 1, 1, 0), the limiting vari-
ance in Equation 54 is zero. In this case, L ¼ S1S2 or
L ¼ S2S1 for every individual in the hybrid population. By
Equation 8, the hybrid population is founded anew at each
generation, each individual having admixture fraction
H1;g;d ¼ 1

2.
More generally, given s1 and s2, the minimum occurs

when ðsf1; sf2Þ ¼ ð2s1; 0Þ or ðsf1; sf2Þ ¼ ð0; 2s2Þ. Given s1 and
s2, the limiting variance is minimized with respect to sf1
and sf2 when fðsf1; sf2Þ is smallest (Equation 54). Because f
is the negative of the square of a difference of products, it
is smallest when one term is zero and the other is at its
maximum, as at ðsf1; sf2Þ ¼ ð2s1; 0Þ or ðsf1; sf2Þ ¼ ð0; 2s2Þ. These
points represent the maximal sex bias for fixed (s1, s2).

Figure 5 The variance of the fraction of admixture over time for con-
stant, nonzero contributions from the source populations, with differ-
ent levels of sex bias in the founding of the hybrid population, and
constant, equal, and nonzero subsequent contributions from the source
populations and sex for g $ 1. In all cases, sf1 ¼ sm1 ¼ sf2 ¼ sm2 ¼ 0:2. The
variance, calculated with Equation 50, reaches a nonzero limit
limg/NV½H1;g;d� ¼ 1=24.

Figure 6 The variance of the fraction of admixture over time for con-
stant, nonzero contributions from the source populations, with different
levels of sex bias, but the same total contribution from the two source
populations. (A) sf1;0 ¼ sm1;0 ¼ 0:9 and s1 = s2 = 0.1. (B) sf1;0 ¼ sm1;0 ¼ 0:75
and s1 = s2 = 0.2. The variance reaches a nonzero limit when sf1, s

m
1 , s

f
2,

and sm2 are nonzero and constant over time. The variance is calculated
using Equation 50.
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If we allow s1 and s2 to vary, because a variance is
bounded below by zero, any set of parameters that produces
zero variance is a minimum. In Equation 54, if either s1 =
0 or s2 = 0, then the limiting variance of the admixture
fraction is zero. When only one population contributes after
the founding, in the limit, all ancestry in the hybrid popula-
tion traces to that population.

Properties of the limiting variance

The limiting variance of the fraction of admixture over time
in Equation 53 is a function of the sex-specific contributions
from the hybrid population, hf and hm, and source popula-
tion 1, sf1 and sm1 . Recalling Equation 4, the limiting variance
is equivalently written as a function of the sex-specific con-
tributions from source population 2, sf2 and sm2 , and either
source population 1 (Equation 54), or the hybrid popula-
tion. It can be viewed as a function of all six sex-specific
parameters ðsf1; sm1 ; sf2; sm2 ; hf ; hmÞ, four of which can be se-
lected while assigning the other two by the constraint from
Equation 4.

We can therefore analyze the behavior of the limiting
variance as a function of two of the sex-specific parameters
by specifying two other parameters and allowing the final
two parameters, one female and one male, to vary according
to Equation 4. Of the four parameters we consider, using
the constraint from Equation 4 separately in males and
females, two must be male and two must be female.
Because the variance is invariant with respect to exchang-
ing the source populations or the sexes, the six-dimensional
parameter space has a number of symmetries. Figure 8,
Figure 9, Figure 10, Figure 11, and Figure 12 examine
the five possible, nonredundant ways of choosing two
populations and the corresponding male and female
parameters from those populations and holding two cor-
responding parameters fixed (either from the same sex in
the two populations, or for males and females from one

Figure 7 The variance of the fraction of admixture over time for con-
stant, nonzero contributions from the source populations, but multiple
different ratios of female to male contributions. When the sex-specific
parameters satisfy the equation sf1s

m
2 ¼ sm1 s

f
2, different demographic sce-

narios have the same limiting variance of the admixture fraction. In all
cases, limg/NV½H1;g;d� ¼ 4

75. The variance is calculated using Equation 33.
For all scenarios, sf1;0 ¼ sm1;0 ¼ 0:95.

Figure 8 Contour plots of the limit
of the variance of the fraction of ad-
mixture over time as a function of sf1
on the x-axis and sm1 on the y-axis for
specified values of hf by column and
hm by row. The domains of sf1 and sm1
are [0, 1 2 hf] and [0, 1 2 hm],
respectively.
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population) while allowing the other two to vary. Figure
13 then highlights an informative case that considers
the limiting variance in terms of a male and a female
parameter from different populations.

