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ABSTRACT Longitudinal allele frequency data are becoming increasingly prevalent. Such samples permit statistical inference of the
population genetics parameters that influence the fate of mutant variants. To infer these parameters by maximum likelihood, the
mutant frequency is often assumed to evolve according to the Wright-Fisher model. For computational reasons, this discrete model is
commonly approximated by a diffusion process that requires the assumption that the forces of natural selection and mutation are
weak. This assumption is not always appropriate. For example, mutations that impart drug resistance in pathogens may evolve under
strong selective pressure. Here, we present an alternative approximation to the mutant-frequency distribution that does not make any
assumptions about the magnitude of selection or mutation and is much more computationally efficient than the standard diffusion
approximation. Simulation studies are used to compare the performance of our method to that of the Wright-Fisher and Gaussian
diffusion approximations. For large populations, our method is found to provide a much better approximation to the mutant-frequency
distribution when selection is strong, while all three methods perform comparably when selection is weak. Importantly, maximum-
likelihood estimates of the selection coefficient are severely attenuated when selection is strong under the two diffusion models, but
not when our method is used. This is further demonstrated with an application to mutant-frequency data from an experimental study
of bacteriophage evolution. We therefore recommend our method for estimating the selection coefficient when the effective pop-
ulation size is too large to utilize the discrete Wright-Fisher model.

ITH the advent of high-throughput sequencing, large

and frequent longitudinal samples of segregating alleles
are becoming increasingly abundant. The allele-frequency tra-
jectories of such samples reflect the combined forces of genetic
drift, selection, and mutation and can therefore be used to
infer these population genetics parameters. Models of mutant-
frequency changes over time are either deterministic or sto-
chastic (Rouzine et al. 2001). The choice between these models
depends on the variance effective population size N: the size of
a Wright-Fisher population that is identical to the natural pop-
ulation in terms of genetic diversity (Kouyos et al. 2006). De-
terministic models assume that the effective population size
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is infinitely large and therefore that mutant frequencies are
not subject to genetic drift, while stochastic models allow
the random sampling of variants across generations to in-
fluence the likelihood of mutant fixation and extinction.
Most stochastic population genetics models, including the
classic coalescent (Kingman 1982), consider the extreme case
where selection is so weak that the fate of an allele is de-
termined entirely by random genetic drift. Several methods
have been developed to infer N based on this assumption
(Williamson and Slatkin 1999; Anderson et al. 2000; Wang
2001; Berthier et al. 2002; Beaumont 2003; Anderson 2005;
Jorde and Ryman 2007). There is a growing literature on
estimating the selection coefficient, s, using stochastic models
of allele-frequency changes (Bollback et al. 2008; Malaspinas
et al. 2012; Mathieson and McVean 2013; Feder et al. 2014;
Nishino 2013; Foll et al. 2014). Most existing methods im-
plicitly assume weak selection by relying on diffusion approx-
imations that hold when s is of the order of the reciprocal of
N and N is large. Weak selection is also assumed in the de-
terministic paradigm where allele-frequency trajectories are
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often modeled with a logistic curve obtained in the diffusion
limit of the Wright-Fisher and Moran models (Illingworth
and Mustonen 2011; Illingworth et al. 2012). All of these
approaches are inappropriate when the selective pressure is
strong, as is frequently the case, for example, in experimental
studies of microbe adaptation and for immune-escape and
drug-resistant mutations in intrahost viral populations. Fur-
thermore, these methods will provide attenuated estimates of
N if selection is strong, thereby exaggerating the role of ran-
dom genetic drift (Liu and Mittler 2008).

Ilingworth et al. (2014) recently presented a method to infer
selection of arbitrary magnitude from longitudinal haplotype fre-
quencies that are assumed to evolve deterministically. However,
their definition of the selection coefficient is not consistent with
the population genetics definition of this parameter: for every
one offspring contributed to the next generation by the wild
type, a mutant contributes 1 + s offspring. Consequently, the
authors report estimates of the “selection coefficient” that are
<—1, which is not possible in traditional population genetics
models.

Recently, Foll et al. (2014) developed an approximate
Bayesian computation method to infer selection based on a
stochastic model of frequency change. Their two-step ap-
proach considers multiple longitudinal samples of segregating
alleles from different locations in a genome that are all as-
sumed to have the same effective population size. First, the
posterior distribution of N is estimated from the frequency
trajectories at all genetic loci under the assumption of neutral
evolution. The posterior distribution of s is then inferred for
each locus using the previously estimated distribution of N as
a prior. Although the estimation of s in the second step does
not make any assumptions about its magnitude, it is condi-
tioned on the estimate of N that was inferred assuming no
selection. The method is therefore appropriate only if selec-
tion is negligible at most loci and genetic drift does not vary
between loci. This would not appear to be the case for protein-
coding sequences where most positions are usually under
strong functional or structural constraints.

