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Abstract

Shared derived genomic characters can be useful for polarizing phylogenetic relationships, for example, gene fusions have been used

to identify deep-branching relationships in the eukaryotes. Here, we report the evolutionary analysis of a three-gene fusion of folB,

folK, and folP, which encode enzymes that catalyze consecutive steps in de novo folate biosynthesis. The folK-folP fusion was found

across the eukaryotes and a sparse collection of prokaryotes. This suggests an ancient derivation with a number of gene losses in the

eukaryotes potentially as a consequence of adaptation to heterotrophic lifestyles. In contrast, the folB-folK-folP gene is specific to a

mosaic collection of Amorphea taxa (a group encompassing: Amoebozoa, Apusomonadida, Breviatea, and Opisthokonta). Next, we

investigated the stability of this character. We identified numerous gene losses and a total of nine gene fission events, either by break

up of an open reading frame (four events identified) or loss of a component domain (five events identified). This indicates that this

three gene fusion is highly labile. These data are consistent with a growing body of data indicating gene fission events occur at high

relative rates. Accounting for these sources of homoplasy, our data suggest that the folB-folK-folP gene fusion was present in the last

commonancestorofAmoebozoaandOpisthokontabutabsent in theMetazoa includingthehumangenome.Comparativegenomic

data of these genes provides an important resource for designing therapeutic strategies targeting the de novo folate biosynthesis

pathway of a variety of eukaryotic pathogens such as Acanthamoeba castellanii.
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Introduction

The resolution of ancient phylogenetic relationships is proving

a difficult task (Philippe and Laurent 1998; Philippe 2000;

Dagan and Martin 2006). Rare genomic characters such as:

Insertions and/or deletions within open reading frames (ORFs),

intron distribution, and gene fusions are potentially useful

tools for polarizing evolutionary relationships and rooting

trees (Jensen and Ahmad 1990; Philippe et al. 2000; Rokas

and Holland 2000). In these cases, assuming parsimony, the

logic proceeds that taxa A and B possess a rare genomic char-

acter, whereas taxa C and D do not, therefore taxa A and B

are likely to be monophyletic to the exclusion of taxa C and D.

The process of gene fusion and domain recombination is itself

an important evolutionary process, leading to: Acquisition of

new gene functions (Doolittle 1995), biochemical channeling

(Miles et al. 1999), coregulation, colocalization, and poten-

tially promoting the fixation of horizontally transferred genes

(Andersson and Roger 2002; Yanai et al. 2002; Slot and Rokas

2010, 2011) see also (Lawrence and Roth 1996; Lawrence

1999; Walton 2000). The corollary with investigating gene

fusions is that they are also subject to homoplasy in the

form of: Horizontal gene transfer (HGT) (Andersson and

Roger 2002; Yanai et al. 2002), separation (gene fission),

gene duplication with differential loss of subsections of the
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gene (also a form of gene fission), total gene loss (Nakamura

et al. 2007; Leonard and Richards 2012), or convergent evo-

lution (Nara et al. 2000; Stover et al. 2005).

Folate is an essential metabolite involved in the biosynthesis

of: Adenine and thymidine bases, methionine and histidine

amino acids, and formyl-tRNA (Brown 1971). Many plants

protists, Fungi, Bacteria, and Archaea manufacture folate de

novo (Cossins and Chen 1997; Levin et al. 2004; de Crecy-

Lagard et al. 2007) principally via a double-branched pathway

involving the pterin and pABA branches which feed into the

step mediated by the enzyme encoded by folP (the pathway is

illustrated in fig. 1 with gene and protein names listed). In the

plant Arabidopsis thaliana many steps, including the proteins

encoded by folK-folP, are localized to the mitochondria,

whereas the enzymes that catalyze pABA synthesis are local-

ized within the plastid organelle (de Crecy-Lagard et al. 2007).