Each figure shows multiple contour plots of the limiting
variance as a function of two sex-specific parameters, for
fixed values of two other parameters. Three cases plot the
limiting variance as a function of the female and male
parameters from a given population, with the female and
male contributions of another population specified. In two
other cases, parameters for a single sex from two popula-
tions are plotted, specifying the contributions from the other
sex for those populations.

By considering these parameter combinations, we can
examine the dependence of the variance on sex-specific
parameters and parameter interactions, as well as potential
bounds on both the parameters and the variance. We
highlight a number of symmetries in the limiting variance.
The plots also illustrate the maxima and minima found in
the previous section.

Properties of the limiting variance in terms of s f1 and sm1 :
In Figure 8, we consider the variance of the fraction of
admixture as a function of sf1, the female contribution from
S1, on the x-axis, and sm1 , the male contribution from S1, on
the y-axis, computed using Equation 53. We plot the vari-
ance for fixed hf, the female contribution from H, and hm,
the male contribution from H. The domain for sf1 and sm1 is

constrained by Equation 4, with sf1 taking values in [0, 1 2
hf], and sm1 taking values in [0, 1 2 hm].

Figure 8, top left, shows the variance as a function of sf1
and sm1 , with hf = hm = h= 0. Here, the hybrid population is
founded anew by the source populations each generation,
and sf1 and sm1 both take values from the full domain [0, 1].
For hf = hm = h = 0, the maximal limiting variance is
limg/NV½H1;g;d� ¼ 1

8, occurring when sf1 ¼ sm1 ¼ s1 ¼ 0:5. At
this maximum, given Equation 4 and hf = hm = 0, we have
sf2 ¼ sm2 ¼ s2 ¼ 0:5. As in Equation 54, the maximum occurs
when female and male contributions from the source pop-
ulations are equal and the total contributions from the
source populations are equal.

The minima of limg/NV½H1;g;d� ¼ 0 occur at the four cor-
ners of the plot. At the origin, when sf1 ¼ sm1 ¼ s1 ¼ 0, the
limiting variance is zero because only S2 contributes to the
hybrid population. Individuals in the hybrid population all
have parents L = S2S2 and admixture fraction zero (Equa-
tion 8). By exchanging S1 for S2, the case of sf1 ¼ sm1 ¼ s1 ¼ 1
is similar. Additional minima occur at ðsf1; sm1 Þ ¼ ð1; 0Þ or (0,
1), where all males come from one source population and all
females from the other, and all individuals at the next gen-
eration of the hybrid population have admixture fraction 1

2
(Equation 8).

For hf = hm = h = 0, the limiting variance is symmetrical
over the line sm1 ¼ sf1, as a result of the symmetry between
males and female in the variance (Equation 33). Because the
hybrid population provides no contribution and the variance

Figure 9 Contour plots of the limit
of the variance of the fraction of
admixture over time as a function
of sf1 on the x-axis and sm1 on the
y-axis for specified values of sf2 by
column and sm2 by row. The domains
of sf1 and sm1 are ½0;12 sf2� and
½0;12 sm2 �, respectively.
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of the fraction of admixture is symmetric with respect to
source population, the variance is also symmetric over the
lines sf1 ¼ 0:5 and sm1 ¼ 0:5.

The columns of Figure 8 consider increasing, fixed values
for hf, and the rows consider increasing, fixed values for hm,
both from {0, 0.25, 0.5, 0.75, 0.95}. All the cells maintain
the general shape of the limiting variance as a function of sf1
and sm1 seen for hf = hm = 0. However, as the domain for sf1
and sm1 shrinks with increasing hf and hm, the location of the
maximal variance changes across cells. In all cases, the max-
imum of the limiting variance occurs when sf1 and sm1 each lie
at the midpoints of their respective domains, sf1 ¼ ð12hfÞ=2
and sm1 ¼ ð12 hmÞ=2: The magnitude of the limiting vari-
ance at each maximum decreases as its location moves away
from sf1 ¼ sm1 ¼ 0:5.

