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ABSTRACT Cell differentiation requires different pathways to act in concert to produce a specialized cell type. The budding yeast
Saccharomyces cerevisiae undergoes filamentous growth in response to nutrient limitation. Differentiation to the filamentous cell type
requires multiple signaling pathways, including a mitogen-activated protein kinase (MAPK) pathway. To identify new regulators of the
filamentous growth MAPK pathway, a genetic screen was performed with a collection of 4072 nonessential deletion mutants
constructed in the filamentous (£1278b) strain background. The screen, in combination with directed gene-deletion analysis, un-
covered 97 new regulators of the filamentous growth MAPK pathway comprising 40% of the major regulators of filamentous growth.
Functional classification extended known connections to the pathway and identified new connections. One function for the extensive
regulatory network was to adjust the activity of the filamentous growth MAPK pathway to the activity of other pathways that regulate
the response. In support of this idea, an unregulated filamentous growth MAPK pathway led to an uncoordinated response. Many of
the pathways that regulate filamentous growth also regulated each other’s targets, which brings to light an integrated signaling
network that regulates the differentiation response. The regulatory network characterized here provides a template for understanding

MAPK-dependent differentiation that may extend to other systems, including fungal pathogens and metazoans.

Cell differentiation is the process by which cells undergo
specialization to produce different cell types with differ-
ent functions. Cell-type specialization can result from execu-
tion of an intrinsic developmental program and also in
response to extrinsic cues. The process of cell differentiation
is one of exquisite precision: cells undergo complete mor-
phogenetic restructuring in a specific spatiotemporal context
(Kholodenko et al. 2010). Multiple signaling pathways col-
laborate to control cell differentiation responses. For exam-
ple, the activity of the Wnt and Hippo pathways is integrated
at multiple levels to coordinate development (McNeill and
Woodgett 2010). A critical problem in the field of cell differ-
entiation is to elucidate how signals from different pathways
become integrated to produce a cohesive response. This prob-
lem is relevant from the standpoint of human health, because
misregulation of differentiation pathways is an underlying
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cause of developmental problems and diseases such as cancer
(Wagner and Nebreda 2009).

Depending on ploidy and growth condition, the budding
yeast Saccharomyces cerevisiae can differentiate into different
cell types. Haploid yeast undergoes morphological changes in
response to secreted pheromones to mate and form diploids
(Bardwell 2005; Dohlman and Slessareva 2006; Merlini et al.
2013). Diploid yeast starved for carbon and nitrogen initiate
a meiotic program known as sporulation (Neiman 2011).
Haploid and diploid yeast starved for only carbon or nitrogen
undergoes filamentous (or invasive/pseudohyphal) growth
(Gimeno et al. 1992; Cullen and Sprague 2000, 2012). Dur-
ing filamentous growth, major changes occur to cell polarity
(Gimeno et al. 1992; Roberts and Fink 1994; Pruyne and
Bretscher 2000; Cullen and Sprague 2002; Bi and Park
2012), cell-cycle progression (Kron et al. 1994; Edgington
et al. 1999), and cell adhesion (Lambrechts et al. 1996; Lo
and Dranginis 1998; Guo et al. 2000), which results in for-
mation of branched chains of interconnected invasive fila-
ments. Filamentous cells form complex communities during
biofilm formation (Reynolds and Fink 2001; Verstrepen and
Klis 2006; Bojsen et al. 2012). Many fungal species undergo
filamentous growth. In pathogens, differentiation to filamen-
tous/hyphal cells in biofilms is critical for pathogenicity (Lo
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et al. 1997; Wendland 2001; Nobile et al. 2006; Sohn et al.
2006). Budding yeast therefore provides a convenient genetic
system to define the pathways that regulate filamentous growth
and has provided insights into the genetic basis of fungal path-
ogenesis and eukaryotic differentiation.

Signal transduction pathways regulate filamentous
growth and control the changes that occur in response to
nutrient limitation (Zhao et al. 2007). Among the pathways
that regulate filamentous growth in yeast is a MAPK path-
way called the filamentous growth MAPK pathway (Supporting
Information, Figure 1A). MAPK pathways are evolutionary con-
served signaling modules that regulate diverse responses in
eukaryotes (Raman et al. 2007). The filamentous growth MAPK
pathway is composed of plasma-membrane sensors (Msb2p,
Sholp, and Opy2p) (O'Rourke and Herskowitz 1998; Cullen
et al. 2004; Wu et al. 2006; Yamamoto et al. 2010; Karunanithi
and Cullen 2012) that connect to a Rho-type GTPase (Cdc42p;
Bi and Park 2012) and a kinase cascade consisting of a p21-
activated kinase (Ste20p; Peter et al. 1996; Leberer et al. 1997)
and MAPK module (including the MAPKKK Stellp, MAPKK
Ste7p, and MAPK Kss1p; Roberts and Fink 1994). The MAP
kinase Kss1p regulates the activity of two transcription factors
(Ste12p and Teclp; Madhani and Fink 1997; Madhani et al.
1997) that induce target genes (Madhani et al. 1999) by bind-
ing to well-defined promoter elements (Zeitlinger et al. 2003;
Chou et al. 2006).

In addition to the MAPK pathway, other pathways al-
so regulate filamentous growth. Major nutrient regulatory
pathways include the Ras2p—-cAMP-protein kinase A (PKA)
pathway (Toda et al. 1985; Gimeno et al. 1992; Mosch et al.
1996; Colombo et al. 1998; Robertson and Fink 1998; Mosch
et al. 1999; Rupp et al. 1999), the AMP-dependent kinase
(AMPK) Snflp and transcriptional repressors Nrglp and Nrg2p
(Celenza and Carlson 1989; Woods et al. 1994; Lesage et al.
1996; Cullen and Sprague 2000; McCartney and Schmidt
2001; Kuchin et al. 2002), the target of rapamycin (TOR)
pathway, which responds to nitrogen availability (Beck and
Hall 1999; Cardenas et al. 1999; Bruckner et al. 2011), and
the mitochondrial retrograde (RTG) pathway (Sekito et al.
2002; Liu et al. 2003; Liu and Butow 2006), which senses
changes in metabolic respiration (Aun et al. 2013). The pH
sensing Rim101p pathway (Lamb et al. 2001; Barrales et al.
2008), lipid-responsive transcription factor Opilp (White et al.
1991; Reynolds 2006), tRNA modification complex Elongator
[ELP, (Krogan and Greenblatt 2001; Winkler et al. 2001;
Petrakis et al. 2004; Li et al. 2007; Svejstrup 2007)], and chro-
matin remodeling complex Rpd3p(L) (Carrozza et al. 2005;
Barrales et al. 2008; Ryan et al. 2012) also regulate filamen-
tous growth. These proteins represent only a subset of a large
collection of regulators identified in S. cerevisiae and Candida
albicans by gene expression profiling (Madhani et al. 1999;
Roberts et al. 2000; Carlisle and Kadosh 2013), genetic screens
(Lorenz et al. 2000; Palecek et al. 2000; Barrales et al. 2008),
and systematic genome-wide approaches, including large-scale
deletion and overexpression studies (Jin et al. 2008; Bharucha
et al. 2011; Shively et al. 2013), mass spectrometry (MASS
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SPEC) approaches (Xu et al. 2010; Zhang et al. 2013) and
analysis of ordered deletion collections made in the filamen-
tous (21278b) background (Dowell et al. 2010; Ryan et al
2012). A critical challenge is to understand how many different
proteins and pathways come together to produce a new cell
type.

Several of the pathways that regulate filamentous growth
can regulate each other’s activities. A landmark finding
comes from the discovery that the Ras2p pathway regulates
the filamentous growth MAPK pathway (Mosch et al. 1996).
More recently, the ELP (Abdullah and Cullen 2009), Rim101,
RTG, Rpd3p(L), and Opilp pathways have also been shown
to regulate the filamentous growth MAPK pathway (Chavel
et al. 2010). These pathways control expression of the gene
encoding one of the plasma-membrane sensors for the fila-
mentous growth MAPK pathway, Msb2p (Chavel et al. 2010).
It has also been shown that the major transcription factors
that regulate filamentous growth regulate each other’s tar-
gets, which creates hubs where signal integration events
are coordinated (Borneman et al. 2006). One hub is the
FLO11 promoter, where multiple transcription factors con-
verge to fine tune cell adhesion (Rupp et al. 1999). Likewise,
the major protein kinases that regulate filamentous growth
function in an interdependent network (Bharucha et al
2008). Therefore, signal coordination occurs at multiple lev-
els to regulate the filamentous growth response.