Here, we present a simple approximation to the Wright—
Fisher process that does not make any assumptions about the
magnitude of selection and mutation and is therefore better
suited to inferring selection acting on populations evolving
under strong selective pressures. We use simulation studies to
demonstrate that our approach, based on the delta method of
statistics, outperforms the standard and Gaussian diffusion
approximations when selection is strong, while all three methods
perform comparably when selection is weak. Importantly,
maximum-likelihood estimates of the selection coefficient are
severely attenuated when selection is strong under the two
diffusion models, but not when the delta method is used.

Methods
Model of mutant-frequency evolution

Consider a population of constant effective size N composed
of individuals of two types: wild type and mutant. Let X; €
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{0, 1, ..., N} denote the number of mutants in the popu-
lation in generation i. If the mutant frequency evolves
according to the Wright-Fisher model, then the conditional
number of mutants in the next generation is (X;+1|X; = x;) ~
Bin(N, ¢(x;)/N) with

1+s)x(1—a)+(1-x)B

p(x) = T hsx ,

where s is the selection coefficient, « is the probability of
a mutation from a mutant to the wild type, and B is the
probability of a mutation in the reverse direction. This
defines a Markov chain {X,,, n = 1, 2, ...} on the state space
S =40, 1, ..., N} with a binomial one-step transition prob-
ability matrix P.

Of course, we do not observe the number of mutants in
the population at each generation. Instead, we collect samples
at m time points and observe the mutant frequency yj
in a sample of size n; at generation i, for k = 1, ..., m.
If the population size N is large relative to the sample size
Nk, then (YiX;, = x;,) ~ Bin(ng,x;, /N). The data-generation
process can therefore be described by a hidden Markov
model with binomial emissions conditional on the latent
number of mutants in the population (Bollback et al.
2008).

The likelihood function of the population genetics param-
eters 0 = {N, s, a, B} under this model is

L(6) = Z

Xil

m m

p(%) [[p®., X 0) TTp (%),

Xim k=2 k=1

ey

where p(y;, |Xik) is the binomial sampling probability and
p(Xi,) is a prior distribution for the number of mutants in
the first sampled generation. The transition probability
distribution p(X;,,, |X;,,0) under the Wright-Fisher model
is obtained by raising P to the power of i, — ix. The
maximum-likelihood estimates of the population genetics
parameters are obtained by maximizing (1) with respect
to 6.

Approximating the transition probability distribution

Summary: Since there is no analytical solution for p(X;, ., [X;,, 6)
and exponentiation of the (N + 1)-dimensional transition
matrix P is computationally prohibitive when N is large,
Bollback et al. (2008) compute the transition function by
approximating the Wright-Fisher process with a diffusion pro-
cess (Fisher 1922; Wright 1945; Kimura, 1955a,b,c, 1957,
1962, 1964). The diffusion approximation is obtained by mea-
suring time in units of N generations and letting N — o under
the assumption that s, &, 8 = O(N~1). The consequence of this
assumption is that the mean of the transition density will be
upwardly biased when |s| > O (see Details section). Under
strong positive and purifying selection, this bias can be signif-
icant, as is demonstrated by the simulation studies in the next
section.



Norman (1975) relaxed this assumption with a Gaussian
diffusion approximation in which mutant frequencies are
centered about their deterministic trajectory with asymptot-
ically normal deviations attributable to random genetic drift.
The approximation still requires that the selection coeffi-
cient and mutation rates tend to zero as N — o, but
assumes that the variability in mutant-frequency changes
dies off faster in the limit. When selection or mutation is
strong, the mean and variance of the Gaussian transition
density will be biased.

While the moments derived under the assumptions of the
Gaussian diffusion will be inappropriate when selection is
strong, a normal approximation of the transition distribution
is still reasonable. The skewness in the mutant-frequency
distribution that results from stochastic loss will not develop
for mutants under strong positive selection (Ns > 1) once
the mutant has reached a frequency of ~1/Ns in the popu-
lation (Maynard Smith 1971). In this case, the mutant fre-
quency will track its expected value closely with small,
symmetric departures due to genetic drift. We used the delta
method to approximate the mean and variance of the Wright—
Fisher process with a system of nonlinear difference equations
that do not make any assumptions about the magnitude of s,
a or B (see Details section). These equations can be solved
numerically and the transition density can then be approxi-
mated by a Gaussian distribution with these two moments.
The implementation of this method is extremely efficient; it
requires only the routine computation of the Gaussian density,
as opposed to the standard diffusion approximation, which re-
quires specialized numerical techniques to solve Kolmogorov’s
forward equation.

Details: Here, we provide a detailed description of the three
methods used to approximate the transition probability
function.