In all the cells, the minimum limg/NV½H1;g;d� ¼ 0 occurs
when sf1 and sm1 are either both zero or they lie at the max-
ima of their respective domains. In these cases, only one
source population contributes to the hybrid population,
and all individuals in the hybrid population have an admix-
ture fraction from S1 of either 0, when sf1 ¼ sm1 ¼ 0, or 1,
when sf1 ¼ 12 hf and sm1 ¼ 12 hm. The limiting variance is
no longer zero at the two corners of each plot where only
one of fsf1; sm1 g is at the maximum of its domain; these cor-
ners, however, are minima of the variance given the values
of s1 and s2. In these cases, males all come from one source
population and females from the other, producing
a minimum of Equation 54 for fixed s1 and s2.

As in the case of hf = hm = 0, each cell is symmetrical in
reflecting over both the midpoint of the x-axis,
sf1 ¼ ð12hfÞ=2, and that of the y-axis, sm1 ¼ ð12 hmÞ=2.
The limiting variance is symmetrical with respect to source
population (Equation 54), and this pair of reflections corre-
sponds to an exchange of source populations. For hf = hm =
0, the line sf1 ¼ sm1 generates circular contours, but as the
contributions from the hybrid population increase, the con-
tours become elliptical.

In Figure 8, cells on the diagonal have equal contribu-
tions from males and females in the hybrid population, hf =
hm = h. For hf 6¼ hm, cells above the diagonal are equivalent
to those below the diagonal with an exchange of female for
male contributions, for both s1 and h. For example, the cell
with hf = 0.25 and hm = 0.5 is equivalent to the cell with
hf = 0.5 and hm = 0.25 if the axes are also switched so
that sm1 appears along the x-axis and sf1 is on the y-axis.

Figure 9 plots the limiting variance as a function of sf1 on
the x-axis and sm1 on the y-axis, but we now fix values of sf2 by
column and sm2 by row using Equations 54 and 1. The max-
ima and minima occur at the same parameter values found
in Figure 8, but they appear in different locations on the
plots. For example, in Figure 9, the global maximum across
cells occurs in the plot with sf2 ¼ sm2 ¼ 0:5 specified, and
sf1 ¼ sm2 ¼ 0:5. By Equation 4, this location has hf = hm =
0, the cell with the maximal variance in Figure 8. In Figure
9, top left, the variance is zero for all sf1 and sm1 , because s2 =
0 (Equation 54).

Figure 10 Contour plots of the limit
of the variance of the fraction of ad-
mixture over time as a function of hf

on the x-axis and hm on the y-axis for
specified values of sf1 by column and
sm1 by row. The domains of hf and
hm are ½0; 12 sf1� and ½0;12 sm1 �,
respectively.
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Whereas all cells in Figure 8 are symmetric in reflecting
over the midpoints of both domains, in Figure 9, only the
cells with sf2 ¼ sm2 are symmetric over the line sm1 ¼ sf1: How-
ever, the symmetry corresponding to transposing males and
females is visible in that a cell above the diagonal and its
corresponding cell below the diagonal are equivalent if the
axes for sf1 and sm1 are switched.

Properties of the limiting variance in terms of hf and hm:
Similarly to Figure 8, Figure 10 considers the limiting variance
of the admixture fraction over time as a function of the four
variables sf1, s

m
1 , hf, and hm using Equation 53. In Figure 10,

each cell shows hf on the x-axis and hm on the y-axis, for sf1
and sm1 specified, with the domains of hf and hm constrained by
Equation 4. The cells on the diagonal have sf1 ¼ sm1 , and there
is a symmetry over this line of cells in that if values of sf1 and
sm1 are switched, then the cells will be equivalent with a trans-
position of the axes.