Here we examine the question of signal integration
by performing a genetic screen with an ordered deletion
collection in the filamentous (21278b) background (Ryan
et al. 2012). This effort, combined with hypothesis-based
testing, identified 97 new regulators of the filamentous
growth MAPK pathway, which map to known regulatory
pathways and provide entirely new connections. Using the
screen as a platform, we examin questions related to net-
work connectivity. We show that tuning the activity of the
filamentous growth MAPK pathway to the other pathways is
critical to producing a coordinated response. We also show
that several of the key pathways that regulate filamentous
growth also regulate each other’s targets. Thus, an inte-
grated network regulates the filamentous growth response.
We speculate that similarly coordinated networks coordi-
nate cell differentiation responses in other systems.

Materials and Methods
Strains, plasmids, and microbiological techniques

Filamentous growth was evaluated in the X1278b strain
background (Liu et al. 1996). The haploid gene deletion
collection constructed in the 31278b strain background has
been described (Ryan et al. 2012) and was generously pro-
vided by C. Boone. pFRE-lacZ was provided by H. Madhani
(Madhani et al. 1997). The YCp-Cdc12-GFP was provided by
J. Pringle (Fares et al. 1996). The pste12::URA3 plasmid was
provided from G. Sprague (McCaffrey et al. 1987). p8XCRE-
lacZ was provided by H. Saito (Tatebayashi et al. 2006).
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pCIT2-lacZ was provided by the Liu lab and has been de-
scribed (Liu and Butow 1999).

Standard laboratory conditions were used to grow yeast
and bacterial cultures (Rose et al. 1990). Escherichia coli was
grown in LB and 2XYT media. Yeast was grown in rich media
YEPD (2% glucose) or YEP-GAL (2% galactose) or synthetic
complete media at 30° unless otherwise noted. Yeast strains are
listed in Table 1. Gene deletions were constructed using anti-
biotic resistance markers (Goldstein and McCusker 1999) or
auxotrophic markers amplified by PCR and introduced into
yeast by lithium acetate transformation by standard methods
as described (Chavel et al. 2010). The plate washing (Roberts
and Fink 1994) and single-cell invasive growth assays (Cullen
and Sprague 2000) were used to measure filamentous growth.
Colony morphology was examined by visual inspection on
YEPD media (Granek and Magwene 2010; Voordeckers et al.
2012). Functional analysis of the MAPK regulatory genes came
from SGD (http://www.yeastgenome.org).

Halo assays were performed as described (Jenness et al.
1987). Specifically, wild-type and mutant strains were grown
to saturation in YEPD (2% glucose). Cell density was deter-
mined by OD Agqo. Cultures were serially diluted such that
~10,000 cells were spread onto YEPD plates. After the cell
suspension had dried, four spots of 1 g/l alpha factor were
spotted (10 wl). Plates were incubated at 30° for 2 days and
photographed.

Invasive growth screen of the filamentous
deletion collection

The MATa 31278b deletion collection (Ryan et al. 2012)
was pinned in 96-well format to YEPD media omnitrays
(Thermo Scientific, Waltham, MA). Each plate was pinned
independently using a pinning tool (V&P Scientific, VP408,
San Diego, CA)—sterilized with a 10% bleach solution, 95%
ethanol, 70% ethanol and flame—and a pinning guide tray
(V&P Scientific, VP381). Plates were pinned in duplicate and
incubated for 5 and 12 days. Plates were photographed,
washed in a stream of water, and photographed again. Each
plate was scored visually for colonies that showed changes in
morphology and invasive growth. Scores were tabulated to
produce a single score called the invasive growth index. The
results of the screen and details of the scoring system are
presented in Table S2.

Evaluating filamentous growth MAPK pathway activity

The activity of the filamentous growth MAPK pathway was
evaluated with a transcriptional reporter [pFRE-lacZ (Madhani
and Fink 1997)]. Strains that showed clear-cut invasive
growth phenotypes (hyper- and hypoinvasive) were trans-
formed with the pFRE-lacZ plasmid. Strains were grown in
media lacking uracil to maintain selection for the plasmid
and the nonpreferred carbon source galactose (S-GAL-URA)
to induce pathway activity (Pitoniak et al. 2009). Mutants
were induced in S-GAL-URA for 4 hr. Mutants were grown in
batches of ~20 alongside control strains (tecIA and digIA)
to minimize batch-to-batch variation. Cell extracts were pre-

pared, and B-galactosidase assays were performed as de-
scribed (Chavel et al. 2010). The average values of at least
two independent experiments were reported. Statistical sig-
nificance was determined by comparing the difference between
wild-type and experimental pFRE-lacZ expression averages in
a z-test score (Freedman et al. 1998). The z-test score was
converted to the P-value (http://www.graphpad.com). Sam-
ples with a P-value =0.0001 and =1.5-fold change from wild
type were considered statistically significant. Raw data for the
B-galactosidase assays can be found in Table S3. For some
experiments, the filamentous growth MAPK pathway was eval-
uated with a growth reporter [FUSI-HIS3, (McCaffrey et al.
1987)]1. In %1278b cells lacking an intact mating pathway
(ste4A), growth on SD-HIS is dependent on the filamentous
growth MAPK pathway (O'Rourke and Herskowitz 1998;
Cullen et al. 2004; Pitoniak et al. 2009; Chavel et al. 2010;
Karunanithi and Cullen 2012). Growth assays are shown in
Figure S1. As a separate test, 26 genes identified by the screen
were disrupted in a wild-type 31278b strain and checked for
invasive growth and pFRE-lacZ; 77% passed a preliminary test.

Budding pattern analysis

Patterns of bud-site selection were based on established
principles (Chant and Pringle 1995). Budding pattern was
determined in two ways. In one method, budding pattern
was based on visual inspection of connected cells. 31278b
cells grown in liquid YEPlowD (0.2% glucose) media undergo
filamentous growth and exhibit Stel2p-dependent changes in
cell length, cell-cell adhesion, and distal-unipolar budding.
Cells were grown to midlog phase in YEPlowD (0.2% glucose)
liquid medium for 12-14 hr and examined by microscopy at
100X magnification. Buds were assigned as proximal, equa-
torial, or distal depending on their position relative to mother
cells. At least 150 cells were counted for each experiment.

In a separate approach, cells were stained by FITC-ConA
and TRITC-ConA based on published protocols (Matheos et al.
2004; Gao and Bretscher 2009) with the following modifica-
tions. Cells were grown in YEPlowD for 16 hr. FITC-ConA (0.1
mg/ml) was added to 1 ml cells. Cells were incubated in the
dark for 15 min, washed three times, and resuspended in
YEPlowD for 4 hr. Cells (1 ml) were then stained with TRITC-
ConA (0.1 mg/ml), washed three times in water, and examined
by fluorescence microscopy to visualize the position of buds. At
least 200 buds were recorded for each condition.