Diffusion approximation: The diffusion approximation to
the Wright-Fisher process was first considered by Fisher
(1930) and Wright (1931) and later substantially extended
by Kimura (1955a,b,c, 1957, 1962, 1964). To approximate
the discrete-state, discrete-time Wright-Fisher model with
a diffusion process, it is necessary to scale the state space
and time so that they are both approximately continuous. If
X, represents the proportion of mutants in a population of
effective size N at generation n, then the state space will be
approximately continuous on [0, 1] if N is large. Similarly, if
time is measured in units of N generations such that changes
occur in steps of size N1, then it too will converge to a con-
tinuous measure in the limit as N — . Hence, the diffusion
approximation holds when N is large. Fortunately, it is pre-
cisely in this context that the approximation is required to
overcome the computational burden of exponentiating the
large transition matrix, P, of the discrete Wright—Fisher Markov
chain.

Let {X;, t = 0} denote the proportion of mutants at time
t measured in units of N generations in the limit as N — .
The diffusion process {X;} is defined by its infinitesimal mean

plx) = lim E[dX,|X, = x| /dt

o Nsx(1 —x) —Nax(1+s) + NB(1 —x)

= 1i
! 1+ sx

N —o0

= [1\111120 Ns}x(l —X) — [A}l_r)nw Na}x
+| gim Mg 1 @

and infinitesimal variance

a?(x) = Aim Var [dXe X = x] /dt

— lim <(1 +S)X(11_f2x+ (1 —x),8>

N—

(A+s)x(1—a)+(1-x)8
X(l_ 1 +sx )

=x(1—x)

(see, for example, Ewens 2004). Importantly, the last line in
each of the above derivations requires that s, a, 8 = O(N™1),
so that Ns, Na, and N are constants and s, @, and 8 — 0 as
N — . To understand the consequences of this assumption
for inference, consider a population that evolves as a Wright—
Fisher process without mutation. The expected change in the
mutant frequency in one generation is then

sx(1—x)
1+sx

while the diffusion approximation of this change is
p(x)dt = sx(1 —x).

The expected mutant frequency therefore evolves according
to a logistic function under the diffusion approximation. This
will be a good approximation only for |s| = 0, but will be
upwardly biased for strong positive or negative selection. This
implies that the mutant-frequency distribution will drift over
toward fixation too rapidly under strong positive selection
(s > 0) and will move toward loss too slowly under strong
negative selection (s < 0). The diffusion approximation will
therefore lead to attenuated estimates of |s| when selection
is strong.

Given the infinitesimal mean and variance, the transition
density ¢(x, t) = p(X;|Xo, N, s, @, B) is the solution to
Kolmogorov’s forward equation

2
O et = oo +2 2P W),

ot
The analytical solution to this equation was derived in a series
of articles by Kimura (1955a,b,c 1957) for the special cases
of pure random drift and random drift with selection and no
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mutation. The solutions in these special cases are extremely
complex, involving infinite sums of Gegenbauer polynomials.
Consequently, numerical methods for partial differential equa-
tions are typically employed to solve for the transition density
& (x, t). We used the exponentially fitted difference scheme of
Duffy (1980), which is better suited than the Crank-Nicolson
method employed by Bollback et al. (2008) to problems with
singular initial conditions. When the discrete transition dis-
tribution is approximated with a continuous density function
such as ¢ (x, t), the summations in (1) must be replaced with
integrations. We used the trapezoidal rule to perform all inte-
grations numerically.

Gaussian diffusion: The assumption that Ns = O(1) is not
appropriate in a regime where selection dominates genetic
drift. Norman (1975) considered the case where stochastic
changes due to genetic drift die off faster than the effects of
selection and mutation in the limit as Ne — o« and ¢ — 0,
where ¢ = max{|s|, a, 8}. With time measured in units of
¢~ ! generations, the mean and variance of an infinitesimal
change in the mutant frequency are then

e lsx(1—x)— e lax+ e 18(1 —x)
= 1-
Hlx) Pl 1 +sx

= {lim g_ls}x(l —X) — {lim s_la}x

e—0 e—0
+{lirrég_1,8} (1-x) 3

and

((1 4sx(l—a) + (1 —x)B)

1+ sx

><(1_(1—|—s)x(1—a)—}—(l—x)B) 1
1+ sx Neg
~ lim x(l—x)7

Neg— Ne¢

respectively. The standard diffusion is a special case where
¢ = N1 Note that the assumption of weak selection and
mutation through ¢ — 0 leads to the simplification in the
second line of both equations. In particular, we note that the
infinitesimal mean will suffer from the same bias as that
of the standard diffusion approximation when selection is
strong. The Gaussian diffusion is obtained by assuming that
Ne —» o as N - o and ¢ — 0 such that the variance of
a displacement tends to zero faster than its expected value
in the limit. Under these conditions, Norman (1975) showed
that the transition density after n generations with initial
mutant frequency p is approximately Gaussian with mean
f(ne, p) and variance g(ne, p)/Ne, where f is the solution to