In Figure 10, top left, sf1 ¼ sm1 ¼ s1 ¼ 0, and the limiting
variance is a constant zero. In Figure 10, the maximal var-
iance occurs at the origin (hf = hm = h = 0) of the cell with
sf1 ¼ sm1 ¼ s1 ¼ 0:5. As in Figure 8, at the maximum, by
Equation 4, sf2 ¼ sm2 ¼ s2 ¼ 0:5. In this case, females and
males contribute equally. Both source populations contribute
maximally to pull the distribution of the fraction of admix-
ture toward the extremes of zero and one.

Because the limiting variance is symmetrical with respect
to source population, and recalling Equation 4, each cell in

Figure 10 is equivalent to a corresponding cell in Figure 9
reflected along both the x-axis and y-axis. For example, the
cell in Figure 10 with sf1 ¼ 0:5 and sm1 ¼ 0:25 is equivalent to
the Figure 9 cell with sf2 ¼ 0:5 and sm2 ¼ 0:25 if reflected on
both the x- and y-axes.

Figure 8, Figure 9, and Figure 10 illustrate that the global
maximum of the limiting variance occurs when the two
source populations contribute equally, the contributions
from the two sexes are equal, and the hybrid population
does not contribute to the next generation. As the parame-
ters move from the location of the maximal limiting variance
to the minimum, the variance monotonically decreases.

Properties of the limiting variance in terms of s f1 , h
f, and

sf2: Next we plot on the x- and y-axes two parameters of the
same sex from different populations. Because the variance is
invariant with respect to transposition of females and males,
we consider only females without loss of generality. Figure
11 plots the limiting variance as a function of sf1 on the x-axis
and hf on the y-axis, for fixed values of sm1 and hm. Figure 12
plots the limiting variance as a function of sf1 and sf2, for fixed
sm1 and sm2 . For Figure 11 and Figure 12, the domains of sf1; s

f
2;

and hf are constrained by Equation 4.
For Figure 11, the maximal limiting variance occurs in the cell

with sm1 ¼ 0:5 and hm = 0, at ðsf1; hfÞ ¼ ð0:5; 0Þ. By Equation 4,
this location is the same parameter set for the maximum in
Figures 8, Figure 9, and Figure 10. The maximum in each cell
occurs when ðsf1; hfÞ ¼ ð0:5; 0Þ, but the magnitude of the

Figure 11 Contour plots of the
limit of the variance of the frac-
tion of admixture over time as
a function of sf1 on the x-axis
and hf on the y-axis for specified
values of sm1 by column and hm by
row. The domains of sf1 and hf are
bounded below by 0 and above
by the line sf1 þ hf ¼ 1.
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variance decreases with increased distance from the cell with
fixed sm1 ¼ 0:5 and hm = 0. Similarly, within each cell, the lim-
iting variance decreases with distance from ðsf1; hfÞ ¼ ð0:5; 0Þ.

In the first column of Figure 11, where sm1 ¼ 0, the line
sf1 ¼ 0 produces zero variance because the hybrid population
is homogenous, with only one source population contribut-
ing. Similarly, in cells with sm1 þ hm ¼ 1, as sf2 ¼ sm2 ¼ 0 by
Equation 4, the line sf1 þ hf ¼ 1 has minimal variance.

In Figure 12, because of the symmetry in sex in Equation
54, the cells above and below those where sm1 ¼ sm2 are
equivalent with a transposition of axes. As in Figure 8, Fig-
ure 9, Figure 10, and Figure 11, the maximal variance occurs
in the cell with sm1 ¼ sm2 ¼ 0:5 at sf1 ¼ sf2 ¼ 0:5: Also, similar
to Figure 11, in the first column, when sm1 ¼ 0; the line
sf1 ¼ 0 is a minimum; in the first row, when sm2 ¼ 0; the line
sf2 ¼ 0 is a minimum.

Analogous to the similarity between Figure 9 and Figure
10, by Equation 4, each cell in Figure 12 is a transformation
of a cell in Figure 11. For example, for the cell with
sm1 ¼ 0:25 and hm = 0.5 specified in Figure 11, because
the male contributions sum to one, this cell also specifies
sm2 ¼ 0:25. Therefore, we can compare this cell to the cell
with sm1 ¼ sm2 ¼ 0:25 in Figure 12. Both show sf1 on the x-axis,
and using Equation 4, we can rewrite the y-axis in Figure 12
as sf2 ¼ 12 hf .