Folate salvage systems are also known from a range of taxa,

where pterin and pABA-glutamate fragments produced by

folate breakdown are fed into curtailed versions of the path-

way (Orsomando et al. 2006; de Crecy-Lagard et al. 2007). For

example, in some metazoans the core of the pathway is by-

passed by folic acid uptake from food (Cossins 2000; Lucock

2000), leaving only the requirement for: Dihydrofolate reduc-

tase (DHFR) and thymidylate synthase (TS) (see figs. 1 and 2).

Antifolate drugs (e.g., sulfonamides and sulfones) targeting

the DHPS step in the pterin branch (encoded by folP) are

therefore important antimicrobial agents (Lawrence et al.

2005) because host animals do not encode the equivalent

metabolic trait. Additionally, drugs targeting the latter steps

of the pathway (e.g., methotrexate which inhibits DHFR) are

used in chemotherapy to target cancer cells (Huennekens

1994; Cossins and Chen 1997).

The genes that encode the folate biosynthesis enzymes

DHFR and TS are fused in many eukaryotes (Stechmann and

Cavalier-Smith 2002) resulting in synthesis of a two domain

multifunctional protein. This character has been suggested to

be an anciently derived synapomorphy uniting the “bikont”

clade (Stechmann and Cavalier-Smith 2002, 2003), a group of

“ancestrally biciliate eukaryotes” including the: Stramenopiles,

Alveolata, Rhizaria (known collectively as the SAR supergroup),

Excavata, Cryptophyta, Haptophyta, and Archaeplastida.

However, several eukaryotic subgroups appear to have lost

either the fused or unfused DHFR and TS-encoding genes

(Simpson and Roger 2004; Roger and Simpson 2009) (fig. 2)

making this an unreliable character for polarizing evolutionary

relationships. In addition, the “bikont” grouping has been re-

vised and these taxa, with the exception of the Excavata, are

now grouped within Diaphoretickes (Adl et al. 2012). We also

note that Cavalier-Smith has abandoned this rooting system

(Cavalier-Smith 2010) in favor of a root within the Excavata

(Simpson 2003) rendering the “bikonts” paraphyletic.

Furthermore, although myosin II was thought to be exclusive

to Amoebozoa and Opisthokonta taxa (Richards and Cavalier-

Smith 2005) this gene architecture is found in Heterolobosea

Localized to plastid

FIG. 1.—Part of the folate biosynthesis pathway with intermediate

chemical states of the pathway illustrated. Protein and gene names that

encode each step of the pathway are given.
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FIG. 2.—Presence, absence, and fusion state of putative folate pathway encoding genes across the eukaryotes. Taxonomic distribution of the pterin

branch of the folate biosynthesis pathway. The red boxes and connecting lines indicate a gene fusion, black boxes represents presence of a putative

homologue, and gray indicates gene not identified in the genome sequence data. Amoebozoa and Opisthokonta were formerly referred to as the

“unikonts,” and likewise SAR, Excavata, and Archaeplastida were formerly referred to as the “bikonts.” Note that the putative folB of Trichoplax adhaerens

and the putative folB-folK fusion of Nematostella vectensis were removed from phylogenetic analyses due to poor alignment of these sequences, as such

their provenance and evolutionary ancestry remains questionable and are therefore indicated by a question mark at the relevant position.
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(Excavata) (Fritz-Laylin et al. 2010). This suggests a different or

deeper ancestry of myosin II. Alternatively, this distribution

pattern may be the result of HGT (Berney C, personal commu-

nication) with additional examples of HGT-derived genes

shared by Heterolobosea and Amoebozoa (Andersson 2011;

Herman et al. 2013) supporting the idea that HGT between

these groups has played a role. However, an amended version

of the “bikont” and “unikont” bifurcation recently gained

some direct support using a rooted multigene phylogenetic

analysis of genes derived through the mitochondrial endosym-

biosis (Derelle and Lang 2012), but also see He et al. (2014) for

an alternative tree topology derived from a similar analytical

approach.