& Flex) = nl £t

subject to f(0, x) = x and g is given by
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e = [ exf2 w [Flex)de o flux)]d

where v(x) = x(1 — x). Here, we are interested in the case
where selection is stronger than mutation, that is, ¢ = |s|. In
this case, the transition density of the Gaussian diffusion
after n generations has mean

p
[ n‘ 0 p] p+ (1 —p)e*m

and variance

Var[X,|Xo = p]
p(1—p)e™ |p?e®™ + (1—2p — 2nsp(p — 1))e™ — (p—1)*
Ns[1+p(en—1))* '

Obtaining the transition density under the Gaussian diffu-
sion is therefore computationally straightforward. Note that
the expected mutant frequency is described by the same
logistic function as the standard diffusion approximation,
but that the dispersion about this deterministic trajectory
will necessarily be symmetric.

Delta method: The moments of the transition densities
under both the standard and Gaussian diffusion approxima-
tions were derived under the assumption of weak selection
and mutation. We obtained approximate expressions for the
mean and variance of this distribution without making any
assumptions about the strength of selection and mutation
using the delta method (see, for example, Rice 2007, Chap.
4). For a random variable X with mean u and variance o2,
the mean and variance of a function f(X) can be approxi-
mated with first-order Taylor expansions about u:

E[fX)] = f(u) ,
Var[f(X)] = [f'(n)] 0.
If {X,, n =0, 1, ...} is a Wright-Fisher process, the mean
tn = E[X,|Xo] and variance o2 = Var[X,|X,] of the transition
function can therefore be approximated as
Mn = E[E[Xn‘anlHXO]

_E (1+8)Xp-1(1—a)+ (1 _an)’B'Xo}
1+ sXp-1

(A +s)pp-1(1—a)+ (1 —p,1)B
1+sup—q

~
~

and
o2 = E[Var[X,| X,-1]| Xo] + Var[E[X,| Xp-1]| Xo]

<(1 +S)Xn_1(1 - a) + (1 _Xn—l)B)
145X

——E
N

(1 +S)Xn71(1 - 0[) + (1 _anl),B
x (1 B 1 +5Xn71 >

Xo




(1+5)Xp-1(1-a)+ (1 -X-1)B
l ((1 +$)pp-1(1—a)+ (1 - Mn—l)B)
N 1451

A+ (A —a) + (1~ py1)B
x<1 11+‘S/""nfl 1 ):|

(1+5)(1-a-p)]" ,
(L) |

respectively. Hence we obtain a system of nonlinear re-
currence equations that can be solved numerically for the
mean and variance of the transition distribution given an
initial frequency X, = p. For large populations with strong
selection or mutation, the transition density can then be
approximated by a Gaussian distribution with these moments.

The usual delta method of statistics uses a second-order
Taylor series approximation for the mean. We considered
this and a second-order Taylor series approximation for
the variance. We investigated the behavior of the resulting
systems of equations empirically for different values of s, N,
and p with « = B8 = 0. We found that the system began
to oscillate when p < 1/Ns for s > 0 when second-order
approximations were used for either the mean only or the
mean and the variance, but not when first-order approxima-
tions were used for both of these moments. Interestingly,
when P < 1/Ns, the frequency of the mutant is too low to
ensure its ultimate fixation and the resulting transition dis-
tribution will involve singularities at the boundaries. Clearly,
such a mutant-frequency distribution cannot be accurately
modeled with a Gaussian density. We ran all of our simula-
tions using both the first-order approximation to the mean
and variance and the second-order approximation to the
mean. Although the true and inferred deterministic paths
were indistinguishable when a second-order approximation
was used for the mean, the improvement in accuracy did not
substantively affect our simulation results. We have included
the transition densities that we obtained with the second-
order approximation to the mean in Supporting Information,
Figure S1. Consequently, we report only the results obtained
with the first-order approximations to the mean and variance,
which did not lead to spurious oscillations for any of the
parameter values investigated.

Implementation

All computer code was written in the R Language and
Environment for Statistical Computing and is freely available
from the corresponding author. The maximum-likelihood
estimates were obtained with a steepest-ascent hill-climbing
algorithm and were checked by plotting the likelihood surface
when possible.

Results
Comparison of model approximations

For small N, the exact transition distribution of a discrete
Wright-Fisher process can be evaluated numerically. We
compared the approximate distribution obtained with each
of the above three methods to the exact distribution for N =
100, 1000, and 5000 after n = 5, 10, and 20 generations
starting with an initial mutant frequency of p = 0.1, 0.5, and
0.9. For each of these 27 combinations, we computed the
mutant-frequency distribution for selection coefficients of 0,
+0.001, =0.01, #0.1, =0.3, and *+0.5 and no mutation.
The complete set of results is presented in Figure S1.

