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ABSTRACT Rare genetic variants have recently been studied for genome-wide associations with human complex diseases. Existing rare
variant methods are based on the hypothesis-testing framework that predefined variant sets need to be tested separately. The power
of those methods is contingent upon accurate selection of variants for testing, and frequently, common variants are left out for
separate testing. In this article, we present a novel Bayesian method for simultaneous testing of all genome-wide variants across the
whole frequency range. The method allows for much more flexible grouping of variants and dynamically combines them for joint
testing. The method accounts for correlation among variant sets, such that only direct associations with the disease are reported,
whereas indirect associations due to linkage disequilibrium are not. Consequently, the method can obtain much improved power and
flexibility and simultaneously pinpoint multiple disease variants with high resolution. Additional covariates of categorical, discrete, and
continuous values can also be added. We compared our method with seven existing categories of approaches for rare variant mapping.
We demonstrate that our method achieves similar power to the best methods available to date when testing very rare variants in small
SNP sets. When moderately rare or common variants are included, or when testing a large collection of variants, however, our method
significantly outperforms all existing methods evaluated in this study. We further demonstrate the power and the usage of our method
in a whole-genome resequencing study of type 1 diabetes.

WITH recent advances in sequencing technologies
(Shendure and Ji 2008), genome-wide association

studies (GWAS) for complex diseases have included both
rare and structural variants for association mapping. Individuals’
genomes carry many more rare as opposed to common variants
in the human population. Rare variants are more likely to be the
mutations under selection and their effects could potentially
explain a portion of the missing heritability in complex diseases
(Bodmer and Bonilla 2008; Schork et al. 2009). Identifying
disease-associated rare variants at a large scale, however, is
statistically challenging. Evaluating the effects of individual rare
mutations to the disease risk is powerless due to their low
frequency in the population, for which tens of thousands or
even hundreds of thousands of individuals may be needed
to obtain sufficient statistical power.

An alternative approach is to simultaneously test the effects
of multiple rare variants to accumulate sufficient statistical
power in limited samples. Many burden tests (Morgenthaler
and Thilly 2007; Li and Leal 2008; Pan 2009; Madsen and
Browning 2009; Price et al. 2010; Morris and Zeggini 2010;
Han and Pan 2010; Zawistowski et al. 2010) have been
developed following this type of approach, which test the
cumulative effects of an entire set of SNPs. Burden tests are
powerful when most rare variants under testing have the
same direction of effects to the disease risk, but are otherwise
less effective when some of the variants have opposite effects
and/or if most of the variants under testing are not contributing
to the disease risk (Neale et al. 2011; Basu and Pan 2011).
Depending on how minor alleles are accumulated into a set,
some burden tests could also produce seriously inflated false
positives and lose power due to potential correlation among
variants. To overcome the limitation of burden tests, random-
effect variational methods (Wu et al. 2011; Lin and Tang 2011)
have been recently proposed to detect association of rare variants
with opposite effects allowing most variants in a set to have near
zero or no effects. The random-effect models achieve power by
evaluating the variance of the estimated disease effects of
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multiple rare variants, but not testing the mean effect size.
Complementary to the burden tests, the variational effect
models are powerful when the effects of rare variants have
opposite signs and are small, but do not perform as well when
most variants in a set have effects in the same direction. Given
that we do not know which of the two scenarios is more likely
in human complex diseases, or if both occur simultaneously,
the two types of approaches were recently merged to improve
power (Lee et al. 2012).

Despite a large number of rare variant testing methods
developed to date, almost all of them perform hypothesis testing
on predefined SNP sets. There are several limitations of such
approaches. First, only the predefined sets of SNPs can be tested
for associations, whereas improperly defined sets containing too
many nondisease variants will result in loss of power. Second,
each test is carried out independently without accounting for the
correlation between tests. Tests are correlated not only because of
linkage disequilibrium (LD) among SNPs, but also because the
SNP sets under testing may overlap. SNP sets are often defined
based on biological knowledge (e.g., genes and pathways), the
sizes of which vary considerably. There are substantial overlaps in
gene/pathway annotations, yet few existing methods can handle
overlapping or nested tests properly. Third, many methods work
well only for rare variants. It requires ad hoc choices of how “rare”
a variant needs to be to be tested. The variants with minor allele
frequency (MAF) above a threshold will be left out without
testing, or tested separately, which reduces power. Most current
rare variant methods follow the single-“variant”-test paradigm
that was conventionally used in GWAS, except that a variant is
now a set of SNPs rather than a single SNP. As a result, current
rare variant methods inherit the same drawbacks as those ex-
perienced in single SNP tests.

To tackle the above-mentioned limitations for rare variant
mapping, we propose a new approach based on statistical
variable selection, i.e., a joint model for selecting “variables”
from all rare and common variants. The new method is gener-
alized from our previously developed method called BEAM3
(Zhang 2011) for common variants. In the newmethod, a vari-
able can be either a single SNP or a set of SNPs. The newmethod
retains most advantages of the joint modeling approaches for
GWAS and simultaneously works for rare variants. In particular:

1. The method alleviates the need of accurate preselection
of SNP sets for rare variant testing by dynamically group-
ing the predefined SNP sets for joint testing.

2. The method handles correlation among sets of SNPs via
Bayesian graphical models, such that indirect disease asso-
ciations purely due to correlation with “true” disease var-
iants are filtered out. Unlike typical solutions that model
the dependence structure of all variables, our approach
handles dependence implicitly and locally. While the
former is computationally prohibitive in GWAS, the lat-
ter can satisfactorily resolve the dependence issue with
drastically reduced computation time.

3. With dependence accounted for, the method pinpoints
the most likely subsets of disease variants within local

regions, such that the method achieves much improved
mapping resolution than existing tools.