Quantitative PCR analysis

Quantitative PCR (qPCR) analysis was performed as de-
scribed (Pfaffl 2001). To prepare total RNA, cells were grown in
50-ml aliquots in YEP-GAL medium to midlog phase (~6 hr).
Total RNA was isolated by hot acid phenol extraction. cDNA
synthesis and real-time PCR reactions were performed as de-
scribed (Chavel et al. 2010). gPCR and melt curve data collec-
tion was performed as described (Chavel et al. 2010) with the
following alterations to the amplification cycles: initial denatur-
ation for 3 min at 95°, followed by 35X cycle 3 (denaturation
for 30 sec at 95°, annealing for 30 sec at 60°, and extension for

Differentiation MAPK Pathway in Yeast 1311


http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000598
http://www.yeastgenome.org
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006108
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.168252/-/DC1/genetics.114.168252-7.xls
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000287
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005970
http://www.graphpad.com
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.168252/-/DC1/genetics.114.168252-13.xls
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000532
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005728
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005738
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.168252/-/DC1/genetics.114.168252-4.pdf

Table 1 Yeast strains used in this study

Strain Genotype Reference
PC313? MATa ura3-52 Liu et al. (1993)
PC538  MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 Cullen et al. (2004)
PC539  MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 ste12::KLURA3 Cullen et al. (2004)
PC563  MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 bud8::KLURA3 Cullen and Sprague (2002)
PC586  MATa ura3-52 leu2 Cullen et al. (2004)
PC622  MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 GAL-SHO1 Cullen et al. (2004)
PC949  MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 pop2::KanMX6 This study
PC950 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 ccrd::KanMX6 This study
PC999  MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA Cullen et al. (2004)
PC1083 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA GAL-MSB2::KanMX6 Cullen et al. (2004)
PC1415 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 bni1::KLURA3 Cullen and Sprague (2002)
PC1516 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HAA100-818 Cullen et al. (2004)
PC1558 MATa sted FUST-lacZ FUST-HIS3 ura3-52 sho1::HYG ssk1:NAT Pitoniak et al. (2009)
PC1621 MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 MSB2-HAA100-818 GAL-SHO1::GENT This study
PC1625 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 GAL-MSB2-HA::NAT GAL-SHO1::GENT This study
PC1895 MATa ura3-52 leu2:HYG This study
PC2043 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 FLO11-HA::KanMX6 Karunanithi et al. (2010)
PC2061 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 ssk1::NAT ste11::KLURA3 Pitoniak et al. (2009)
PC2112 MATa sted4 FUST-lacZ FUST-HIS3 ura3-52 leu2::HYG lacZ::NAT tec1::LEU2 Vadaie et al. (2008)
PC2360 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 ras2::NAT Chavel et al. (2010)
PC2362 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 iral::NAT Chavel et al. (2010)
PC2511 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 ras2::NAT ste12::KLURA3 This study
PC2515 MAT«a ura3-52 leu2 flo8::NAT Chavel et al. (2010)
PC2532 MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 flo8:HYG Chavel et al. (2010)
PC2534 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 pde2:HYG Chavel et al. (2010)
PC2535 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 gpa2::NAT Chavel et al. (2010)
PC2537° MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 gpri::KLURA3 Chavel et al. (2010)
PC2588 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 tpk1:NAT Chavel et al. (2010)
PC2618 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 grr1::KLURA3 This study
PC2622 MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 snf8:HYG This study
PC2633 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 sdc25::NAT Chavel et al. (2010)
PC2688 MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 MSB2-HA ste12::KLURA3 This study
PC2690 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA ras2::KLURA3 This study
PC2763 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 elp2::KLURA3 Abdullah and Cullen (2009)
PC2845 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 FLO11-HA::KanMX6 gal11:KLURA3 This study
PC2945 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA rxt2::KLURA3 Chavel et al. (2010)
PC2952 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA hda1::KLURA3 Chavel et al. (2010)
PC2953 MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 MSB2-HA rim101::KLURA3 Chavel et al. (2010)
PC2954 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA snf2::KLURA3 Chavel et al. (2010)
PC2955 MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 MSB2-HA msn1::KLURA3 Chavel et al. (2010)
PC2956 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA yak1::KLURA3 Chavel et al. (2010)
PC2957 MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 MSB2-HA mss11::KLURA3 Chavel et al. (2010)
PC2980 MATa ura3-52 elp2::KLURA3 This study
PC3016 MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 bem4::HYG A. Pitoniak,
C. Chavel, J. Chow, . Smith,
D. Camara, S. Karunanithi,
K. Wolfe, K., and P. J. Cullen,
(unpublished data)
PC3030 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA sin3::NAT Chavel et al. (2010)
PC3031 MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 MSB2-HA isw1::NAT Chavel et al. (2010)
PC3032 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA ckal::NAT Chavel et al. (2010)
PC3033 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA nhp10::NAT Chavel et al. (2010)
PC3034 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA isw2::NAT Chavel et al. (2010)
PC3035 MATa sted4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA mks1::NAT Chavel et al. (2010)
PC3037 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA sds3::KLURA3 Chavel et al. (2010)
PC3038 MATa sted FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA rpd3::KLURA3 Chavel et al. (2010)
PC3039 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA dig1::KLURA3 Chavel et al. (2010)
PC3352 MATa ura3-52 ras2:NAT This study
PC3353 MATa ura3-52 sin3::NAT This study
PC3362 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA fkh1::KLURA3 Chavel et al. (2010)
PC3363 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA nrg1::KLURA3 Chavel et al. (2010)
PC3414 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 FLO11-HA spo14::KLURA3 Karunanithi et al. (2010)
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Table 1, continued

Strain Genotype

Reference

PC3415 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 FLO11-HA dfg16::KLURA3
PC3419 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 FLO11-HA ash1::KLURA3
PC3421 MATa sted FUST-lacZ FUST-HIS3 ura3-52 FLO11-HA plb3::KLURA3
PC3428 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA swi4::KLURA3
PC3429 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA mga1::KLURA3
PC3430 MATa sted FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA fkh2::NAT
PC3431 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA sfl1::KLURA3

PC3432 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA fkh1::KLURA3 fkh2::NAT
PC3435 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA nrg1::KLURA3 nrg2::NAT

PC3635 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 bud3::KLURA3
PC3637 MAT« ura3-52 leu2 stel2:kanMX6

PC3642 MATa sted FUS1-lacZ FUST-HIS3 ura3-52 MSB2-HA rtg3::NAT
PC3643 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA tco89::NAT
PC3644 MATa sted FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA gzf3::NAT
PC3652 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA rtg2::NAT
PC3654 MATa ste4 FUST-lacZ FUS1-HIS3 ura3-52 MSB2-HA tor1::NAT
PC3657 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA Isc2::NAT
PC3687 MATa ura3-52 leu2 opil::NAT

PC3688 MATa sted FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA opil::NAT
PC3690 MAT«a ura3-52 leu2 rim101::NAT

PC3691 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA rim101::NAT
PC3695 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA rtg1::NAT
PC3861 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 stel1:NAT

PC3920 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA vps8::NAT
PC4006 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 mdh1::KLURA3
PC4007 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 spt3::KLURA3
PC4008 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 spt8::KLURA3
PC4032 MATa sted FUST-lacZ FUST-HIS3 ura3-52 rim20::KLURA3
PC4035 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 bmh2::KLURA3
PC4038 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 cmk2::KLURA3
PC4039 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 cmk1::HYG

PC4043 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 bmh1::KLURA3
PC4141 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 tpk2::KLURA3
PC4256 MATa sted FUST-lacZ FUST-HIS3 ura3-52 bud1::NAT

PC4468 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 rga1::KLURA3
PC5071 MATa sted FUST-lacZ FUST-HIS3 ura3-52 pcl9::NAT

PC5072 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 pcl1::KLURA3 plc9::NAT
PC5073 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 pcl2::HYG plc9::NAT

PC5074 MATa sted FUST-lacZ FUST-HIS3 ura3-52 pcl1::KLURA3 pcl2::HYG pcl9::NAT

PC5075 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 pcl1::KLURA3 plc2::HYG
PC5084 MATa sted FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA tpk3::NAT
PC5085 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 gin3::KLURA3

PC5090 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 nte1:NAT

PC5091 MATa sted FUST-lacZ FUST-HIS3 ura3-52 pho85::NAT

PC5095 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA sir2::NAT
PC5102 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA gcn5::KLURA3
PC5108 MATa ura3-52 tpk2::NAT

PC5111  MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 stb3::NAT

PC5113 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 stb6::NAT

PC5115 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 pho4::NAT

PC5121 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 pho80::NAT

PC5332 MATa ura3-52 rtg2::NAT

PC5335 MATa ura3-52 pho85::KLURA3

PC5340 MATa ura3-52 leu2 gcn5::LEU2

PC5351 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA ygri125w::NAT
PC5352 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA gpb2::KLURA3
PC5354 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA cup2::KLURA3
PC5360 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA acal::KLURA3
PC5362 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA sko1::KLURA3
PC5364 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA plb1::TRP
PC5651 MATa ura3-52 stel12:NAT

Karunanithi et al. (2010)
Karunanithi et al. (2010)
Karunanithi et al. (2010)

Chavel et al. (2010)
Chavel et al. (2010)
Chavel et al. (2010)
Chavel et al. (2010)
Chavel et al. (2010)
Chavel et al. (2010)
This study
This study
Chavel et al. (2010)
Chavel et al. (2010)
Chavel et al. (2010)
Chavel et al. (2010)
Chavel et al. (2010)
This study