In 2005, Lawrence et al. published the structure of three

components of the Saccharomyces cerevisiae folate biosynthe-

sis pathway; a triple domain gene fusion, encompassing the

DHNA, HPPK, and DHPS enzymes encoded by folB, folK, and

folP genes—steps 3, 4, and 5 in pterin biosynthesis pathway

(Lawrence et al. 2005) (fig. 1). Interestingly, gene fusions are

common in secondary metabolic networks, for example, the

shikimate pathway that forms the prerequisite to the pABA

branch of folate biosynthesis is encoded by numerous variant

gene fusions (Campbell et al. 2004; Richards et al. 2006) and

genes which encode key enzymes of the pABA branch of folate

biosynthesis are often found fused (de Crecy-Lagard et al.

2007). Here, we report a phylogenomic analysis of gene

fusion characteristics in the pterin folate biosynthesis pathway

across the eukaryotes. We use these data to investigate the

evolutionary ancestry of the three-domain pterin biosynthesis

genefusion, identifying:adiversityofgenefusionarchitectures,

gene fission events, and a number of gene losses. Using these

results, we evaluate this three gene fusion character as synap-

omorphy for the monophyletic grouping of the Opisthokonta

and Amoebozoa finding a high incidence of homoplasy.

Materials and Methods

Cloning and Sequencing of Folate Triple Domain Gene
Fusion from Acanthamoeba castellanii cDNA

Using the partially assembled genome reads of the

Acanthamoeba castellanii sequencing project (available at

the Baylor College of Medicine—https://www.hgsc.bcm.edu/

microbiome/acanthamoeba-castellani-neff, last accessed

October 3, 2014), we designed a range of overlapping poly-

merase chain reaction (PCR) primers (Marshall 2004) to target

different domain sections of the three folate biosynthetic

genes folB, folK, and folP (see supplementary table S1,

Supplementary Material online). Acanthamoeba castellanii

Neff strain was grown axenically in a modified M11 defined

media (Shukla et al. 1990) without folate (supplementary

table S2, Supplementary Material online) to encourage the

transcription of folate biosynthesis pathway genes. Cells

were collected and suspended in 1 ml of trizol reagent

(Invitrogen) and RNA extracted using the single-step acid gua-

nidinium thiocyanate–phenol–chloroform protocol as de-

scribed by Chomczynski and Sacchi (Chomczynski and

Sacchi 1987). The cDNA was then synthesized using the

AffinityScript kit with random hexamers (Stratagene). PCR

amplification for target folate biosynthesis genes was con-

ducted using Master Mix (Promega, containing 3 mM

MgCl2, 400mM of each dNTP, and 50 U/ml of Taq DNA po-

lymerase) to create a 25ml PCR reaction mix (12.5ml of Master

Mix), 1ml each primer (10mM), 9.5ml of Milli-Q pure water

(Millipore), and 1ml of template cDNA). Acanthamoeba cDNA

was diluted to approximately 100 ng/ml using spectrophotom-

etery (NanoDrop ND-1000). Thermocycling followed an initial

incubation at 95 �C for 5 min, and cycling conditions details in

supplementary table S1, Supplementary Material online fol-

lowed by a 72 �C–5 min elongation step. See supplementary

table S1, Supplementary Material online, for details of PCR

primers used. Successfully amplified PCR products were gel-

purified (Wizard SV Gel and PCR Clean-Up kit, Promega) and

cloned using TA-cloning (PCR StrataClone Cloning Kit, Agilent

Technologies). Five clones were selected from each PCR reac-

tion and externally sequenced using the M13/pUC vector pri-

mers via Sanger sequencing (Cogenic Beckman-Coulter

sequencing service, High Wycombe). The flanking vector se-

quences were removed; the sequences trimmed to areas of

high chromatograph quality and ambiguously defined bases

corrected. The overlapping sequences were then assembled

into contigs using Sequencher (Gene Codes) version 4.10.1

program (http://www.genecodes.com/) producing a high-

confidence consensus sequence for a partial ORF for the

folB, folk, and folP gene fusion (GenBank Acc:

AFW17812.1). These data demonstrate that the folB, folk,

and folP genes are transcribed as a single three-domain

gene fusion. It should be noted that subsequently a draft

genome and predicted proteome of Acanthamoeba has

been released (Clarke et al. 2013), which contains the same

gene fusion of near identical sequence (513/514 identities

with no gaps—GenBank Acc: XP_004341460). The full-

length gene derived from the genome sequence was used

for the subsequent folB, folk, and folP phylogenetic analyses.