4. The method handles both common and rare SNPs with-
out arbitrary separation. We allow SNPs to be represented
in both forms of a single unit (to test the effect of itself)
and as part of a group of SNPs (to test its group effect
jointly with other SNPs). More generally, the method is
flexible in that it allows the users to group SNPs with
overlaps. Our method analyzes all SNP sets and their com-
binations in a joint Bayesian probabilistic model, where
the best SNP sets associated with the disease are automat-
ically selected and the multiplicity issue is handled via
Bayesian priors.

An illustration of the framework of our method is shown
in Figure 1. Each shaded circle in the figure represents a user-
defined set of SNPs. Each set of SNPs may contain one or
multiple SNPs. Each SNP may also appear in multiple sets.
The size of each shaded circle is proportional to the number
of SNPs contained in the set. Existing approaches are designed
to test each set of SNPs separately without considering their
joint distributions. In contrast, we model the joint distribution
of all SNP sets and use Bayesian graphical models to identify
the best combinations of SNP sets for testing their joint asso-
ciations with the disease. In Figure 1, some SNP sets are se-
lected to form nodes (open circles) in the graph if they are
associated with the disease. The connectivity between nodes
suggests joint disease association between pairs of nodes. For
the example in Figure 1, SNP sets in nodes X1 and X2 are
associated with the disease independently, SNP sets in the
pairs of nodes (X3, X4) and (X3, X5) are associated with the
disease jointly, and the association of SNP sets in X4 and X5
are conditionally independent given X3. Using a Monte Carlo
Markov chain (MCMC) algorithm, we dynamically explore

Figure 1 Illustration of the model principle. Predefined SNP sets (shaded
circles) are in different sizes. A graph is used to identify SNP sets (included
in nodes, open circle) that are associated with the disease, either by itself
or jointly with other SNP sets. Connectivity between nodes further com-
bines selected SNP sets from pairs of nodes for joint testing. The SNP sets
to be selected in the graph and the graph structures are both learned
from the data.
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combinations of SNP sets to maximize the power of association
mapping, and we learn the disease association structure via
Bayesian graphs.

Our method evaluates the association between a SNP set
and the disease traits using a Bayesian regression model. In
a regression framework, covariates such as environmental
factors, individual factors, and population structure components
can be incorporated to account for confounding effects. Different
from conventional regression models, our regression inversely
models the distribution of genotype data on the disease traits.
This inverse modeling has several advantages: (1) genotype
distribution is relatively simple to model, whereas disease
traits may follow any distribution; (2) direct associations with
the disease can be effectively distinguished from indirect
associations (due to SNP correlation) by explicitly modeling
the joint distribution of genotypes at multiple SNPs; and (3)
we can detect genetic effects on the variation or high-order
moments of the disease traits by including interaction terms,
and we can also include multivariate traits.

Using data from the 1000 Genomes project (1000 Genomes
Project Consortium 2010), we performed extensive simulation
studies to evaluate the power of our method compared to six
sets of existing rare variant methods (Pan 2009; Price et al.
2010; Neale et al. 2011; Wu et al. 2011; Lee et al. 2012; Ionita-
Laza et al. 2013) and a single SNP test method (Conneely and
Boehnke 2007). We show that the new method performs simi-
larly to the best rare variant methods when testing only a handful
number of very rare variants. The method, however, performs
better and sometimes substantially so, when moderately rare or
common variants are included and/or when the disease variants
are not randomly distributed in a predefined genomic interval for
testing. In addition, when testing associations in a large collection
of variants, which is the common scenario in practice, our
method substantially outperforms existing methods. Beyond set-
based tests, the new method further reveals the locations of the
most likely disease variants via Bayesian variable selection. We
demonstrate an application of our method to a whole-genome
resequencing data set generated in our laboratory from 97 type
1 diabetes (T1D) patients, where we handled sample stratifica-
tions and identified novel T1D loci.

Materials and Methods

The general model framework

Let Y = (Y1,. . .,Yp) denote the disease data measured on p
traits, where Yj for j = 1,. . ., p is a n-dim vector containing
data in n individuals. Since we use Y as independent variables,
it may take any measurements such as discrete, continuous,
and categorical. Let X = (X1,. . ., XL) denote the genotype data
at L SNP sets (each SNP set may contain one or more SNPs;
i.e., each Xi could be a matrix by itself), and Z = (Z1,. . .,Zm)
denote additionalm covariates to be adjusted for their confound-
ing effects. Again, each Xl (l = 1,. . ., L) and Zk (k = 1,. . ., m)
contain data in n individuals. Our task is to identify a subset of
SNPs in X that are directly associated (not due to LD with other

genotyped SNPs) with at least one trait in Y, conditioning on Z.
Let XA and XU denote a nonoverlapping partition of SNPs, such
that XA include the SNPs directly associated with Y, XU denote
the remaining SNPs, and X = {XA, XU}. Let A denote the par-
tition. We write the joint probability

PrðX; Y ;Z;AÞ ¼  PrðXU jXA;Y ;Z;AÞPrðXAjY ; Z;AÞPrðY ;ZÞPrðAÞ
¼  PrðXU jXA;Z;AÞPrðXAjY ;Z;AÞPrðY ;ZÞPrðAÞ:

(1)

The second equality in (1) is due to our definition that XU is
not associated with Y conditioning on XA and Z (but XU could
be marginally associated with Y due to its LD with XA). This
is a major distinction between our method and existing
ones, as the latter do not distinguish the two.