This study

Chavel et al. (2010)
This study

This study

This study

Karunanithi and Cullen

(2012)
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study

(continued)
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Table 1, continued

Strain Genotype Reference
PC5822 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 vps27::KLURA3 This study
PC5826 MATa sted FUST-lacZ FUST-HIS3 ura3-52 vps26::KLURA3 This study
PC5831 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 vps35::KKLURA3 This study
PC5856 MATa sted FUST-lacZ FUST-HIS3 ura3-52 hap4::KLURA3 This study
PC5860 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 mep2::KLURA3 This study
PC5862 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 rim15::KLURA3 This study
PC5865 MATa sted FUST-lacZ FUST-HIS3 ura3-52 sch9::KLURA3 This study
PC5871 MATa ura3-52 leu2::HYG ssk1::NAT This study
PC5872 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 crz1::KLURA3 This study
PC5875 MATa sted FUST-lacZ FUST-HIS3 ura3-52 pho81::KLURA3 This study
PC5876 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 pho84::KLURA3 This study
PC5878 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 rim21::KLURA3 This study
PC5880 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 rim9::KLURA3 This study
PC5881 MATa sted FUST-lacZ FUST-HIS3 ura3-52 pho5:KLURA3 This study
PC6016¢ MATa canlA::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 Ryan et al. (2012)
PC6093 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 gpb1::NAT gpb2::KLURA3 This study
PC6103 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA tec1::NAT This study
PC6135 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 rsr1::HIS3 bni1::KLURA3 This study
PC6136 MATa ura3-52 pde2::NAT This study
PC6137 MATa ura3-52 ccr4:NAT This study
PC6138 MATa ura3-52 ntel::NAT This study
PC6139 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 ino1::KLURA3 This study
PC6140 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 smp1::KLURA3 This study
PC6141 MATa sted FUS1-lacZ FUST-HIS3 ura3-52 flo1::KLURA3 This study
PC6159 MATa sted FUST-lacZ FUST-HIS3 ura3-52 ccr4::NAT ssk1::KLURA3 This study
PC6161 MATa sted FUST-lacZ FUST-HIS3 ura3-52 ntel::NAT ssk1::KLURA3 This study
PC6163 MATa sted FUST-lacZ FUST-HIS3 ura3-52 pde2::NAT ssk1::KLURA3 This study
PC6165 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 pho85::NAT ssk1::KLURA3 This study
PC6166 MATa sted FUST-lacZ FUST-HIS3 ura3-52 ras2::NAT ssk1::KLURA3 This study
PC6192 MATa sted FUST-lacZ FUST-HIS3 ura3-52 faa4::KLURA3 This study
PC6193 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA hac1::KLURA3 This study
PC6197 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA stb5:NAT This study
PC6198 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA stp1::KLURA3 This study
PC6201 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA skn7::KLURA3 This study
PC6202 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA yhp1::KLURA3 This study
PC6204 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA mot3::NAT This study
PC6206 MATa sted FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA stb2::NAT This study
PC6208 MATa sted FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA ace2::KLURA3 This study
PC6210 MATa sted FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA azf1::NAT This study
PC6212 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA phd1:NAT This study
PC6218 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA sok2::KLURA3 This study
PC6222 MATa ura3-52 ras2:NAT This study
PC6253 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 bcy1::KLURA3 This study
PC6258 MATa sted FUST-lacZ FUST-HIS3 ura3-52 MSB2-HA mot2::KLURA3 This study
PC6284 MATa canlA::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 mcy1::kanMX4 ste12::LEU2  This study
PC6285 MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 pncl::kanMX4 ste12::LEU2  This study
PC6286 MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 mnl1::kanMX4 ste12::LEU2  This study
PC6287 MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 rxt3::kanMX4 ste12::LEU2  This study
PC6288 MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 cwc27::kanMX4 ste12::LEU2 This study
PC6289 MATa canlA::Ste2pr-spHIS5 lyp1A::Ste3pr-LEUZ2 his3::hisG leu2A0 ura3A0 ssn8::kanMX4 ste12::LEU2  This study
PC6290 MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 nutl::kanMX4 ste12::LEU2  This study
PC6291 MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A0 elal:kanMX4 ste12::LEU2  This study
PC6292 MATa ura3-52 leu2 flo8::NAT ssk1::KLURA3 This study
PC6293 MATa ura3-52 leu2 gcn5::LEU2 ssk1::KLURA3 This study
PC6294 MATa ura3-52 leu2 opil::NAT ssk1::KLURA3 This study
PC6295 MATa ura3-52 leu2 rim101::NAT ssk1::KLURA3 This study
PC6296 MATa ura3-52 sin3::NAT ssk1::KLURA3 This study
PC6297 MATa ste4 FUST-lacZ FUST-HIS3 ura3-52 leu2::HYG lacZ::NAT tec1::LEU2 This study
PC6298 MATa ura3-52 leu2 elp2::LEU2 This study
PC6299 MATa ura3-52 leu2::HYG ssk1::NAT elp2::LEU2 This study

2 All strains are in the 21278b background unless otherwise indicated.
b KLURA3 refers to the Kluyveromyces lactis URA3 cassette.

©3,1278b ordered deletion collection control strain MATa can1A::Ste2pr-spHIS5 lyp1A::Ste3pr-LEU2 his3::hisG leu2A0 ura3A.
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30 sec at 72°). Gene expression was quantified using the AAC,
method as described (Livak and Schmittgen 2001). All
reactions were performed in triplicate, and average
values are reported. Primers used are as follows: ACTI
(forward 5'-GGCTTCTTTGACTACCTTCCAACA-3’ and re-
verse 5-GATGGACCACTTTCGTCGTATTC-3'), NRG1 (for-
ward 5'-CTAATGATGCATATAATAAGATGGC-3' and reverse
5'-ATGACCCGATGTAGTGAATCCT-3"), PHO5 (forward 5'-ACAT
CACCTTGCAGACTGTCA-3" and reverse 5'-AAGTACTAGCGT
CAGTTGAGG-3"), INO1 (forward 5'-CTAATCAAGATGAGAGAGC
CAAT-3' and reverse 5'-ATACTTCTACGTACCTCTCAGTA-3'),
and SMP1 (forward 5'-AGTCAAGATTCCTCCAGTGTAC-3’
and reverse 5'-ATCCGCTCGTGATATTGCTC-3').

Fluorescence microscopy

Actin staining by rhodamine phalloidin has been described
(Amberg 2000). Differential interference contrast (DIC) and
fluorescence microscopy using rhodamine and GFP filter sets
were performed using an Axioplan 2 fluorescent microscope
(Zeiss, Jena, Germany) with a PLAN-APOCHROMAT 100X/
1.4 (oil) objective (N.A. 0.17). Digital images were obtained
with the Axiocam MRm camera (Zeiss). Axiovision 4.4 soft-
ware (Zeiss) was used for image acquisition and analysis.

Results

Identification of filamentous growth MAPK
pathway regulators

An ordered collection of 4072 deletion mutants constructed in
the filamentous (MATa 31278b) background (provided by the
Boone Lab, Toronto, ON; Ryan et al. 2012) was screened for
changes in colony morphology (Granek and Magwene 2010;
Voordeckers et al 2012) and invasive growth based on the
plate-washing assay (Roberts and Fink 1994) to identify regula-
tors of filamentous growth. These assays provide a readout of
filamentous growth that correlate with the activity of the filamen-
tous growth MAPK pathway (Figure 1B; Roberts and Fink 1994).

Screens were performed at two time periods (5 and 12
days), which allowed evaluation of the progression of invasive
growth. The 5-day screen was better suited to identify hyper-
filamentous growth mutants, and the 12-day screen enriched
for hypofilamentous growth mutants. The two screens also
provided independent validation of the mutants identified
(Table S2). A scoring system incorporated colony morphology
and agar invasion from both screens into a single value called
the invasive growth index that was used to rank the mutants
by strength-of-phenotype (Table S2).

Of the 4072 mutants represented in the collection, 220
showed hyperfilamentous growth and 478 showed hypofila-
mentous growth (Table S2). Many of these mutants have been
identified in other screens (Table S1) (Lambrechts et al. 1996;
Lo and Dranginis 1998; Pan and Heitman 1999; Lorenz et al.
2000; Ryan et al. 2012; Shively et al. 2013). The screen uniquely
identified new regulators of filamentous growth (Table S1),
which may have been due to the specific incubation times or
differences in scoring systems.