Survey of Additional Protist Taxa Using RNA-Seq Data

We used the Dictyostelium purpureum (XP_003290941) folB,

folk, and folP three gene fusion and Bacillus cereus single

domain unfused-genes (folB—NP_829975.1, folK—ZP_

03233543.1, folP—ZP_07056868.1) as a search query to

identify putative homologues using the basic local alignment

search tool (tBLASTn) against a set of protistan RNAseq

“in-house” data sets. This data set included the unicellular

opisthokont Fonticula alba, the amoebozoan Copromyxa

protea, and the breviate Pygsuia biforma (PCbi66). From

these data, we were able to identify components of the

folB, folk, and folP genes from Fonticula and Copromyxa,
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but not in the breviate P. biforma (PCbi66). Phylogenomic

analysis demonstrates that breviate flagellates are related to

opisthokonts and the Apusomonadida (Brown et al. 2013).

For these RNAseq projects, total RNA was isolated using Tri-

reagent (Sigma) following the protocol supplied by the man-

ufacturer. Construction of cDNA libraries and Illumina RNAseq

was performed by the Institut de Recherche en Immunologie

et Cancérologie of Université de Montréal (Canada) for

Copromyxa protea (strain CF08-5), the BROAD Institute

(Boston) for F. alba (strain ATCC 38817), and Macrogen

(South Korea) for the P. biforma (PCbi66). Raw sequence

read data were filtered based on quality scores with the fas-

tq_quality_filter program of FASTXTOOLS (http://hannonlab.

cshl.edu/fastx_toolkit/), using a cutoff filter (a minimum 70%

of bases must have quality of 20 or greater). Filtered se-

quences were then assembled into clusters using the

Inchworm assembler of the TRINITY r2011-5-13 package

(Grabherr et al. 2011). The F. alba assembly is available via

the BROAD Institute; however, the other two assemblies are

currently unreleased (manuscript in preparation). All un-

masked protein alignments are included as supplementary

material, Supplementary Material online, on GitHub (DOI:

10.5281/zenodo.11716) as MASE files which includes the

alignment mask information (generated by Seaview [Galtier

et al. 1996]).

Comparative Genomics and Phylogenetic Analysis

Using BLASTp and tBLASTn (Altschul et al. 1990) we initially

searched NCBI GenBank, the Joint Genome Institute (http://

genome.jgi-psf.org/), and the Broad Institute (http://www.

broadinstitute.org/) genome databases (as of November

2013) using three separate folate biosynthesis domains from

B. cereus (folB—NP_829975.1, folK—ZP_03233543.1 and

folP—ZP_07056868.1) and the D. purpureum (XP_

003290941) folB, folk, and folP three gene fusion divided

into the three-domain regions. Care was taken to survey the

major eukaryotic, archaeal, and bacterial groups; to this end

additional BLAST searches were conducted using multiple

start seeds from diverse taxa to check for alternative sequence

hits. The amino acid sequences gathered for each domain

were run through the REFGEN tool (Leonard et al. 2009).

The multiple sequence comparison by log-expectation pro-

gram (v3.8.31) (Edgar 2004) was used to produce a multiple

sequence alignment for each domain (folB, folK and folP).

Alignments were then manually corrected and masked in

SeaView (version 4.2.4) (Galtier et al. 1996). Sequences that

caused an unacceptable loss of putatively informative sites

(due to the sequence nonalignment or not masking well) or

that formed long branches in preliminary analysis were re-

moved. Duplicate entries from closely related taxa, for exam-

ple, highly similar sequences from different representativeness

of the same bacterial or fungal genus (e.g., Escherichia,

Bacillus, and Aspergillus) or multiple highly similar genes

from the same genome (sister branches on preliminary phylo-

genetic trees) were removed from the alignments.