Our goal is to identify the partition A, which relies solely on
Pr(XU|XA, Z,A)Pr(XA|Y,Z,A)Pr(A), which can be rewritten as

PrðXU jXA; Z;AÞPrðXAjY ; Z;AÞPrðAÞ
¼ PrðXjZÞ½PrðAÞPrðXAjY ; Z;AÞ=PrðXAjZ;AÞ�: (2)

Note that Equation 2 is proportional to the odds of XA against
Y conditioning on Z, along with a prior distribution of partition
A. We dropped A from the condition of probability function Pr
(X|Z) because the partition is irrelevant without disease infor-
mation Y. Therefore, we need only to compute the term within
the brackets in (2) to identify the partition A.

When the size of A is large, directly modeling Pr(XA|Y,Z,A)
and Pr(XA|Z, A) as multivariate distributions can be power-
less due to the quickly increasing size of model parameters.
Instead, we use undirected acyclic graphs (Zhang 2011) to
reduce model complexities. Let GA = (NA, EA) and GA9= (NA9,
EA9) denote the graphical structures of XAwith and without Y,
respectively, where a node (N) denotes one or a set of SNPs in
XA, and an edge (E) denotes “interactions” (joint association)
between the two nodes. We augment Pr(XA|Y,Z,A) in (2) to

PrðGA;XAjY ;Z;AÞ ¼ PrðGAÞPrðXAjGA; Y ;Z;AÞ
¼ PrðGAÞ

Y
a in NA

PrðXajGA; Y ; ZÞ
Y

a� a9 in EA

Pr
�
Xaþa9

��GA; Y ; Z
�.½PrðXajGA; Y ;ZÞPrðXa9 jGA; Y ; ZÞ�;

(3)

where “a in NA” denotes the enumeration of all nodes, and
a�a9 in EA denotes the enumeration of all edges. Similarly,
we write Pr(XA|Z,A) in (2) as

PrðXAjZ;AÞ ¼
X

G9
A
Pr
�
G9
A

�
Pr
�
XAjG9

A; Z;A
�
: (4)

The difference between (3) and (4) is that the graphs are
different, and we sum over G9

A in (4) as it is in the denom-
inator of the odds in (2). Plugging (3) and (4) back into (2)
[replace Pr(XA|Y,Z,A) in (2) by Pr(GA,XA|Y,Z,A) in (3)], we
use MCMC to learn the SNP partition A as well as the graph
GA, which we call a disease graph that further details the
joint association structures of the identified disease SNPs.

In this study, we choose simple prior distributions for
convenience. We assign each SNP set with equal probability
(p) to be included in XA, and hence the prior distribution of
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the size of A is Binomial(L, p). We use a Pitman–Yor process
(Pitman and Yor 1997) to further partition SNP sets in XA
into nodes in GA (and GA9), with strength parameter 0.5. We
use independent Bernoulli priors with probability 0.5 to in-
dicate the presence of an edge between each pair of nodes,
with constraint that the graph must be acyclic (for simplicity,
we ignore the difference in normalizing constants due to this
constraint, and such omission can be regarded as part of
a prior setup).

From (2), the model parameters to be updated by MCMC
include the SNP partition A and the disease graph GA (nodes
and edges). We show in the next section that additional param-
eters for modeling the data distribution can be analytically in-
tegrated out. As a result, after random initialization, our MCMC
algorithm works by iteratively adding/removing a SNP set in/
out of XA one at a time and, simultaneously, updating GA by
adding/removing a SNP set in/out of a graph node and adding/
removing an edge between two nodes. All these updating pro-
cedures are done via standard Gibbs samplers derived from (2),
details of which are omitted here but can be found in Zhang
(2011). Finally, enumerating all graphs in (4) can be time con-
suming for large size of A. For quick computation, we provide
the users with an option to enumerate only a subset of graphs
G9
A that shares the same structure as that of GA except for the

current SNP set to be updated; i.e., we enumerate only {G9
A:

G9
A;2i = GA,-i} in (4), where SNP set i is the set to be added/

removed from XA. This is an approximate solution that does not
yield the correct posterior distribution from (2). Empirically,
however, we found that this option produces very similar results
to that produced by the full model when the signals are not
extremely strong (as is the case in GWAS), but it results in
a dramatic reduction in computing time (Zhang 2011).

The rationale underlying our approach is to evaluate
whether a SNP set i (Xi) should be added into the disease
partition A, given those SNP sets already included in A and the
covariates Z. This is done by comparing probabilities (3) and
(4) for Xi_ during MCMC, where (3) represents the probability
that Xi is associated with Y conditioning on current XA and Z, and
(4) represents not associated. Note that (3) is a more complex
model (with more parameters) than (4) due to Y. Via Bayesian
priors, therefore, (3) tends to be smaller than (4) when Xi is not
associated with Y, and thus Xi tends not to be included in the
disease partition A. Also note that SNP dependence is modeled
via Bayesian graphical models in (4), which accounts for LD. As
a result, our method is able to distinguish direct disease associ-
ation from indirect association due to SNP correlation.

Bayesian regression for a set of variants

A major difference between the new method and the original
BEAM3 algorithm lies in the definition of the probability
functions Pr(Xa|GA,Y,Z,A) in (3) and Pr(Xa|GA,Z,A) in (4).
In BEAM3, we used a saturated multinomial distribution to
describe the genotypes in SNP set Xa, which works powerfully
for common SNPs, but not so much for rare variants because
there are many more rare variants to be tested together. It is
also analytically complicated to incorporate continuous values

of Y and covariates Z in a multinomial distribution. In the
new method, therefore, we model Pr(Xa|GA,Y,Z,A) and Pr
(Xa|GA,Z,A) by a multivariate regular Bayesian regression
function. Using conjugate priors, it is analytically easy to
compute and straightforward to incorporate any forms of
disease traits Y and covariates Z without model parameter
estimation.