As expected all three methods provided an excellent
approximation to the exact transition distribution when selec-
tion was weak (|s| < 0.01) and the population size was large
(see Figure 1A, for example). When N = 5000, the standard
and Gaussian diffusion approximations performed poorly under
strong selection (|s| > 0.1). As is evident from Figures 1, B and
C, the approximate transition distributions obtained with these
methods are located too far to the right, a direct consequence of
the assumption that s = O(N~1) (see Methods). In contrast, our
delta method approach provided an excellent approximation to
the true distribution when the population size was large, irre-
spective of the strength of selection. Figure 1D, which plots the
Kullback-Leibler divergence of each approximate distribution
from the exact distribution, demonstrates the superior perfor-
mance of our method compared to the standard and Gaussian
diffusion approximations under strong positive and negative
selection in a large population with an initial mutant frequency
of 0.5. For large populations with initial mutant frequencies of
0.1 and 0.9, the delta method performed particularly well
when there was strong selection away from the absorbing
boundaries at 0 and 1, respectively (see the Kullback-Leibler
divergence plots in Figure S1).

When the population size was small (N = 100), the two
methods that approximated the transition distribution with
a Gaussian density performed less well compared to the
standard diffusion approximation when selection was weak
(see Figure S1). This result is unsurprising since random
departures from the mean mutant frequency will be approx-
imately normal only when the population size is large and
selection is strong enough to prevent stochastic loss. When
genetic drift dominates selection, the mutant-frequency dis-
tribution will develop singularities and skewness that cannot
be captured by the Gaussian density. Interestingly, the stan-
dard diffusion model, which is derived in the limitas N — o,
performs remarkably well when N is this small, provided, of
course, that selection is weak. This is in agreement with the
findings of Ewens (1963). When selection is strong, all three
methods provide rather poor approximations to the true den-
sity if the population size is small (see Figure S1). However,
no approximation is necessary when the population size is
small, since the exact Wright-Fisher transition distribution
can then be computed numerically from the transition matrix
and initial mutant-frequency distribution.

Inference Under Strong Selection 1241


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167957/-/DC1/genetics.114.167957-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167957/-/DC1/genetics.114.167957-4.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167957/-/DC1/genetics.114.167957-4.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167957/-/DC1/genetics.114.167957-4.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167957/-/DC1/genetics.114.167957-4.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167957/-/DC1/genetics.114.167957-4.pdf

A s=0.01

—— Discrete
—— Diffusion
-=—- Gaussian
Delta

15

Density

0.40 0.45 0.50 0.55 0.60 0.65
Mutant frequency

(] s=-0.3
—— Discrete
—— Diffusion
& -—- Gaussian
® 7 — - Delta
[«
©
2>
D
c
[]
o o |
=
<o
N
o
T T T T
0.00 0.05 0.10 0.15

Mutant frequency

R 1 — Discrete

—— Diffusion 3
o, BESE Gaussian

— = Delta
% _

2 9
®
c
[0
[m] =
(=
N
9 .
(=]
T T T T
0.85 0.90 0.95 1.00
Mutant frequency
D
w
(]
[&]
c
(]
D o+
]
=
©
o
=}
]
| |.rI3 _
*
[&]
©
2
=l
v
D o
37 i/ o
—— Diffusion
1 -—- Gaussian
— = Delta
I T T T T
-0.4 -0.2 0.0 0.2 0.4
s

Figure 1 The exact transition distribution of the Wright-Fisher process and its three approximations after n = 10 generations when N = 5000 and p =
0.5. (A) Weak selection (s = 0.01). (B) Strong positive selection (s = 0.3). (C) Strong negative selection (s = —0.3). (D) Kullback-Leibler divergence from

the exact distribution.

Simulations

To assess how the three approximations affect population genetic
inferences, we simulated 1000 realizations of a Wright-Fisher
process with selection and no mutation for 20 generations. A
relatively small effective population size of N = 1000 was
used, because the matrix multiplications required to simulate
a discrete Wright-Fisher process were computationally bur-
densome for larger values of N. For each simulated process,
N and s were estimated by maximizing the likelihood function
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(1) with a uniform prior distribution for the initial popula-
tion mutant frequency using each of the three approxima-
tions to the transition distribution. As a check that the three
approaches perform as expected, the data were initially
simulated with s = 0 and p = 0.5, and the parameters were
estimated from large samples of size 10000 observed at all
20 generations. Under these conditions, all three methods
performed similarly, yielding unbiased estimates, N and 3,
of N and s with similar standard errors (see Table 1 and
Figure S2).
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Table 1 Medians of the maximum-likelihood estimates of N and s obtained in 1000 data sets simulated under the conditions given in the

first three columns

Standard diffusion

Gaussian diffusion Delta method

True Sample  No. of

selection  sizes  samples N 3 N 3 N 3

0 10000 20 1150 0 1130 0 1130 0
(890, 1530) (—0.011, 0.009) (870, 1510) (—=0.011, 0.010) (870, 1510) (—0.011, 0.010)