Phylogenetic analysis was conducted using both Bayesian

and maximum-likelihood methodologies with the model of

amino acid substitution selected using ProtTest3 (version

3.2.1—[Darriba et al. 2011]—see supplementary figs.

S1–S7, Supplementary Material online). Sequences shown to

form long branches in the phylogenetic analysis were removed

from the alignment to reduce the risk of long-branch

attraction artifacts (Felsenstein 1978; Philippe 2000), for ex-

ample, the Microsporidian: Encephalitozoon hellem ATCC

50504 folB-folK-folP gene fusion—XP_003887200, and

Plasmodium berghei folK-folP gene fusion—XP_15149005

from the folK alignment, and the analyses rerun. The phylog-

enies were calculated using parallelized-PTHREADS RAxML

(version 7.7—Stamatakis 2006) with 1,000 (nonrapid) boot-

strap replicates and using the substitution matrix and gamma

distribution identified using ProtTest3 (version 3.2.1) (Yang

1996; Darriba et al. 2011). In a subset of these analyses in-

variant sites were also included as a model parameter (in ac-

cordance with ProtTest3 recommendations), see the figure

legends for supplementary figures S1–S7, Supplementary

Material online, for more details of the models used.

Bayesian phylogenies were also reconstructed using MrBayes

(version 3.2). Each analysis was conducted as two indepen-

dent runs of four metropolis-coupled Markov chain Monte

Carlo [MCMCMC] chains and continued until convergence

of these runs as determined using the Tracer (version 1.5)

(Rambaut and Drummond 2007). Burn-in was then also de-

termined using Tracer. The program TREENAMER (Leonard

et al. 2009) was then run on the resulting tree files in order

to restore the correct taxa names from the REFGEN tags used

during phylogenetic processing. These analyses were also re-

peated using the same methods but focusing on a reduced

taxon data set and a concatenation of the folK and folP align-

ments to tests for improved topology support for key nodes

(supplementary figs. S4–S7, Supplementary Material online).

Results

Diversity of Gene Fusions in the Folate Biosynthesis
Pathways

At the core of pterin branch of the folate biosynthesis pathway

are three genes (folB, folk, and folP) that encode sequentially

acting enzymes: DHNA, HPPK, and DHPS (fig. 1). In some

fungi these are found as a single gene encoding a three-

domain protein (e.g., S. cerevisiae: GenBank accession

NP_014143.2—[Lawrence et al. 2005]) suggesting that

gene fusion has played a role in the pterin branch of folate

biosynthesis. To investigate the evolutionary ancestry of this

gene fusion, we conducted comparative genomics of these

three domains. These analyses demonstrated a discontinuous

distribution across the eukaryotes suggesting a complex
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pattern of gene loss (fig. 2). We identified four different

domain architectures, as defined by PFAM searches

(Bateman et al. 2004), of the eukaryotic folate biosynthesis

protein sequences sampled: 1) folB-folB-folK-folP found in a

range of fungi and the opisthokont sorocarpic protist F. alba;

2) folB-folK-folP found in Amoebozoa, the basidiomycete

fungi Postia placenta, Coprinopsis cinerea, and Melampsora

laricis-populina, and the microsporidian E. hellem, (excluded

from phylogenetic analysis because it formed a long branch in

the phylogenies, like many other microsporidian sequences

[Hirt et al. 1999]); 3) folB-folK found in two metazoans; and

4) folK-folP found in a subset of ascomycete fungi, Puccinia

graminis, Capsaspora owczarzaki, Sphaeroforma arctica, and a

diverse range of Diaphoretickes (fig. 2).

In many Diaphoretickes groups, including SAR,

Cryptophyta, and the Excavata, we could not identify a folB

gene using standard BLAST similarity searches (fig. 2). To con-

firm this result, we used a five iteration PSI-BLAST search using

both the B. cereus folB gene and the folB domain of the

D. purpureum folB-folK-folP gene fusion as a search seed

against the NCBI GenBank nonredundant (NR) protein data-

base (performed both as a general search and a search

restricted to eukaryotic taxa). These analyses failed to identify

any additional putative folB encoding genes in the eukaryotic

genomes available in the GenBank NR database.