Let Xa denote a (n3 q) response matrix of genotype data,
where n denotes the total number of individuals and q denotes
the number of SNPs to be tested in a set. By default, Xa con-
tains the minor allele counts (0, 1, 2) per individual per SNP.
Alternatively, a dummy coding for the three genotypes can be
used. Let Y be a (n3 p) predictor matrix of disease traits. Let Z
be a (n 3 m) matrix of covariates. Without loss of generality,
we assume that Xa, Y, and Z are all column centered. Our
regression model assumes that

Xa � N   ðYBþ ZC;  SÞ;

where B denotes a (p3 q) matrix representing the effects of Y
on SNPs in Xa, C denotes a (m 3 q) matrix representing the
effects of covariates, and S denotes a (q 3 q) covariance
matrix of noise.

Since our interest is only to identify SNP partitions,
whereas SNP effects can always be estimated in postanalysis,
we analytically integrate out the parameters (B, C, S). We
assume that B follows a matrix normal distribution MN(0, HB,
S), C follows another matrix normal distribution MN(0, HC,
S), and S follows an inverse Wishart distribution IW(C, n).
Here, HB = diag(c/q, q), HC = diag(h,m),C = Ιq, n = u/2+1
denote fixed hyperparameters. By default, we choose c= 0.01
and h= 1000. A small value of c penalizes on large magnitude
of the effects of disease Y, and a large value of h allows any
magnitude of the effects of covariates Z.

Let H= diag(HB, HC) denote a (p +m)3 (p +m) diagonal
block matrix carrying HB and HC along its diagonal, U = (Y, Z)
denote a n3 (p +m) matrix with Y and Z combined. Following
standard procedures, it is straightforward to show the following
conditional probability function with model parameters (except
for hyperparameters) integrated out

PrðXajGA; Y ; ZÞ ¼ 1

pnq=2
��Ipþm þ HU9U

��q=2
Gq

�½qþ n=2� þ 1
�

��Iq þ L
��ðqþnÞ=2þ1

Gqðq=2þ 1Þ

where L ¼ X9
a

�
In 2U

�
H21 þ U9U

�21
U9

�
Xa;

(5)

where Gq(.) denotes a multivariate Gamma function.
Using (5), we can further obtain the null function Pr(Xa|GA,

Z) by removing Y from U and modify the dimension parameters
for matrices accordingly. Finally, we plug (5) back into (3) and
(4), which completes the new model.

Our choice of the Gaussian regression form in (5) is mainly
due to its analytical simplicity. Not only is it convenient to
model SNP correlation and include covariates, but also its
closed-form marginal probability functions enable practical
computation of genome-wide data sets without estimating
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continuous parameters. The novelty of our method does not
lie in Equation 5. Instead, it lies in our joint modeling approach
defined in (2), the usage of Bayesian graphical models in (3)
and (4) for implicit modeling of SNP correlation, and the
Bayesian approach for integrating common and rare variants
via a joint probabilistic framework for testing their marginal
and joint effects. To our best knowledge, no other methods
have been able to achieve the same goals and simultaneously
being computationally feasible for large data sets.

Construction of SNP sets

When testing a single set of SNPs, Equation 5 can synergize
information of the disease effects in both directions, which is
similar to the existing variational methods. Our model further
dynamically explores combinations of SNP sets for joint testing
via MCMC. This is a variable selection procedure that is unique
compared to hypothesis testing. When a pathway involves
many genes, it is unclear whether it will be more powerful to
test all genes in the pathway or to focus on a subset of genes.
Using our method, the users can define each gene or a subset
of genes as a variable and then let the method explore
combinations of SNP sets for the most powerful association
mapping. Each gene often carries several SNPs, both common
and rare. It is unclear what is the best cutoff for “rare” variants
to be tested together. In our method, the users can define
a SNP as a variable by itself and simultaneously group the
SNP with others as a set. Our method then automatically
evaluates the individual effect and the group effect of the
same SNP simultaneously to maximize power.

The new method allows three ways to define sets of SNPs
ahead of the analysis:

1. As used by current rare variant methods, the users can
define SNP sets in genic regions based on biological
knowledge.

2. The users can input two cutoffs a1 # a2 and a parameter
d to define SNP sets, particularly for intergenic regions.
For SNPs whose MAF . a1, we define the SNP as a vari-
able by itself. For SNPs whose MAF , a2, we group them
together if they are within d SNPs away. Since a1 # a2,
SNPs with MAF between a1 and a2 will be evaluated for
both single and group effects. This approach creates
a buffer that effectively alleviates the need for a hard
and ad hoc threshold for defining common and rare var-
iants. To the extremes, when a1 = a2 = 0, all SNPs will
be tested individually; when a1 = a2 = 1, all SNPs will be
tested in sets; and when a1 = 0, a2 = 1, all SNPs will be
tested for both individual and group effects. By default,
we let a1 = 0.005, a2 = 0.05, d = 30.

3. The users can ask the method to hierarchically split large
SNP sets into smaller sets. For a predefined SNP set con-
taining many SNPs, we introduce k additional SNP sets
that are subsets of the original SNP set. If some of the k
new SNP sets still contain too many SNPs (greater than
a user-specified threshold), we split them further. As a re-
sult, the sets of SNPs to be analyzed will include (i) the

original large SNP set; (ii) the k subsets; and (iii) addi-
tional smaller subsets split hierarchically. This creates
new SNP sets in different sizes to be tested for associa-
tion, which increase the chance for the true disease var-
iants to be properly covered and detected with improved
power.

In summary, our method allows for greater flexibility
than existing methods in defining SNP sets, testing combi-
nation of SNP sets, evaluating both individual and group
effects, and testing both common and rare variants without
hard cutoffs. Also, SNP sets may overlap, where the correla-
tion among overlapping SNP sets is accounted for via
probabilities.