0.2 10000 20 1510 0.178 1200 0.182 1150 0.199
(1070, 2330) (0.166, 0.189) (920, 1580) (0.170, 0.193) (890, 1510) (0.185, 0.213)

0.2 1000 20 2310 0.177 1560 0.182 1490 0.199
(1048, 12280) (0.165, 0.190) (900, 4695) (0.169, 0.195) (858, 4512) (0.184, 0.215)

0.2 1000 5 11290 0.176 408000 0.181 446400 0.199
(2292, >108) (0.162, 0.190) (1168, 1.526-107) (0.167, 0.195) (1118, 2.068-107) (0.181, 0.216)

0.5 10000 20 3630 0.397 1160 0.406 1120 0.501
(1688, >108) (0.384, 0.411) (888, 1570) (0.392, 0.419) (858, 1512) (0.482, 0.521)

0.5 1000 20 3485 0.396 1610 0.405 1530 0.500
(1620, >108) (0.381, 0.411) (888, 3905) (0.391, 0.421) (850, 3740) (0.479, 0.523)

0.5 1000 5 5730 0.394 6700 0.405 7545 0.500
(2672, >108) (0.376, 0.413) (1130, 1.675-107) (0.388, 0.422) (1070, 2.711-107) (0.474, 0.525)

In all cases, the true population size was N = 1000. The interquartile ranges are indicated in parentheses.

For the remaining simulations, we considered selection
coefficients of s = 0.2 and s = 0.5 with initial mutant fre-
quencies of p = 0.05 and P = 0.01, respectively. Bollback
et al. (2008) inferred a selection coefficient of 0.43 for the
C206U mutation of the bacteriophage MS2 using the stan-
dard diffusion approximation to the transition distribution.
Given the results of the previous subsection, we would ex-
pect this estimate to be downwardly biased. To assess the
severity of this bias using simulations, we first considered
the ideal case in which large samples of 10000 sequences
were observed at every generation for all 20 generations.
Although these conditions may be unrealistic in practice, the
purpose of this simulation study was to establish benchmark
performances to serve as a basis for comparison when these
ideal conditions are not met. We found that the Gaussian
diffusion and delta methods provided reasonable maximum-
likelihood estimates (MLEs) of N with interquartile ranges
that included the true value of 1000 (see Table 1). The
estimates of N obtained with the standard diffusion were
more variable than those of the other two methods, and
the median and interquartile range were upwardly biased.
The selection coefficient s was underestimated with both
the standard and Gaussian diffusion approximations. The
bias was particularly severe when s = 0.5, with all of the
1000 MLEs falling below the true value for the standard
and Gaussian diffusion approximations (median § values of
0.397 and 0.406, respectively). Our delta method approxi-
mation, on the other hand, yielded estimates of s that were
centered about the true value and only slightly more vari-
able than those of the other two methods (see Table 1 and
Figure 2).

Approximately one-third of the simulated data sets pro-
duced MLEs of N in excess of 100 million when the standard
diffusion approximation was employed with s = 0.5 (see
Figure 2). These corresponded to data sets where the mu-
tant frequency rose rapidly toward fixation (see Figure 3A).

For a given level of selection, a large population size in-
creases the expected displacement of the mutant frequency
in an infinitesimal amount of time under this model (see
Equation 2 in Methods). The larger estimates of N were
therefore compensating for the downwardly biased estimates
of s when the mutant-frequency trajectory rose sharply. In-
terestingly, such large estimates of N were not observed un-
der the Gaussian diffusion approximation, even though §
was also downwardly biased under this model. This is be-
cause the infinitesimal mean of the Gaussian diffusion is not
a function of N and therefore increasing the effective pop-
ulation size would not help to explain the rapid rise in mu-
tant frequency (see Equation 3 in Methods). Instead, the
simulated trajectories that yielded large N estimates with
the Gaussian diffusion and delta methods closely tracked
the true deterministic path (that is, the expected values of
the discrete Wright-Fisher process used to simulate the
data; see Figures 3, B and C). Note that the deterministic
paths implied by the standard and Gaussian diffusion mod-
els rise much more rapidly than the true deterministic path
of the data-generating process when s = 0.5. The down-
wardly biased estimates of s ensure that the deterministic tra-
jectory based on the median § represents the center of the data
in both cases (see Figures 3, A and B). This was not the case for
our delta method approximation, where the true and inferred
deterministic paths were very similar (see Figure 3C).