Pyruvoyltetrahydropterin synthase (PTPS) has been sug-

gested to represent a functional replacement of the DHNA

enzyme (folB) (Pribat et al. 2009). To investigate the possibility

that this gene has functionally replaced folB in the

Diaphoretickes and Excavata, or other eukaryotic groups, we

searched the eukaryotes for the presence of genes with similar

sequence characteristics across the genomes sampled (fig. 2).

These analyses identified no clear pattern of PTPS/folB pres-

ence/absence, providing no support for this hypothesis that

PTPS is acting as a like-for-like functional replacement of folB

across the eukaryotes.

Phylogenetic Analyses of the folB, folK, and folP Domains

To further investigate the evolutionary ancestry of the gene

fusion character, we calculated individual phylogenies for the

three pterin biosynthesis domains with both comprehensive

and reduced taxa alignment sampling. The results of these

phylogenies are shown in supplementary figures S1–S6,

Supplementary Material online, with all six trees demonstrat-

ing low levels of topology support while many features of the

eukaryotic sections of the tree topologies are inconsistent with

established multigene phylogenetic trees (e.g., Rodriguez-

Ezpeleta et al. 2005; Hampl et al. 2009; Derelle and Lang

2012; Torruella et al. 2012; Brown et al. 2013). This is typical

of single-gene phylogenetic analysis using limited numbers of

amino acid alignment characters (i.e., 78, 102, 175, 110, 102,

236 amino acid characters for supplementary figs. S1–S6,

Supplementary Material online, respectively) and which

encompasses ancient and divergent evolutionary groups.

These alignment character numbers do not compare favour-

ably to multigene analyses where it has been shown that in

excess of 5,000 amino acid alignment characters are required

to robustly resolve the Archaeplastida (Rodriguez-Ezpeleta

et al. 2005). Although interestingly, Hampl et al. (2009) dem-

onstrated that a low number of genes are sufficient to recover

monophyly of the Opisthokonta branching sister to the

Amoebozoa.

Our analyses identified a folB-folK gene fusion in the meta-

zoan Branchiostoma floridae genome assembly branching

with a phylogenetic cluster of prokaryotes with moderate sup-

port within the comprehensive folK phylogeny (1/94% sup-

port for a grouping with Planctomyces maris—supplementary

fig. S2, Supplementary Material online) and weak support in

the reduced taxa folK analysis (0.939/27%—supplementary

fig. S5, Supplementary Material online). The comprehensive

folB phylogeny also shows the Br. floridae folB-folK gene

fusion branching with prokaryote taxa with weak support

(0.614/13%—supplementary fig. S1, Supplementary

Material online). Collectively, these trees suggest that the

Br. floridae folB-folK branching relationship is consistent with

HGT into the Br. floridae genome or, alternatively, contami-

nation of this genome project with a prokaryotic sequence.

To explore these possibilities further, we found the genome

sequence contig containing the Br. floridae folB-folK gene

(GenBank acc: AC150408.2) demonstrating that the prokary-

ote like Br. floridae folB-folK gene is located in a 180,427 bp

contig adjacent to genes that show standard patterns of

animal sequence similarity. Analysis of the B. belcheri tran-

scriptome demonstrated that an orthologue of the Br. floridae

folB-folK gene is transcribed. Taken together these data sug-

gest that the Br. floridae folB-folK gene is located on native

source genome and it is not contamination. Therefore, it is

likely to be a prokaryotic-derived HGT into this animal

genome. However, it is interesting that an animal lineage

could maintain only the first part of a pathway despite lacking

the folP gene, whereas many other animal lineages have lost

the entire pathway. Further to these data, we detected a pu-

tative folB gene in Trichoplax adhaerens and a putative folB-

folK fusion gene in Nematostella vectensis. However, these

genes were removed from further analyses due to difficulty

in alignment of these sequences, as such their provenance and

evolutionary ancestry remains questionable as noted on fig-

ures 2 and 3. These data suggest a partial folate biosynthesis

pathway, or a pathway involving an alternative gene encoding

the folP step present in Branchiostoma. Furthermore, we see

evidence of incomplete pathways in other organisms, for ex-

ample, the red alga Cyanidioschyzon lacks an identifiable stan-

dard folP gene (fig. 2).