Data simulation

We used the phased haplotype data from the 1000 Genomes
project to generate simulated case control data sets in this
study. Using individuals with European origins, we gener-
ated new haplotypes as mosaic combinations of the 1000
Genomes haplotypes, with recombination rate 1 per 100 kb.
We then generated new individuals by randomly pairing the
new haplotypes. The data of each new individual contained
genotypes at L consecutive SNPs in a randomly chosen re-
gion. Among the L SNPs, we randomly selected x SNPs as
the disease variants. For a given disease model specified in
Results, we then generated cases and controls from the new
individuals according to the genotypes at the x selected SNPs.

Results

Simulation study in small data sets

We first performed simulation studies to evaluate the power
of our method (implemented in BEAM3) compared to seven
categories of existing methods on SNP sets that are small
enough (a few hundreds of SNPs) such that a single test can
be performed on all SNPs together. The methods we
compared with include (1) SKAT (Wu et al. 2011), SKAT-O
(Lee et al. 2012), and SKAT-C (Ionita-Laza et al. 2013),
which are kernel regression methods, and SKAT-C combines
effects of both rare and common variants; (2) MultiVar,
a standard multivariate score test (Wald test); (3) SSU
and SSUw (Pan 2009), unweighted and weighted sum of
squared scores; (4) Common, a standard regression assum-
ing same effect of all variants; (5) Single, a single SNP test
reporting minimum P-value adjusted by multiple testing cor-
rections (Conneely and Boehnke 2007); (6) C-alpha (Neale
et al. 2011), a homogeneity test of a set of Binomial propor-
tions; and (7) VT1-4 (Price et al. 2010), a regression method
subject to variable allele-frequency thresholds using four
different criteria. These methods employ very different
approaches and are good representatives of the current rare
variant mapping algorithms. All methods are capable of
detecting effects in opposite directions.

We simulated case control data sets under four disease
models. Each data set contains 1000 cases and 1000 controls
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at 300 SNPs. Among the 300 SNPs, 15 (5%) are selected as
disease variants. All models assume additive effects of the
disease variants, and the effect size of each disease variant is
given by l = p20.17472 1 (Wu et al. 2011), where p denotes
the MAF of the disease variant. For p = 0.3, 0.03, and 0.003,
the effect size is 0.23, 0.84, 1.76, respectively, which mimic
the effect sizes observed in genome-wide association studies
for complex diseases. The four disease models differ by the
locations of disease variants and the directions of effects. In
model 1 and model 2, we assume a uniform distribution of
disease variants among the 300 SNPs, while in model 3 and
model 4 we assume a clustered distribution. That is, in model
3 and model 4, the 15 disease variants are distributed within
two nonoverlapping SNP clusters. Each cluster contains 30
SNPs, carrying 25% disease variants each, yet the overall
percentage of disease variants among the 300 SNPs is still
5%. For the directions of effects, in models 1 and 3, we
assumed independent and random directions of effects with
probability 0.5 each, while in models 2 and 4, we assumed
that all disease variants have positive effects to the disease
risk.

To evaluate how each method performs with respect
to the rareness of variants, the MAFs of the 300 SNPs in
each data set was bounded above by 0.01, 0.05, and 0.5,
respectively, representing very rare, moderately rare, and
common + rare data sets. In the 1000 Genomes data, there
are �33% SNPs in each category of MAF ,0.01, between
(0.01, 0.05), and .0.05, respectively. For each MAF bound
and for each disease model, we simulated 1000 data sets to
evaluate power. To control type I error rate, we did not use
the P-values provided by the original methods, because the
P-values provided by C-alpha and VT were seriously inflated,
and the asymptotic P-values of MultiVar were too conserva-
tive. Instead, we ran 200,000 permutations in each scenario
to obtain empirical P-values of all methods. For BEAM3, we
set a1 = 0.005 and a2 = 0.05, such that SNPs with MAF
.0.005 forms its own SNP set, and SNPs with MAF ,0.05
form groups with other SNPs within d = 15 SNPs. The test
statistic for BEAM3 is the sum of posterior probabilities of
disease association over all SNP sets in each data set, and
P-value is calculated by comparing with the statistics obtained
from permuted data.

Figure 2 shows the power comparison of all methods on
data sets with maximum MAF 0.01. In these data sets, only
the very rare variants are included. We observed that SKAT,
SSU and Calpha all performed similarly with the best power
in all scenarios. Our method (BEAM3), in comparison,
achieved similar power in most cases. Overall, models 2
and 4 with all positive effects are detected by all methods
more easily than by models 1 and 3 with opposite effects.
The multivariate regression score test (MultiVar) performed
the worst in all scenarios, whereas the common effect method
(Common) performed poorly for models 1 and 3, because the
effects were in opposite directions. The variable threshold
approach (VT) performed poorly too; particularly, its power
was worse than the single SNP test (Single) in all scenarios.

Figure 3 and Figure 4 show the power comparisons on
data sets with maximum MAF 0.05 and 0.5, respectively,
which included not only very rare variants, but also moder-
ately rare and common variants, respectively. It is seen that
the powers of all methods increased as more common variants
were included. For all models and at all significant levels,
BEAM3 performed consistently and sometimes substantially
better than the others. Again, SKAT, SSU, and Calpha performed
similarly in all scenarios, and they obtained better power than
the remaining methods in most cases. It is worth mentioning
that, apart from Single, our method is the only approach that
can reveal the locations of disease variants within each data set.
We have also performed additional simulation studies with each
data set carrying 30% disease variants, for which we observed
similar results (supporting information File S1). In summary, our
method performed similarly or better than existing methods
when testing on a small set of SNPs, particularly when moder-
ately rare and common SNPs were included. Even for the very
rare SNPs, our method still performed competitively to the best
methods, but we further pinpointed disease variants within each
set.