We conducted two further simulation studies to assess
the effect of reducing the sample size and sampling frequency.
In the first of these, the sample size was reduced to 1000
sequences per generation. In the second study, we assumed
that the smaller samples were observed at only five equally
spaced time points rather than for all 20 generations. The
resulting estimates of N and s are summarized in Table 1,
Figure S3, and Figure S4. As expected, reducing the sample
size and, particularly, the sampling frequency increased the
variability of the estimates of N. Interestingly though, the
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variability of § did not increase notably in either of these
cases. However, reducing the sampling frequency did have a
profound effect on likelihood intervals for (N, s). As illustrated
in Figure 4 for one simulated data set with s = 0.5, the 95%
likelihood interval based on the delta method widened con-
siderably when the sampling frequency was reduced fourfold.
This expansion was particularly conspicuous along the N di-
mension, since fewer sample points implies less information
on the genetic drift of the process. This was also noted by
Malaspinas et al. (2012) in their simulations. There was also
a more notable widening of the 95% profile likelihood inter-
vals for s when fewer samples were taken compared to when
the size of each sample was reduced.
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Application

We applied our method to a mutant-frequency trajectory
from an experimental study of bacteriophage adaptation
(Bollback and Huelsenbeck 2007). Briefly, this study evolved
large populations (census size of 5 X 107) of the bacterio-
phage MS2 for 100 generations at elevated temperatures
and tracked nucleotide substitutions occurring during adap-
tation. Since the mutants in this study evolved under strong
selective pressure, we anticipated that our delta method
approach would provide more accurate estimates of the
population genetics parameters than the standard diffu-
sion approximation.
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We chose to apply our method to the U1685C mutation
in experimental line 3, which rose rapidly in frequency once
it appeared and is therefore likely to have a particularly
large selection coefficient (see Figure 5A). The frequency
of this mutation was measured at six time points based on
10 sequences at each time point (9 sequences at the second
time point). Note that the sample size in this application is
much smaller than that which we considered in our simula-
tion studies, and we therefore expect much wider confi-

dence intervals for the parameters. Since no mutants were
observed until after the second time point, we assumed that
the mutant arose only thereafter and used an informative
prior with a point mass at zero for the population mutant
frequency at generation 25. The mutation rates from C to U
(a) and from U to C (B) were both set to %X 1073 (Drake
1993).

The log-likelihood surface for U1685C obtained with our
delta method approach is plotted in Figure 5B. The MLE of
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the effective population size was N = 8.32 X 108, although
it is clear from the likelihood surface plot that this parameter
cannot be reliably estimated from these data (the likelihood
surface was flat along the N dimension for N values in the
range 10*-101?). Indeed, this nucleotide site was observed to
be polymorphic only at one time point and it is therefore not
possible to confidently infer the extent of genetic drift. In
contrast, the trajectory does contain information about the
selection coefficient. We obtained a large MLE of § = 0.759
with a 95% profile likelihood interval of (0.559, 0.973) using
the delta method (see Figure 5B).

As expected, the MLE based on the standard diffusion
approximation was substantially smaller at § = 0.475 and
was less than the lower bound of the 95% likelihood interval
obtained with the delta method (see Figure 5C). The corre-
sponding profile likelihood interval based on the diffusion
approximation was also much wider at (0.258, 1.062). As
we observed in our simulation studies, the MLE of the effec-
tive population size obtained with the diffusion approxima-
tion, N = 8.19 X 10'7, was much larger than that obtained
with the delta method and appears to compensate for the
downwardly biased estimate of s. However, as with the delta
method, this parameter could not be reliably estimated with
the diffusion approximation.

Discussion

Developments in ultra-deep sequencing technologies have
greatly enhanced our ability to track changes in the genetic
diversity of measurably evolving populations over time. Large
genetic samples collected at several time points permit efficient
statistical inference of the population genetics parameters that
govern the fate of mutant variants.

In this article, we considered a stochastic model of mutant-
frequency evolution that can be used to infer the effective
population size, selection coefficient, and mutation rates from
temporal allele-frequency data using the method of maxi-
mum likelihood. In this hidden Markov model, the observed
mutant frequencies are obtained through binomial sampling
from a population in which the mutant frequency evolves
according to the Wright-Fisher process. Because there is no
simple analytical expression for the transition distribution of
this process and its numerical evaluation is computationally
prohibitive for large effective population sizes, the Wright—
Fisher model is commonly approximated with a diffusion pro-
cess (Fisher 1922; Wright 1945; Kimura, 1955a,b,c, 1957,
1962, 1964). However, this approximation assumes that the
forces of selection and mutation are weak. This assumption is
not always appropriate. For example, mutations in intrahost
viral populations are likely to be under strong selection to
evade the immune response and drug therapy, and microbes
are often subjected to strong selective pressures in experi-
mental studies of adaptation. Moreover, the assumption of
weak selection and mutation is often overlooked in the liter-
ature, although, as we have demonstrated, it has profound
implications for inferences.

1248 M. Lacerda and C. Seoighe

Norman (1975) derived an alternative approximation to
the Wright-Fisher process, known as the Gaussian diffusion,
in which the effects of selection and mutation die off less
rapidly compared to genetic drift as the population size gets
larger and the selection and mutation parameters tend to
zero. Here, we developed a novel approximation that is ex-
tremely accurate for a population with a large effective size.
Like Norman (1975), we approximate the transition distri-
bution with a Gaussian density, but use the delta method of
statistics to derive a set of recurrence equations for the mean
and variance of this distribution without making any assump-
tions about the strength of selection and mutation.