Monophyly of the three-domain gene fusion would signify

that the folB-folK gene fusion was the product of a single evo-

lutionary event. However, this relationship was not resolved

with strong support in these analyses with only the folB
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FIG. 3.—Phylogeny of the Apusomonadida, Breviata, Opisthokonta, and Amoebozoa demonstrating variation in the folB-folK-folP fusion gene. Tree

topology was calculated using a concatenated alignment of conserved genes identified in (Torruella et al. 2012) and represents the best-known likelihood

tree from 100 ML searches in RAxML (PROTCAT+LG) with 1,000 nonrapid bootstraps. ML-BS is an abbreviation of maximum likelihood bootstrap values,

FolB-folK-folP fusion gene domain architecture of taxa included is listed down the right column, and fusion state is denoted by the presence/absence of

connecting lines. Inferred gene/domain losses are shown as shadow domains. See key for guide to tree topology support values and character state changes.

Domain duplication is indicated as (D) in a box of the appropriate domain colour, fission by domain loss events are denoted as (FL5–9) and specific fission

events as (F1–4). Total losses of complete ORFs are not illustrated. Note that the putative folB of Trichoplax adhaerens and the putative folB-folK fusion of

Nematostella vectensis were removed from phylogenetic analyses due to poor alignment of these sequences, as such their provenance and evolutionary

ancestry remains questionable and are therefore indicated by a question mark at the relevant position.
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phylogenies demonstrating a monophyletic grouping of the

three domain folB-folK-folP gene fusions (both as folB-folK-

folP and folB-folB-folK-folP) with weak topology support (i.e.,

0.539/19% and 0.991/37% support [supplementary figs. S1

and S4, Supplementary Material online, respectively]).

Importantly, we note that the only members of the

Diaphoretickes and Excavata (formerly the “bikonts”) possess-

ingaputative folBgeneare theArchaeplastidaand that the folB

gene of this eukaryotic group branches separately from the

other eukaryotes within a clade of bacterial genes with

moderate-to-strong posterior probability/bootstrap support

(supplementary fig. S1: 0.992/82%, Supplementary Material

online and supplementary fig. S4: 1.000/94%,

Supplementary Material online) suggesting a separate evolu-

tionary ancestry of this gene to that of the Opisthokonta and

Ameobozoa. Given the taxonomic distribution of the folB gene

across the Archaeplastida (supplementary figs. S1 and S4,

Supplementary Material online), this xenologue is most likely

tohavebeenderivedeitherbyanancienthorizontal gene trans-

fer fromabacterial source into theArchaeplastida lineageor via

the cyanobacterial endosymbiosis that gave rise to the plastid

organelle, a process that has been suggested to lead to the

acquisition of a number of genes of mixed bacterial ancestry

(Brinkman et al. 2002; Martin et al. 2002). Using the A. thaliana

folB gene, we searched for evidence of subcellular localization

using the “cell eFP browser” (http://bar.utoronto.ca/cell_efp/c-

gi-bin/cell_efp.cgi?ncbi_gi=15229838, last accessed October

3, 2014) which suggested this gene product was localized to

the cytosol or the mitochondria (supplementary table S3,

Supplementary Material online). However, because the

Archaeplastida folB is not an orthologue of the Opisthokonta/

Amoebozoa version and no additional Diaphoretickes and

Excavata folB orthologues are currently available, our folB phy-

logenetic analysis does not represent a strict test of the mono-

phyly of the folB-folK-folP gene fusion within the eukaryotes.