Simulation study in large data sets

We next evaluated the power of our method on larger data
sets containing 1000 cases and 1000 controls at 10,000
SNPs with maximum MAF ,0.05. In this case, no existing
methods can perform a single test on all SNPs simulta-
neously, but they have to split the SNPs into subsets and
perform multiple tests. Based on the small data results, we
compared only our method with SKAT, because SKAT per-
formed similarly to SSU and C-alpha and was one of the best
among all methods. In each data set, we simulated 50 dis-
ease variants equally partitioned into 5 groups (10 disease
variants per group). The disease variants in each group were
randomly distributed within either a 5- or a 50-kb region,
with equal probability. Also, the disease variants in a group
either have 50% opposite directions of effects or have pos-
itive effects, with 50% chance each. The effect sizes were
determined in the same way as before. Since we cannot run
SKAT to test all SNPs together, we partitioned each data set
into equal-sized windows containing M SNPs per window
and we ran SKAT in each window separately. We tested
SKAT for M = 10, 25, 50, 100, 200, respectively. We ran
our method on the entire data set with a1 = 0.005, a2 =
0.05, and d = 30 (number of SNPs per set for those with
MAF ,a2). We also used the hierarchical splitting strategy
to split each 30-SNP set into k = 4 subsets and kept both for
analysis. Again, we used permutation P-value to control type
I errors. For SKAT, the P-value from each M SNP window
was used as the statistic to obtain data-wide significance
thresholds. For BEAM3, the posterior probability of disease
association from each predefined SNP set was used as the
statistic to obtain data-wide significance thresholds.

We performed two different power comparisons: (a) the
power for detecting a disease variant and (b) the power for
detecting a disease region (one of the five disease groups).
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To calculate power, we first identified the significant SNP sets
reported by each method at data-wide significance level 0.01.
For each significant SNP set, we then identified its nearest
true disease variant to the center of the SNP set. The disease
variant (or the region it belonged to) was counted as detected
if the distance (in number of SNPs) between the two was
within a threshold.

Figure 5 shows the results obtained from 100 simulated
data sets of 10,000 SNPs each (MAF , 0.05). We observed
that BEAM3 performed considerably and consistently better
in terms of detecting and localizing disease variants and
disease regions, compared to SKAT using any window size.
The performance of SKAT varied considerably for different
window sizes. Additional simulation studies of even larger

Figure 2 Comparison on data sets with MAF bounded
at 0.01. x: significance. y: power for four models.

Figure 3 Comparison on data sets with MAF bounded
at 0.05. x: significance. y: power for four models.
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data sets containing 100,000 SNPs showed similar results
(supporting information, File S1). In practice, the best win-
dow size is never known for hypothesis-testing methods. It is
likely that both rare and common variants affect the disease
risks, either independently or jointly. A flexible method like
ours is thus strongly desirable.

Type 1 diabetes resequencing data

We applied BEAM3 to a whole-genome resequencing (WGS)
data generated in our laboratory on blood-derived DNA
from 97 T1D patients. The samples were processed using
SOLiD5500 sequencers. For sequence alignment, variant
calling, and annotation, we employed our parallel read
mapping and variant-calling pipeline, using Burrow Wheeler
alignment (BWA) (Li and Durbin 2009, 2010), BOWTIE
(Langmead et al. 2009), and SAMtools (Li et al. 2009) to
call SNVs and indels. The output is in sequence alignment/
mapping (SAM) format we compressed into a binary format
(BAM). The BAM files that passed quality control (QC), in-
cluding proportion of mappable reads and number of unique
start sites, were subsequently used for downstream analysis.
The average number of reads for the WGS data were 6–83
(i.e., low coverage) of high-quality sequence data following
standard QC procedures.

Because no controls are sequenced in this study, we
downloaded 85 unrelated CEU samples, whose origins are
the closest to the T1D patients in this study, from the 1000
Genomes project. We retained only the SNPs that appeared
in both the T1D samples and the CEU controls. We removed
SNPs with .10% missing values and those with significant
Hardy–Weinberg disequilibrium (P-value,1026). We imputed

missing genotypes by sampling within each SNP and we
removed nonpolymorphic SNPs. The final data set contained
97 cases and 85 controls at 2.93 million SNPs.

Since the cases and controls are generated by different
protocols, we observed sample stratification. As shown in
Figure 6A, single SNP test statistics are inflated genome-
wide. We therefore decorrelated samples as follows: (1)
we calculated a covariance matrix V of the 182 individuals
using SNPs whose absolute correlation with the disease
status is ,99 percentile; (2) we decomposed V = LL9 by
Cholesky decomposition; and (3) we calculated new “geno-
types” by Xnew = X(L9)-1. As a result, the new “genotypes” are
decorrelated under Normality assumption. Figure 6B shows
that the single SNP test statistics are “correct” after this
adjustment.

After correcting for sample stratification, we ran our method
with a1 = 0.05, a2 = 0.1, d = 30 with hierarchical splitting
(k = 4). Due to computational constraints, we applied our
method on each chromosome separately. We ran our method
four times on each chromosome independently and then sum-
marized the posterior probabilities of associations by averag-
ing. We reported in Table 1 the top 12 detected T1D loci
whose posterior probabilities were .0.25. Based on genome-
wide permutations, our criteria yielded P-value,1027. Among
the 12 detected loci, 7 had at least two SNPs within 500 kb
showing single-SNP test P-value ,1025.