Properties of the limiting variance in terms of noncorres-
ponding parameters: Finally, we consider a case in which

males from one population in (S1, S2, H) are compared to
females from a different population. Although multiple pa-
rameter configurations are possible, we plot one that is par-
ticularly informative, providing a perspective on Equation
54 beyond the observations visible in Figure 8, Figure 9,
Figure 10, Figure 11, and Figure 12. Figure 13 plots the
limit of the variance of the admixture fraction as a function
of sf1 on the x-axis and sm2 on the y-axis, for fixed sf2 and sm1 .
We rewrite Equation 54 as a function of sf1; s

m
1 ; s

f
2, and sm2

using Equation 1:

lim
g/N

V
�
H1;g;d


 ¼ 22
�
sf1s

m
2 2 sf2s

m
1

�2þ�sf1 þ sm1
��

sf2 þ sm2
��

sf1 þ sm1 þ sf2 þ sm2
�

�
sf1 þ sm1 þ sf2 þ sm2

�2�
2þ sf1 þ sm1 þ sf2 þ sm2

� :

(58)

The limit depends on products of sex-specific parameters,
including sf1s

m
2 , as can be seen in the shape of the contours in

Figure 13, but not in the analogous plots in Figure 9.

Discussion

Our model demonstrates the potential informativeness of
autosomal DNA in the study of sex-biased admixture
histories. Under a framework in which admixture occurs
over time, potentially with different male and female
contributions from the source populations, we have derived
recursive expressions for the expectation, variance, and
higher moments of the fraction of autosomal admixture.

Figure 12 Contour plots of the
limit of the variance of the frac-
tion of admixture over time as
a function of sf1 on the x-axis
and sf2 on the y-axis for specified
values of sm1 by column and sm2 by
row. The domains of sf1 and sf2 are
bounded below by 0 and above
by the line sf1 þ sf2 ¼ 1:
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For the special case of constant admixture over time, we
have analyzed the behavior of the variance of the admixture
fraction. Although the expectation of the autosomal admix-
ture fraction depends only on the total contributions from the
source populations, we found that the variance of the
autosomal admixture can contain a signature of sex-specific
contributions. In particular, for constant admixture over time,
the variance of the autosomal admixture fraction decreases as
the male and female contributions become increasingly
unequal.

That autosomal DNA possesses a signature of sex-biased
admixture might at first appear counterintuitive, as unlike the
sex chromosomes, autosomes are carried equally in both
sexes. The phenomenon can, however, be understood by
analogy with the well-known result that increasing sex bias
decreases the effective size of populations (Wright 1931;
Crow and Dennison 1988; Caballero 1994; Hartl and Clark
2007). In a computation of effective size using the coalescent,
for example (Nordborg and Krone 2002; Ramachandran et al.
2008), the sex bias causes pairs of genetic lineages to be likely
to find common ancestors more recently than in a non-sex-
biased population, as the reduced chance of a coalescence in
the sex that represents a larger fraction of the breeding pop-
ulation is outweighed by the greater chance of a coalescence
in the less populous sex. In a similar manner, if admixture is
sex-biased, because lineages are more likely to travel along
paths through populations with the larger sex-specific contri-
butions, the variability of genealogical paths—and hence, the

variance of the admixture fraction—is reduced compared to
the non-sex-biased case.

Autosomal DNA, with its multitude of independent loci,
potentially provides more information about the complex
histories of hybrid populations, and the autosomal genome
might be less susceptible to locus-specific selective pressures
than the sex chromosomes. To take advantage of autosomal
information, many recent efforts to study sex-biased demog-
raphy have compared autosomal DNAwith the X chromosome
(Ramachandran et al. 2004, 2008; Wilkins and Marlowe
2006; Hammer et al. 2008, 2010; Bustamante and
Ramachandran 2009; Keinan et al. 2009; Casto et al. 2010;
Emery et al. 2010; Keinan and Reich 2010; Labuda et al. 2010;
Lambert et al. 2010; Gottipati et al. 2011; Heyer et al. 2012;
Arbiza et al. 2014). Our study enhances the set of frameworks
available for considering effects of admixture and sex bias
on autosomal variation. Further, our theoretical results are
potentially important to the interpretation of existing meth-
ods that utilize admixture fractions. In particular, a de-
creased variance, often interpreted as older admixture
timing, can instead be a consequence of sex bias.