To identify those regulators of filamentous growth that
also regulate the filamentous growth MAPK pathway, mutants
identified in the screen were examined for changes in the
activity of a transcriptional reporter, pFRE-lacZ, which pro-
vides a readout of filamentous growth MAPK pathway activ-
ity (Madhani and Fink 1997; Pitoniak et al. 2009). Control
strains verified that loss of negative regulators showed ele-
vated pFRE-lacZ activity (Figure 1, A and C, asterisks, and
Table S3), which included the transcriptional repressor Diglp
(Cook et al. 1996), the mating pathway MAP kinase Fus3p
(Bruckner et al. 2004), and the HOG pathway MAP kinase
kinase Pbs2p (Figure 1, A and C and Table S3; asterisks in
panel C refers to pathway components). Loss of pathway
components showed reduced pFRE-lacZ activity (Figure 1,
A and D, asterisks; msb2A, sholA, ste50A, teclA, ste20A,
stel1A, kss1A, and ste12A; Table S3).

Mutants identified by the invasive growth screens were
transformed with pFRE-lacZ reporter and evaluated for
B-galactosidase activity. For the hyperinvasive growth mutants,
41 of 110 showed elevated pFRE-lacZ expression (37%, Figure
1C). For the hypoinvasive growth mutants, 43 of 116 tested
showed a defect in pFRE-lacZ expression (37%, Figure 1D).
Not all candidates were examined, because mutants with
weaker phenotypes showed differences that fell below the
statistical cutoff employed (=1.5-fold, P-value = 0.0001).
Thus, the screen was not saturating.

To validate the results of the screen, and/or extend
connections of known pathways to the filamentous growth
MAPK pathway, ~100 genes were disrupted in a wild-type
3,1278b strain, and gene disruptants were evaluated for inva-
sive growth and MAPK activity (Table S1 and Figure S1).
The analysis was facilitated by a cross-talk reporter that in
a mating-deficient strain (ste4A FUS1-HIS3) provides a readout
of the filamentous growth MAPK pathway. The analysis elim-
inated ~15% of the candidates as false positives (Table S1).
The analysis also identified several new components. In total,
97 proteins were identified by the screen and gene disruption
analysis that regulate the filamentous growth MAPK pathway
and play a corresponding role in the regulation of filamentous
growth.

Evaluating filamentous growth MAPK pathway
regulators by the change in budding pattern and
cell elongation

Candidate regulators were examined for morphological
phenotypes that are controlled by the filamentous growth
MAPK pathway. The filamentous growth MAPK pathway
regulates changes in budding pattern (Gimeno et al. 1992;
Roberts and Fink 1994; Cullen and Sprague 2000, 2002) and
the cell cycle that results in an increase in cell length (Kron
et al. 1994; Madhani et al. 1999). The change in budding
pattern is visually striking in haploid cells that switch from
axial to distal-unipolar budding (Cullen and Sprague 2002).
A recent study showed an abundance of filamentous cells in
MAPK pathway mutants, raising the question of whether and
to what extent the MAPK pathway regulates this aspect of the
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Figure 1 Positive and negative regulators of the filamentous growth MAPK pathway. (A) The filamentous growth MAPK pathway is shown with
components that were identified by the screen represented as positive regulators (green circles) and negative regulators (red circles). Cdc24p and
Cdcd2p are essential proteins and were not tested here, and Ste7p was not present in the collection. Opy2p is an established regulator of the
filamentous growth MAPK pathway (Yang et al. 2009, 2010; Karunanithi and Cullen 2012) and showed a defect in FRE-lacZ expression, but the
levels fell below the range of statistical significance (Table S3). (B) Example of the plate-washing assay. Equal concentrations of cells were spotted onto
YEPD media. Cells were grown for 2 days. Plates were photographed (top) and washed in a stream of water to reveal invaded cells (bottom). Examples
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response (Chen and Thorner 2010). To clarify this issue, the
budding pattern of filamentous cells was examined by two
approaches. In one approach, filamentous growth was ex-
amined in liquid culture by microscopy (Figure 2A, left
columns). In a second approach, cells were stained with FITC-
ConA and TRITC-ConA at different times to visualize bud
position (Figure 2A, right columns). The latter approach
had the advantage of determining bud position without the
assumption of which cell the parent was (Figure 2B). The
approaches were in close agreement for wild-type cells and
control strains lacking axial [bud3A (Chant et al. 1991)],
distal [bud8A (Harkins et al. 2001; Schenkman et al. 2002;
Kang et al. 2004), and core [rsr1A (Park et al. 1997, 2002;
Kang et al. 2010)] bud-site-selection markers (Figure 2A).
Wild-type haploid cells showed a characteristic change in
budding pattern from axial to distal-unipolar budding when
grown in glucose-limited medium (Figure 2A) (Chant and
Pringle 1995; Cullen and Sprague 2002)]. The stel2A mu-
tant showed a 15% reduction in distal-unipolar budding,
and the ste20A mutant showed a 20% reduction (Figure
2A). Many cells retained distal-pole budding (60%), which
can account for the conclusion that the filamentous growth
MAPK pathway is dispensable (Chen and Thorner 2010).
Therefore, the filamentous growth MAPK pathway regulates
the change in polarity during filamentous growth. Other
signaling pathways probably also regulate the change in
budding pattern. Under this condition, the ras2A mutant
did not play a role (Figure 2A). The rsr1A mutant did not
show a completely random budding pattern, but retained
the propensity to bud at the distal pole. This may be due
to increased polarized growth of filamentous cells, which
bias bud-site-selection to the distal pole (Sheu et al. 2000;
Cullen and Sprague 2002). Disruption of the gene encoding
the formin Bnilp, which reduces the polarized growth of
filamentous cells (Cullen and Sprague 2002), conferred ran-
dom budding to the rsr1A mutant (Figure 2B, bnilA rsr1A).
The single-cell invasive-growth assay provides a conve-
nient measure of the changes in budding pattern and cell
length that occur during filamentous growth (Cullen and
Sprague 2000) and was used to examine mutants identified
in the screen. Most hyperinvasive growth mutants showed
hyperelongated morphology by the single-cell assay. Glu-
cose suppresses the filamentous morphology (Cullen and
Sprague 2000) and effectively suppressed hyperelongated
morphology and distal-pole budding pattern in all but two
hyperinvasive growth mutants, digIA and fus3A (Figure 2C).
These mutants regulate the filamentous growth MAPK path-
way; thus, a hyperactive filamentous growth MAPK pathway

can bypass the inhibition of cell elongation and distal-pole bud-
ding induced by growth of cells in high-glucose environments.

Other hyperinvasive growth mutants showed hyperelon-
gated cell morphology (Figure 2D and Figure S2). A subset
of these were dependent on Ste12p for invasive growth and
morphology (Figure S3, A and B). Not all mutants showed
Ste12p dependence (Figure S3), which might reflect a role
for these proteins in regulating filamentous growth outside
the MAPK pathway. Hypoinvasive growth mutants were sim-
ilarly examined. Most hypoinvasive growth mutants, like the
ste]12A mutant, showed a defect in unipolar budding and
cell elongation (Figure 2E and Figure S2). Similarly, a subset
of mutants showed defects in distal-pole budding (Figure
2F). Whereas no mutant was completely defective, several
(like the ste]2A mutant) showed minor differences. It is
possible that distal-pole budding during filamentous growth
results from the additive contribution of multiple pathways.
Therefore, the budding pattern and single-cell analysis cor-
roborated a role for many of these proteins in regulating the
filamentous growth MAPK pathway.

Functional analysis of candidate genes and pathways

The genes identified by the screen and directed gene deletion
analysis were classified by GO annotation terms for biologi-
cal process, cellular compartment, and molecular function
(Ashburner et al. 2000). Genes were also overlaid onto known
protein and genetic interaction maps (Uetz et al. 2000; Drees
et al. 2001; Ho et al. 2002; Miller et al. 2005; Costanzo et al.
2010). As a result, the genes were found to comprise func-
tional categories that were explored in detail below (Figure 3).