By comparing the approximate transition densities to the
exact distribution, we showed that all three methods perform
well when the effective population size is large and selection
is weak. However, the quality of the standard and Gaussian
diffusion approximations was severely compromised when
selection was strong. In both cases, the transition distribu-
tion shifts too rapidly toward mutant fixation under strong
positive selection and too slowly toward mutant loss under
strong purifying selection. In contrast, our approximation
was remarkably accurate for large effective population sizes
irrespective of the strength of selection.

The accuracy of the approximation has important con-
sequences for estimates of the selection coefficient. Using
simulated Wright-Fisher trajectories, we demonstrated that
maximum-likelihood estimates of the selection coefficient
are severely attenuated when selection is strong using either
the standard or Gaussian diffusion approximations to the
transition distribution. On the other hand, our delta method
approach yielded unbiased estimates of the selection coeffi-
cient, irrespective of the sampling frequency or sample size.
We applied our method to infer selection for a mutant in an
experimental study of bacteriophage adaptation under heat
stress. As expected from our simulation study, the estimated
selection coefficient of 0.759 obtained with the delta method
was much larger than the estimate of 0.475 obtained with the
standard diffusion approximation.

Frequent sampling is needed to obtain robust and precise
parameter estimates. In our simulation study, we demonstrated
that reducing the sampling frequency leads to wider confi-
dence regions, particularly in the direction of the effective
population size. Indeed, we were unable to reliably infer
this parameter in our bacteriophage application where the
nucleotide site was observed to be polymorphic at only
one time point. Interestingly though, this mutant-frequency
trajectory still contained enough information with which to
obtain a bounded likelihood interval for the selection coefficient.
Given sufficient time points, it would also be possible to allow
the selection coefficient to vary over time, which often occurs
in natural populations. Ignoring time-varying selection could
lead to attenuated estimates of the effective population size.

Figure 6 summarizes the appropriate statistical methods
for different regions the (N, s) parameter space. When the
effective population size is small (N < 5000), exponentia-
tion of the one-step transition probability matrix of the
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discrete Wright-Fisher Markov chain is computationally fea-
sible and should be used for inferences. For mutants evolving
under weak selection (|s| < 0.01) in populations with a large
effective size (N > 5000), either of the diffusion approxima-
tions or the delta method approach can be used for accurate
inferences. However, we recommend the delta method over
the standard diffusion approximation as it is computationally
far more efficient. Finally, when the effective population size
is large and selection is strong, only our delta method ap-
proach will provide an unbiased estimate of the selection
coefficient.

In practice, we may not have a priori information on the
magnitudes of the parameters for a given data set. In this
case, one could begin by first optimizing the likelihood
based on the discrete Wright-Fisher model over small values
of N (N < 5000). If the optimal (N, s) point lies on the upper
boundary of N, then one would proceed to perform the
optimization over larger values of N using the delta method
approximation. Alternatively, one could plot the likelihood
surface using the appropriate method in each region of the
parameter space.
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Supplementary Material

Figure S1: This series of plots illustrates the approximations to the discrete Wright-
Fisher mutant frequency distribution for various values of the selection coefficient s,
effective population size N, initial mutant frequency p and number of generations n.
The true, discrete Wright-Fisher mutant frequency distribution is shown in grey and
is rescaled such that the area under the curve is equal to one. The standard diffusion
approximation is indicated in red and the Gaussian diffusion approximation is given in
blue. The approximate distributions obtained with the delta method are indicated in
green and orange for the first-order and second-order Taylor approximations of the mean,
respectively (see Methods). The plot at the bottom right of each page shows the log
Kullback-Leibler divergence from the true Wright-Fisher mutant frequency distribution
as a function of the selection coefficient for each of the approximations.
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Figure S2: MLEs for N and s obtained in 1 000 datasets simulated with N = 1 000
and s = 0. Estimates were based on the mutant frequencies observed in samples of size
10 000 taken every generation for 20 generations of the process, starting with an initial
population mutant frequency of p = 0.01.
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Figure S3: MLEs for N and s obtained in 1 000 datasets simulated with N =1 000 and s = 0.2 in
(a) and s = 0.5 in (b). Estimates were based on the mutant frequencies observed in samples of size
1 000 taken every generation for 20 generations of the process, starting with an initial population
mutant frequency of p = 0.05 in (a) and p = 0.01 in (b).
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Figure S4: MLEs for N and s obtained in 1 000 datasets simulated with N = 1 000 and s = 0.2
in (a) and s = 0.5 in (b). Estimates were based on the mutant frequencies observed in samples of
size 1 000 taken every fourth generation for 20 generations of the process, starting with an initial
population mutant frequency of p = 0.05 in (a) and p = 0.01 in (b).
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