For a single admixture event, the expectation of the
autosomal admixture fraction is constant in time and not
dependent on sex-specific contributions. Unlike in the case
of hybrid isolation, if constant nonzero contributions from
the source populations occur over time, then the variance of
the fraction of autosomal admixture reaches a nonzero limit,
dependent on these continuing sex-specific admixture rates,

Figure 13 Contour plots of the
limit of the variance of the frac-
tion of admixture over time as
a function of sf1 on the x-axis
and sm2 on the y-axis for specified
values of sf2 by column and sm1 by
row. The domains of sf1 and sm2
are ½0;12 sf2� and ½0;12 sm1 �,
respectively.
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but not on the founding contributions. In both scenarios, the
variance contains information about the magnitude of a sex
bias in the admixture history of a hybrid population. For an
arbitrary constant total contribution from a source popula-
tion, the maximal variance occurs when there is no sex bias.
The maximal variance across allowable parameter values of
the constant admixture model is seen when there is no sex
bias and equal contributions from both source populations,
that is, sf1 ¼ sm1 ¼ sf2 ¼ sm2 ¼ 0:5. Two types of admixture
history minimize the variance of the autosomal admixture
fraction. First, the variance is zero when only one source
population contributes to the hybrid population. Second,
the variance is zero if all males come from one source
population and all females from the other. In this scenario,
all individuals in the hybrid population have admixture
fraction 1

2.
Although the variance of the autosomal admixture

fraction suggests that autosomal DNA is informative about
sex-biased admixture, the relationship between the variance
and the sex-specific parameters is complex. We uncovered
an interesting case in which quite different sex-specific
histories can lead to the same variance over time (Figure
7). The variance is in fact dependent on the product of
multiple sex-specific parameters, not on each parameter sep-
arately (Figure 13). In particular, when sf1s

m
2 ¼ sf2s

m
1 , the var-

iance is maximized (Equations 54–56), and depends only on
the total contributions from the source populations, s1 and s2
(Equation 57). The symmetry arises from the non-sex-
specific inheritance of autosomal DNA.

We have considered two scenarios, isolation of a hybrid
population after its founding, and constant contributions
from source populations to the hybrid population over time.
Although the admixture history of real hybrid populations is
likely more complex than these, jointly considering the
mean, variance, and potentially higher moments of the
admixture fractions, our models can provide a starting point
for statistical frameworks to estimate parameters of mech-
anistic admixture models. We have not numerically analyzed
complex time-varying admixture histories, but our recursive
expressions flexibly accommodate a range of population
histories, especially if simplifying assumptions are employed
to reduce the number of parameters.

Our model omits a number of potentially important
phenomena. First, assortative mating by ancestry, preferen-
tial mating of individuals with those with similar admixture
fractions, has been empirically observed in admixed pop-
ulations (Risch et al. 2009), and may have sex-specific pat-
terns. Second, our focus on a randomly chosen locus in
a deterministic model amounts to a potentially unrealistic
assumption of an infinite chromosome with infinitely many
independent segments. Gravel (2012), however, calculated
the variance of the admixture fraction including both finite
chromosomes and finite population sizes, for a model similar
to the one presented here, albeit without sex bias. Gravel
(2012) found that the genealogy of individuals in the hybrid
population—which our model explicitly examines—is the

main factor affecting the variance when admixture is recent,
showing that the Verdu and Rosenberg (2011) variance pro-
vides a good fit to the finite-population finite-chromosome
result in that context. We expect that this suitability to con-
ditions of recent admixture applies similarly for our sex-
biased version of the Verdu and Rosenberg (2011) model.

Finally, although sex bias does influence autosomal
variation, because autosomal DNA is not inherited sex-
specifically, the sex that contributes more from a given
source population is nonidentifiable with autosomal DNA
alone. Because the X chromosome has a sex-specific mode of
inheritance, consideration of the X chromosome alongside
autosomal data under the mechanistic model may assist in
differentiating between scenarios that produce the same
variance with different choices of the sex with a greater
contribution.
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