A subset of Ras2p pathway regulators was found to reg-
ulate the filamentous growth MAPK pathway. These include
Ras2p (Mosch et al. 1996), the alternative GEF Sdc25p
(Damak et al. 1991; Jones et al. 1991), the phosphodiester-
ase Pde2p, and PKA subunit Tpk2p (Figure 3A; Chavel et al.
2010). Tpk2p regulates the transcription factor Flo8p
(Robertson and Fink 1998) and negatively regulates the tran-
scriptional repressor Sfl1p (Conlan and Tzamarias 2001; Pan
and Heitman 2002). Flo8p and Sfll1p were identified by the
screen (Figure 3A). Sfllp-interacting proteins Ssn8p and
Nut1p are required for Sfl1p to carry out its role as a transcrip-
tional repressor (Conlan and Tzamarias 2001) and were iden-
tified by the screen (Figure 3A). Ccr4p, a component of the
Ccr4p-NOT deadenylase complex, which is an effector of
Tpk2p (Lenssen et al. 2002) and target of the MAP kinase
Kss1p (Fasolo et al. 2011) was also identified.

The screen uncovered components of the chromatin remod-
eling complex Rpd3p(L) (Figure 3B, Ashlp, Sap30p, Umelp,

of hyper- and hypoinvasive growth mutants are listed at right in reference to strains lacking a positive (ste?7A) and negative (dig7A) regulator. (C)
Mutants showing elevated pFRE-lacZ expression and hyperinvasive growth. B-Galactosidase assays were performed in at least duplicate. Blue bar, wild-
type control strain; red bars, mutants tested. Values are expressed in Miller units (U). Error bars represent standard deviation between independent trials.
P-values and raw data provided in Table S3. (D) Mutants showing reduced pFRE-lacZ expression and reduced invasive growth. Blue bar, wild-type
control strain; green bars, mutants tested. See C for details. The pFRE-lacZ activity of the kss7A did not fall within the 1.5-fold cutoff but is shown as

a reference.
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Figure 2 Role of filamentous growth MAPK pathway regulators in bud-site selection and filament formation. (A) Bar graph, the percentage of cells
exhibiting distal (blue), equatorial (red), or proximal (black) budding pattern. Left column: assignment based on visual inspection. Right column:
assignment based on fluorescence microscopy. (B) Example of cells costained with FITC/TRITC-ConA. Top: wild-type cells. Bottom left: the ste20A
mutant. Bar, 5 um. Bottom right: cartoon representing budding cells. D, distal; P, proximal. (C) Single-cell assay shows hyperpolarized growth and distal-
pole budding pattern of the fus3A and dig7A mutants in medium containing 2% glucose (HIGH GLU). Bar, 20 wm. (D) Single-cell assay of select
hyperinvasive growth mutants. Cells were grown on S-GLU (-GLU) medium at low density for 16 hr and photographed at 100X. Bar, 20 wm.
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Ctiép, Pho23p, and Rxt3p; Rpd3p, Sin3p, Rxt2p, and Sds3p
were previously identified; Chavel et al. 2010). The ELP com-
plex regulates the filamentous growth MAPK pathway (Figure
3C; Abdullah and Cullen 2009; Elp2p, Elp6p, 1ki3p, Ktil2p).
The screen identified members of the ELP complex (Figure 3C,
Elp3p, 1ki3p, and Elp4p). Thus, the screen was effective at
identifying regulatory connections to the filamentous growth
MAPK pathway and supports the idea that the Ras2p path-
way, Rpd3p(L), and ELP are major regulators of the filamen-
tous growth MAPK pathway.

The screen identified the cyclin-dependent kinase Pho85p
(Figure 3, D and I-K and Figure S1) (Measday et al. 1997
Huang et al. 2002, 2007; Shemer et al. 2002; Moffat and
Andrews 2004). Loss of cyclins Pcl1p, Pcl2p, and Pcl9p, and
the triple pcl1A pcl2A pcl9A mutant, showed no defect in
filamentous growth MAPK pathway activity (Figure 3D and
Figure S1), whereas loss of Pho80p, the cyclin responsible for
environmental responses controlled by Pho85p (Liu et al.
2000), showed reduced filamentous growth MAPK pathway
activity (Figure 3D). Deletion of the transcription factor PHO2
(Kaffman et al. 1994; O'Neill et al. 1996; Liu et al. 2000)
showed reduced filamentous growth MAPK pathway activity
(Figure 3D).

Several proteins and pathways were not identified by the
screen but were shown to regulate the filamentous growth
MAPK pathway by direct testing. These may have been missed
by the screen for several reasons. One is that they were not
represented in the collection. This was true for components of
Rpd3p(L), including tod6A and ume6A. A second reason is
that the pathways may play a conditional role in regulating
the filamentous growth MAPK pathway. For example, the
Ras2p pathway does not constitutively regulate the filamen-
tous growth MAPK pathway (Figure S4), which complicated
assessment of the roles of Flo8p and Tpk2p. A third reason is
that phenotypes may have fallen below threshold of statistical
significance applied to the data (e.g., tpk2A, rim101A, kssIA,
opy2A, rim9A, dfgl6A, rim13A, rim8A, umelA; Table S3).

Components of the Rim101p pathway were found to regu-
late the filamentous growth MAPK pathway (Figure 3E, Chavel
et al. 2010). Nrglp and Nrg2p (Lamb and Mitchell 2003) did
not regulate the filamentous growth MAPK pathway (Figure
3E). The lipid regulatory transcription factor Opilp (Greenberg
et al. 1982) regulates the filamentous growth MAPK pathway
(Chavel et al. 2010). The serine esterase Ntelp, which serves
as the phospholipase B of yeast (Fernandez-Murray et al. 2009)
was also found to regulate the filamentous growth MAPK path-
way (Figure 3F). Ncrlp, which regulates sphingolipid biosyn-
thesis (Malathi et al. 2004) and has not been shown to interact
with Opilp or Ntelp genetically or physically, negatively reg-
ulated the filamentous growth MAPK pathway.

The RTG pathway regulates the filamentous growth
MAPK pathway (Figure 3G, Chavel et al. 2010). The screen

did not identify this pathway but did uncover proteins that
influence mitochondrial function (Figure 3G). A main target
of RTG is aconitase (Liu and Butow 1999), an enzymatic
component of the TCA cycle necessary to generate a-keto-
glutarate, a precursor in glutamate biosynthesis (Magasanik
and Kaiser 2002). Acolp positively regulated the filamen-
tous growth MAPK pathway (Figure 3G). Rtg2p is also
incorporated into the histone-acetyl transferase (HAT) com-
plex SLIK, with the HAT Gen5p as its catalytic component
(Pray-Grant et al. 2002). Deletion of GCN5 reduced filamen-
tous growth MAPK pathway activity (Figure 3G). Nprlp, a ki-
nase that stabilizes amino acid transporters at the membrane
(De Craene et al. 2001) and is negatively regulated by the
TORC1 complex (Schmidt et al. 1998), was found to posi-
tively regulate the filamentous growth MAPK pathway.

The above analysis accounted for nearly half the proteins
identified by the screen and involved the Ras2p, Rpd3p(L),
ELP, Opilp, Rim101p, RTG, and Pho85p pathways. The
remaining proteins represent new connections to the fila-
mentous growth MAPK pathway. These included proteins
that regulate transcription [including components of the
THO complex and chromatin remodeling proteins that are
separate from Rpd3p(L)], protein transport and trafficking
(including components of the signal recognition complex,
SRP), protein translation, prefoldin, metabolism, sporulation,
the cytoskeleton, post-translational modification, and genes
whose functions remain to be characterized (Figure 3H).

Although it is not clear how these pathways regulate the
filamentous growth MAPK pathway, the majority of regu-
lators tested did not influence the activity of the mating
pathway (Figure S5) or the HOG pathway (Figure S6A),
although a HOG pathway reporter p8XCRE-lacZ was mod-
estly induced in some hyperinvasive growth mutants (Figure
S6B). These pathways share components with the filamen-
tous growth MAPK pathway (Chen and Thorner 2007; Saito
2010; Saito and Posas 2012). Thus, it would appear that
these factors by and large play a specific role in regulating
the filamentous growth MAPK pathway. We previously
showed that many pathways converge on the expression
of the MSB2 promoter (Chavel et al. 2010). Perhaps these
regulators regulate the filamentous growth MAPK pathway
in a similar manner.