Among the top 12 ranked T1D loci, we found a few
interesting genes. First, the locus chr19:55.27–55.33 Mb
includes genes KIR2DL1–4, KIR3DL1, KIR2DL4, KIR2DS4.
These are killer cell immunoglobulin-like receptor genes
expressed in killer cells and subsets of T cells. They are subsets

Figure 4 Comparison on data sets with MAF bounded
at 0.5. x: significance. y: power for four models.
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of HLA class I molecules and play important roles in regulation
of the immune response. In addition, downregulation of KIRD3L1
has been shown to enhance inhibition of type 1 diabetes (Qin
et al. 2011). Second, the locus chr5:17.48–17.62 Mb is 200 kb
downstream of gene BASP1. This gene has been reported to
promote apoptosis in diabetic nephropathy (Sanchez-Nino
et al. 2010), and defective apoptosis is known to play an
important role in type 1 diabetes (Hayashi and Faustman
2003). Incidentally, two other loci (chr10:127.56–127.65 Mb,
chr22:18.62–18.92 Mb) also overlapped with genes (FANK1,
DHX32, USP18) that are related to cell apoptosis. While
FANK1 and DHX32 regulate T-cell apoptosis (Alli et al. 2007;
Wang et al. 2011), USP18 is a key regulator of the interferon-
driven gene network modulating pancreatic beta cell in-
flammation and apoptosis (Santin et al. 2012). Third, 3
(chr1:24.28–24.39 Mb, chr7:159.10–159.13 Mb; chr22:18.62–
18.92) out of the 12 loci either overlapped or were near genes
(PNRC2, VIPR2, DGCR6, PRODH) associated with obesity and
type 2 diabetes. PNRC2 is a nuclear receptor coactivator that
regulates energy expenditure and adiposity in mice (Zhou et al.
2008), which are the keys to understand obesity, insulin re-
sistance, and type 2 diabetes. VIPR2, DGCR6 and PRODH are
known to be significantly associated with schizophrenia (Vacic
et al. 2011; Welsh et al. 2011; Liu et al. 2002), a mental dis-
order that is associated with decreased risk of type 1 diabetes
(Juvonen et al. 2007) and increased risk of type 2 diabetes
(Schoepf et al. 2012).

The human major histocompatibility complex (MHC)
region is a well-known T1D locus. Our analysis did not capture
this region at the genome-wide significance level due to several
reasons. First, the sample size of our data set is small. The lead
T1D SNP rs9268645 in MHC, reported by Barrett et al. (2009),
has association P-value ,,1e-100 from a metaanalysis com-
bining two independent studies carrying over 10 thousands of
individuals. This SNP is captured in our study, with MAF 0.47
in cases and 0.40 in controls. These MAFs were statistically the
same as those observed in WTCCC T1D data set (Wellcome
Trust Case Control Consortium 2007) (0.46 in cases and 0.40
in controls, respectively), but has insignificant P-value (.0.1)
due to the small sample size. Should the sample size be 10000
with the same MAFs, its P-value will decrease to ,1e-50. Sec-
ond, there are many missing values due to low coverage
sequencing. The lead T1D MHC SNP rs9273363 reported
by Nejentsev et al. (2007) had P-value 1e-298, yet it was
removed from our study because of 38% missingness (no
reads). Should this SNP be retained in our study, but simply
ignoring the missing values, we will obtain case MAF 0.63,
control MAF 0.33, and P-value 2.2e-7 before adjusting for sam-
ple stratification. These MAFs are again similar to those ob-
served in WTCCC T1D data set (case MAF 0.71, control MAF
0.30). Third, our data set has sample stratification problem due
to lack of controls, which further reduces the power.

Given that we already know that MHC carries T1D
variants, we applied our method to the MHC region

Figure 5 Power comparison between BEAM3 and SKAT:
(A) Power for detecting variants and (B) power for detect-
ing regions. Distance: maximum allowed number of SNPs
between the center of a reported significant SNP set (data-
wide P-value 0.01) and the nearest true disease variant,
such that the true variant is counted toward power. SKAT:
in the parentheses shows the number of SNPs per set. o:
BEAM3; D: SKAT(10); +: SKAT(25); x: SKAT(50);): SKAT(100);
=: SKAT(200)

Figure 6 QQ-plot of single SNP test statistics (A) be-
fore and (B) after correcting for stratification.
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(chr6:29.5 Mb–33 Mb, hg19, 6472 SNPs) specifically to localize
“causative” T1D variants. The result is shown in Figure 7. Our
method pinpointed four T1D loci with MHC-wide significance
,0.05, including locus 29922754 bp in genes HLA-H, HLA-G,
HLA-J and at 10 kb downstream of HLA-A, locus 32417825–
32417891 bp at 3 kb downstream of HLA-DRA, locus 32651168–
32651254 bp at 17 kb upstream of HLA–DRB1, and locus
32705193–32705276 bp at 2 kb upstream of HLA–DQA2.
The latter three loci are all within the well-known HLA–DR–
DQ genes in MHC class II complex. For comparison, we also
ran SKAT in the same MHC region using two different win-

dow sizes: 10 and 100 SNPs, respectively. As shown in Figure
7, SKAT detected the HLA–H,G,J locus, but failed to yield
significant P-values at the HLA–DR–DQ region.

Discussion

In this article we introduced a powerful and flexible method for
simultaneous testing of rare and common variants associated
with complex diseases. Distinct from existing approaches, our
method utilizes a joint statistical model to test all variants
genome-wide simultaneously. The benefits are twofold: joint

Table 1 Loci detected in the T1D resequencing data set

Detected locia
Assoc.
prob.b

Multi-
assoc.c Nearest genesd

chr1:24281021–24388679 1.00 (1.00) Yes SRSF10, MYOM3, PNRC2
chr3:625496–705294 1.00 (1.00) Yes AK126307 (CNTN6)
chr4:190436494–190538640 0.82 (2.06) Yes (DUX2, DUX4L4, FRG2, FRG1, TUBB4Q)
chr5:17479389–17622489 0.99 (0.99) No (LOC401177, BASP1, BC028204)
chr6:67706682–67780247 0.98 (0.98) No None, but has strong Pol2 signal in K562 and DNA methylation.
chr7:159100528–159126143 0.66 (0.66) Yes (VIPR2)
chr9:68435907–68800509 1.00 (1.00) No LOC100132352, AK096159, LOC642236
chr10:127556783–127650870 0.85 (0.86) No FANK1, DHX32
chr16:70813237–71062992 0.29 (0.67) Yes HYDIN, VAC14
chr19:55268017–55332829 0.98 (0.98) Yes KIR2DL1-4, KIR3DL1, KIR2DL4, KIR2DS4
chr20:20109354–20184868 1.00 (1.00) No C20orf26 (CRNKL1)
chr21:14946923–15168502 0.43 (0.43) No POTED, DQ590589, DQ591735 (C21orf15, DQ586768)
chr22:18622054–18923349 0.89 (1.14) Yes GGT3P, DGCR6, PRODH, AK302545, BC112340, BC051721,

AL117485, DQ786190, AK129567, USP18
a Positions are in hg19 coordinates.
b Maximum posterior probability within the interval and the sum of posterior probabilities of all SNPs in the interval are in parentheses (italics
indicate a significant difference between the two).

c Whether or not the interval carries more than one SNP with marginal P-value ,1025.
d Genes overlap with the interval, and genes that do not overlap with the interval but are within the 500-kb neighborhood are in the parentheses.
Genes in italic type are discussed in the main text.

Figure 7 Posterior probability of T1D as-
sociation by BEAM3 compared to P-values
by SKAT using 10 and 100 SNPs per win-
dow in MHC region. Dashed lines indicate
the MHC-wide 0.05 significance levels.
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associations or cumulative effects of multiple variants are detect-
able with improved power by dynamic grouping of sets of
variants; and our joint model accounts for correlation among
variants, such that multiple disease variants within a local
region can be detected and redundant associations due to
LD are filtered out. As a consequence, we are able to define sets
of variants that overlap with each other without concerning
about multicolinearity among variants. A variant may be
simultaneously present in the data set as a single variant by
itself and as groups of variants with others. The new method
will then evaluate the effects of the variant both as a single
variant and as groups, and one shows that the most power will
be automatically detected. This feature significantly alleviated the
burden on the users to define sets of variants to be tested,
which is often arbitrary. At the same time, the users can still
design their favorable sets of variants for joint testing based on
their biological knowledge. While it is unclear how much
effects of rare variants contribute to the complex diseases, it is
most likely that both common and rare variants are contrib-
uting to the disease risks to a different degree. We therefore
believe that our method is more suitable to the current genome-
wide association studies, where all genetic variants from
sequencing studies are included in the analysis.

Our simulation studies have demonstrated the superior
power of the new method compared to existing rare variant
mapping tools. In the small data study, we observed that our
method performed similarly to the best existing methods when
testing only the very rare variants (MAF ,0.01). When more
common variants were included, our method achieved better
power and sometimes substantially so. In the large data study,
our method performed substantially better than existing meth-
ods in terms of both power and mapping resolution. When
applied to a whole-genome resequencing study of type 1 di-
abetes, we handled sample stratification and detected novel loci
that are biologically relevant to T1D. We further demonstrated
a fine mapping of T1D variants in the well-known MHC region,
where we identified one locus in the HLA-G,H,J genes and
three loci in the HLA–DR–DQ genes. In comparison, SKAT
detected only one locus in MHC and its result is sensitive to
window sizes. Many loci we detected involved common variants,
which in part was due to the very limited sample size of the study,
but also perhaps indicated that exclusively focusing on rare var-
iants may not be the best strategy.

Our method can be directly applied to other types of data,
such as copy-number variations and genomic/epigenetic data.
In addition, our method can be used for QTL mapping, and
covariates such as environmental factors can be included.
Currently the method does not allow detection of SNP–
environment interactions associatedwith the disease, but a simple
modification can be added to allow detecting disease associated
interactions between SNPs and covariates. The method can also
take input of multiple traits simultaneously, such that SNPs asso-
ciated with one or multiple disease traits can be detected. By
inversely regressing SNPs on disease traits, we avoid modeling
the distributions of disease traits. An interesting extension
of the method is therefore to include kernels to detect nonlinear

associations between SNPs and multiple disease traits. The
URLs for data presented herein are as follows:

1000 Genomes: http://www.1000genomes.org/
OnlineMendelian Inheritance inMan (OMIM): http://www.ncbi.

nlm.nih.gov/omim
BEAM3: http://stat.psu.edu/~yuzhang/software/beam3.tar

Source code of BEAM3 can be found in Supporting Informa-
tion, File S2.
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Additional Power Comparison Results 
Datasets are generated in the same way as described in the main text, except that each dataset 
only contains 50 SNPs, such that there are 30% disease variants in each dataset. Figure S1-S3 
show the power of our method compared to existing methods with maximum MAF bounded at 
0.01, 0.05, and 0.5, respectively. Figure S4 shows the power comparison between BEAM3 and 
SKAT on simulated datasets of 100,000 SNPs containing 100 disease variants. 
	  

  

Figure S1. Comparison on datasets with 30% disease variants and MAF bounded at 0.01 
on 4 disease models. x: significance. y: power for 4 models.	  
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Figure S2. Comparison on datasets with 30% disease variants and MAF bounded at 
0.05 on 4 disease models. x: significance. y: power for 4 models.	  

Figure S3. Comparison on datasets with 30% disease variants and MAF bounded at 0.5 on 
4 disease models. x: significance. y: power for 4 models.	  
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Figure S4. Power comparison between BEAM3 and SKAT on simulated datasets of 100,000 SNPs. 
“Distance”: maximum allowed # of SNPs between the center of a reported significant SNP set (data-
wide p-value 0.01) and the nearest true disease variant, such that the true variant is counted towards 
power. SKAT: in the parenthesis shows the number of SNPs per set. 
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