Unregulated filamentous growth MAPK pathway
activity is detrimental to invasive growth and
proper morphogenesis

It is not entirely clear why the regulation of the filamentous
growth MAPK pathway is so extensive. One possibility is that
the activity of the filamentous growth MAPK pathway may be
adjusted to that of other pathways that regulate filamentous
growth. Coordination of morphogenetic pathways that regu-
late cell-cycle progression and cell polarity might be critical,

Representative microcolonies are shown; other examples are in Figure S2. (E) Single-cell assay of select hypoinvasive growth mutants. Bar, 20 wm. Other
mutants are shown in Figure S2. (F) Budding pattern analysis of hypofilamentous growth mutants indicated. Scoring system is the same as in A.
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Figure 3 Functional classification of filamentous growth MAPK pathway regulators. Genes identified by the screen (Figure 1, C and D) or by hypothesis-
based testing (Figure S1) are shown according to their established roles in pathways or protein complexes. Lines refer to functional connections. Green,
positive regulator; red, negative regulator; gray, no phenotype; and white, not tested. (A) The Ras2p—cAMP-PKA pathway; (B) Rpd3p(L) chromatin
remodeling complex (Table S3); (C) the ELP complex; (D) the Pho85p-Pho80p pathway; (E) the Rim101 pathway. (F) Lipid biosynthesis; (G) the RTG
pathway and proteins associated with mitochondrial function; and (H) Functional classification of other proteins. (I) Plate-washing assay for pho85A
mutant alongside controls. (J) Single-cell assay for the pho85A mutant alongside controls. Scraped refers to cells scraped from an invasive scar. (K) FUST—

HIS3 reporter activity for the pho85A mutant alongside controls.

for example, for proper growth. To test this possibility, the
activity of the filamentous growth MAPK pathway was
genetically separated from other regulatory pathways using
gain-of-function alleles and by driving expression of pathway
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regulators with inducible promoters. Hyperactive alleles of
MSB2 (Cullen et al. 2004), SHOI1 (Vadaie et al. 2008), and
STE11 (Stevenson et al. 1992) were examined. In addition,
overexpression of pathway components was assessed with
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the strong inducible promoter (pGAL; Longtine et al. 1998).
Preliminary observations with these strains showed that
hyperactivation or overexpression of Sholp or Msb2p did
not induce hyperinvasive growth but rather caused a reduction
in invasive growth (Figure 4A). Microscopic examination showed
that the cells had morphological defects (Figure 4, B-D).

To further explore this question, cell-polarity markers for
the mother-bud neck (with the septin Cdc12p-GFP) and the
cytoskeleton (with rhodamine phalloidin, which stains actin)
were examined in these mutants. Septin staining showed
defects in cytokinesis (Figure 4B). Actin staining showed irreg-
ular patterns, with polymerized actin at multiple surface sites
on the plasma membrane (Figure 4C, File S1, and File S2).
Moreover, the localization of polarity control proteins, Sholp
and Cdc24p, were localized to aberrant structures in these
mutants (Figure 4D). The prevalence of these phenotypes var-
ied among the mutants tested and ranged from ~10% irregu-
lar morphologies for the STE11-4 mutant to >90% irregular
cells in the GAL-MSB2 GAL-SHO1 mutant. Prolonged overex-
pression of SHOI resulted in growth defects (not shown).
Equivalent morphologies were observed in other mutants that
exhibited filamentous growth MAPK pathway hyperactivation

MSB2 A100-818

GAL-MSB2 GAL-SHO1

Wild type (-GLU) (S-GAL)

i -1)‘ 3
v' ,

STE11-4 (-GLU)

o (SS
i o
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Figure 4 Overexpression/hyperactivation of pathway components does not enhance filamentous growth. (A) Plate-washing assay was performed for
the indicated strains on YEP-GAL. GAL-MSB2 and GAL-SHO1 strains where the GALT promoter has replaced the native promoter. MSB22700-818 js
a hyperactive allele of MSB2. (B) Septin staining. Strains containing the pCdc12p-GFP plasmid were grown on SCD or S medium lacking glucose. Bar,
5 um. (C) Indicated strains were stained with rhodamine phalloidin. Bar, 5 pm. (D) Colocalization of Sho1p and Cdc24p in cells carrying a hyperactive
allele of MSB2. Bar, 5 pm.

(not shown). However, these phenotypes stood out from most
of the hyperfilamentous growth mutants identified in the
screen, possibly because pGAL-driven and hyperactive proteins
have higher pathway activity. Therefore, hyperactivation of the
filamentous growth MAPK pathway causes problems with nor-
mal cell morphogenesis. A likely explanation for this phenotype
is that it results from that pathway’s critical roles in cell-polarity
and cell-cycle control. Therefore, coordination of the activity of
the filamentous growth MAPK pathway may be necessary not
only to promote a coherent filamentation response but also to
maintain proper cell growth.

Pathways that regulate filamentous growth control
each other’s targets

The filamentous growth MAPK pathway may be the terminal
pathway at which many pathways converge. An alternative
possibility that has not been explored is that many of the
pathways that regulate filamentous growth may also regu-
late each other’s activities. To test this possibility; transcriptional
targets of several of the major pathways that regulate filamen-
tous growth were evaluated in a panel of pathway mutants by
gPCR analysis and/or transcriptional reporters. NRGI and SMP1
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were selected as targets of the Rim101p pathway, which are
downregulated by that pathway and upregulated in that mutant
(Lamb and Mitchell 2003); PHOS5, which is downregulated by
the Pho85p pathway and upregulated in the mutant (Kaffman
et al. 1994); CIT2, which is a target of the RTG pathway
(Rothermel et al. 1995); and INO1, which is downregulated by
the lipid/Opilp pathway (White et al. 1991). qPCR and/or lacZ
analysis was performed in mutants lacking the major filamenta-
tion control pathways (ras2A, ntelA, sin3A, elp2A, stel2A,
rim101A, pho85A, rtg2A, flo8A, and opilA). With the excep-
tion of Opilp/INO1, each pathway regulated the expression
of its own target (Figure 5, A-D). Many pathways similarly
influenced the expression of each other’ targets. For example,
INO1’s expression was upregulated in the ntelA, sin3A, elp2A,
rim101A, rtg2A, and flo8A mutants (Figure 5A). Thus, in
some manner, the Ntelp, Sin3p, Epl2p, Rim101p, Rtg2p,
and Flo8p proteins contribute to the coregulation of a lipid
pathway target. Similar results were found for PHOS5 (Figure
5B), SMP1 (Figure 5C), and NRGI (Figure 5D). Several path-
ways were also found to regulate the RTG pathway, including
Ras2p and ELP, based on CIT2-lacZ reporter (Figure S7). DNA
microarray analysis previously identified a major transcrip-
tional target of the filamentous growth MAPK pathway as
the gene encoding Rim8p, a component of the Rim101p path-
way (Chavel et al. 2010), and we confirmed that the filamen-
tous growth MAPK pathway contributed to RIM8 expression
by gPCR analysis (data not shown). These results indicate that
a subset of the major pathways that regulate filamentous
growth regulate at least one of each other’s key targets.

The mechanisms by which such regulation occurs is not
clear and may occur through diverse means such as pathway-
to-pathway connections or the modulation of transcription
factors that serve as master regulators of signaling outputs.
Moreover, not all of the possible regulatory connections were
observed. For example, the filamentous growth MAPK path-
way does not appear to regulate Ras2p—cAMP-PKA (Chavel
et al. 2010) or the RTG pathways (Figure S7). Nevertheless,
the results are striking from the perspective that each arrow
represents in principle a regulatory connection that occurs be-
tween two pathways (Figure 5E).

Discussion

Cell differentiation involves the combined action of many
different proteins and pathways. How multiple signals become
integrated into a cohesive response is an important biological
problem that in many cases remains unclear. Here, we explore
the question of signal integration by identifying, from a global
perspective, regulators of the MAPK pathway responsible for
controlling differentiation to the filamentous cell type. Using
a genetic screen and direct testing, we identify >95 proteins that
when absent influence the activity of the filamentous growth

MAPK pathway. This number likely represents an underestimate
because the screen was not saturating and because a rigorous
statistical cutoff was used to establish regulators. In addition, the
screen was performed under a single condition where some
pathways and complexes may not be required. A conservative
estimate is that >35% of the major regulators of filamentous
growth regulate the activity of the filamentous growth MAPK
pathway.

One consequence of these regulatory connections is to
sensitize MAPK activity to different stimuli. Many of the major
nutrient-regulatory pathways in yeast, such as TOR (Bruckner
et al. 2011), Snflp (Karunanithi and Cullen 2012), Ras2p (this
study; Mosch et al. 1996; Chavel et al. 2010), and RTG (this
study; Chavel et al. 2010) impinge on the activity of the filamen-
tous growth MAPK pathway. We also show that pathways that
sense and respond to diverse stimuli, such as pH (Rim101p) and
other environmental stimuli (Pho85p) also regulate the filamen-
tous growth MAPK pathway. The connection between Pho85p
and the filamentous growth MAPK pathway is particularly rele-
vant as Pho85p has been shown in C. albicans to be required for
temperature-dependent filamentation (Shapiro et al. 2012).

A second reason that the filamentous growth MAPK
pathway is extensively regulated might be to coordinate its
activity with other pathways that regulate the same response.
In this way, the MAPK-dependent changes to budding pattern,
the cell cycle, and cell adhesion can be tuned to the global
network. Hence, multiple pathways can tap into these major
regulatory events (instead of each pathway making changes
directly). The filamentous growth MAPK pathway regulates the
change in budding that occurs during filamentous growth.
Mutants that reduce pathway activity (ste20 and ste12) show
a decrease in distal-pole budding, and mutants with elevated
pathway activity (dig! and fuis3) show an increase in distal-pole
budding, even under high-glucose conditions. Given that mul-
tiple pathways regulate distal-pole budding, it is likely that the
role of the filamentous growth MAPK pathway may be as sig-
nificant as the contributions of other pathways. We show that
unregulated filamentous growth MAPK pathway activity is det-
rimental to proper morphogenesis and cell growth.

We also show that extensive cross-regulation occurs
among several of the pathways that regulate filamentous
growth. Our study highlights a degree of signal integration
that has not been previously appreciated. The qPCR per-
formed here (Figure 5) was under conditions in which the
filamentous growth MAPK pathway is activated (e.g., poor
carbon sources, like galactose). The network described in
Figure 5A was examined under a single growth condition.
It is possible that other connections between pathways were
missed if they occur under a condition that was not tested.
Genetic buffering between the pathways may obscure con-
nections. Similarly, loss of one pathway may or may not
induce loss of the filamentous growth phenotype. The ways

deviation between experiments. Cells were grown to midlog phase in YEP-GAL media for 6 hr. (E) Diagram showing connections between pathways
that regulate filamentous growth. Arrows refer to positive regulation. Bars, negative regulation.
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by which this regulation is accomplished is not clear. Mul-
tiple pathways could feed into a central metabolite or small
molecule (cAMP) that regulates a master regulatory tran-
scription factor, from which multiple filamentation targets
are controlled. Indeed, transcriptional “hub” proteins glob-
ally regulate filamentous growth (Borneman et al. 2006).
At least one connection may be direct. RIM8 is a major
target of the filamentous growth MAPK pathway (Chavel
et al. 2010). As not all pathways regulate each other’s tar-
gets, the connections between the pathways are presum-
ably specific.

In conclusion, filamentous growth results from a highly
coordinated and integrated signaling network. A single
MAPK pathway regulates filamentous growth, which is
controlled by many different pathways to integrate various
signals and coordinate the response. Signal integration is
commonly seen in similar differentiation responses in higher
eukaryotes, where multiple stimuli activate an intercon-
nected set of signaling pathways (Cuenda and Rousseau
2007; Katz et al. 2007; Raman et al. 2007). Perhaps the
connections identified here extend to related pathways in
other systems.
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Figure S1. Evaluation of candidate regulators of the filamentous growth MAPK pathway by the plate-washing
assay and cross-talk reporter (FUSI-HIS3). Wild type and control strains and the indicated mutants were spotted on
to YEPD, SD-HIS, and SD-HIS + 2.5 mM ATA and incubated for 2d. No growth on SD-HIS indicates a defect in
filamentous growth MAPK pathway activity. Growth on SD-HIS + 2.5 mM ATA indicates elevated filamentous
growth MAPK pathway activity. YEPD plates were photographed, washed in a stream of water to reveal invaded cells,

and photographed again (Washed).
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Figure S2. The role of filamentous growth MAPK pathway regulators in filament formation by the single cell
invasive growth assay. Wild-type strain and the indicated mutants were grown on S-GLU medium for 16 hr and

photographed at 100X. Bar, 20 microns.
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Fig. S3. Suppression of hyper-invasive growth phenotypes of mutants identified in

the screen by deletion of STE12. A) Wild-type and ste/2A mutant combinations as

indicated were examined by the plate-washing assay, or in B) by the single cell assay.

Bar, 30 microns. The mcy! mutant may contain a second mutation based on retesting.
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Figure S4. Role of Ras2p and Tpk2p in conditional regulation of the filamentous growth MAPK pathway. A)
The plate washing assay on YEP-GAL medium of wild-type cells, and the stel2A, ras2A, and stel2A ras2A double

mutants. B) Single cell assay of the ras2A and fpk2A mutant. Bar, 20 microns.
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Figure S5. Specificity of filamentous growth MAPK pathway regulators in the mating pathway. Wild type and

mutants were grown to saturation, diluted and top spread onto YEPD plates and 10 pl of 1pg/ul a-factor was added to

four separate locations on the plate. Changes in halo size reflect altered mating pathway activity.
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Figure S6. Specificity of filamentous growth MAPK pathway regulators in the HOG pathway. A) Wild type and
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indicated mutants were spotted on YEPD, YEPD + 1M KCIl, SD + AA, and SD + AA + 1M KCI and grown for 2d. B)
Level of p8X-CRE-lacZ activity in selected mutants that show filamentous growth MAPK pathway hyper-activation.

Strains were grown in YEPD for 6 h then shifted to YEPD + .4M KClI for 30 min.
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Figure S7. The filamentous growth MAPK pathway does not regulate the RTG response. A) Strains were spotted
onto plates containing 6.7% Yeast Nitrogen Base without amino acids and supplemented with uracil with or without
glutamate. Glutamate auxotrophy reflects a defective RTG pathway. B) CIT2-lacZ analysis of selected mutants. 8-

galactosidase assays were performed in duplicate; error bars represent standard deviation between samples.



Files S1-S2

Available for download as .mov files at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.168252/-/DC1

File S1 Serial Z-stack images of rhodamine phalloidin stained wild-type cells grown for 16h in S-GLU.

File S2 Serial Z-stack images of rhodamine phalloidin stained MSB2* cells grown for 16h in S-GLU.
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Tables S1-S3

Available for download as Excel files at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.168252/-/DC1

Table S1 Analysis of invasive growth mutants for a role in filamentous growth MAPK pathway regulation. References for
previously identified regulators of filamentous growth not identified in the text are as follows: (Liu et al. 1993; Gimeno and
Fink 1994; Stevenson et al. 1995; Ward et al. 1995; Gavrias et al. 1996; Lorenz and Heitman 1997; Mosch and Fink 1997;
Tedford et al. 1997; Ramezani Rad et al. 1998; Entian et al. 1999; Gagiano et al. 1999; Johnson 1999; Kobayashi et al. 1999;
Conte and Curcio 2000; Pan and Heitman 2000; Harashima and Heitman 2002; Kohler et al. 2002; Laprade et al. 2002; Smith
et al. 2002; Breitkreutz et al. 2003; Bao et al. 2004; Wu and Jiang 2005; Bester et al. 2006; Bhattacharyya et al. 2006; Ishigami
et al. 2006; Frydlova et al. 2007; Tiedje et al. 2007; Valerius et al. 2007; Fidalgo et al. 2008; Kim and Siede 2011; Laxman and
Tu 2011; Lo et al. 2012; Vandenbosch et al. 2013).

Table S2 Analysis of invasive growth and colony morphology.

Table S3A Activity of the FRE-lacZ reporter in mutants that show hyper-filamentous growth. (See sheet 2 for FRE-lacZ
analysis of hypo- filamentous growth mutants).

Table S3B Activity of the FRE-lacZ reporter in mutants that show hypo-invasvie growth. (See sheet 1 for FRE-lacZ analysis of
hyper-filamentous growth mutants).
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