Finally, in an attempt to improve tree resolution and to

identify a resolved phylogeny, we conducted a concatenated

phylogenetic analysis of the folK and folP genes (supplemen-

tary fig. S7, Supplementary Material online). This analysis

again recovered a tree with low topology support values

and taxonomic relationships inconsistent with established eu-

karyotic phylogenetic relationships (Rodriguez-Ezpeleta et al.

2005; Hampl et al. 2009; Derelle and Lang 2012; Torruella

et al. 2012) and therefore provided no additional data to test

the monophyly of folB-folK-folP three-domain gene fusions.

folB Tandem Duplication in the Early Opisthokonta

Focusing on the “Opisthokonta and Amoebozoa folB-folK-

folP” cluster, a clade specifically encompassing the folB-folB-

folK-folP and folB-folB gene architectures found in Fungi, F.

alba, Sp. arctica, and C. owczarzaki (fig. 2) forms with weak

support in the reduced analysis (0.852/37%—supplementary

fig. S4, Supplementary Material online). The taxon distribution

of this character suggests that the folB tandem exon-duplica-

tion represents a novel genetic character that arose in the last

common ancestor of the opisthokonts followed by the loss of

these genes in Metazoa and some other opisthokont taxa

(figs. 2 and 3). We can identify this pattern because multigene

phylogenies place the Sp. arctica and C. owczarzaki branch

sister to the choanoflagellates and metazoans (Torruella et al.

2012), so parsimoniously the folB-folB gene duplication pre-

dated the diversification of the major Opisthokonta clades (see

fig. 3). The distribution of the Opisthokonta folB duplication

therefore provides a character that infers the folB-folK fissions

within the opisthokonts are nested events (see fig. 3—F1–4

fission events) and the ancestral Opisthokonta possessed a

folB-folK gene fusion.

Evidence of Gene Fission in the folB-folK-folP Gene
Fusion

Our gene fusion character distribution analysis identifies nine

fission events either by loss of one or two domains or by sep-

aration of the folB-folB-folK-folP fusion in the opisthokonts

(fig. 3). Specifically, these events involve: Fission to form

folB-folB and folK-folP, on the Sp. arctica, C. owczarzaki, and

Pu. graminis branches (fig. 3, fission events F1, F2, and F4) and

within the Pezizomycotina before the divergence of:

Aspergillus carbonarius, Coccidioides immitis, Cochliobolus

heterostrophus, Cladonia grayi, Chaetomium globosum, and

Neurospora crassa (fig. 3, fission event F3). Furthermore, these

data identify loss of one or both folB domains on five occasions

in the branches leading to the basidiomycetes: Co. cinerea,

Laccaria bicolor, Wallemia sebi, Po. placenta, and M. laricis-

populina (fig. 3, fission by loss events, FL: 5–9) and the

branch leading to the ascomycetes As. carbonarius and Co.

immitis. In all nine cases, we reconfirmed the gene architec-

tures by examining gene alignments and the synteny of each

candidate fission gene in the relevant genome assemblies.

Discussion

Distribution of Putative Folate Biosynthesis Gene
Homologues and Adaptation to Folate Heterotrophy

Using a comparative genomic and phylogenetic approach, we

have identified the taxonomic distribution of a three protein

domain encoding gene fusions in the pterin branch of the

folate biosynthesis pathway. In the absence of strong phylo-

genetic signal demonstrating eukaryote-to-eukaryote HGT

our analyses identified multiple gene loss events in different

eukaryotic groups (e.g., Metazoa and Excavata), suggesting

that the capacity to manufacture folate de novo has been lost

on multiple occasions within the eukaryotes. This is consistent

with adaptation of these lineages to acquiring folate or folate

intermediates from food sources and/or host organisms.

Specifically, the comparative genomic data demonstrate that

a complete pterin branch is absent from the Metazoa
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sampled, consistent with the hypothesis that animals acquire

folate using “intact folate salvage” from digested food

(Lucock 2000), putatively maintaining the last two or three

steps of the biosynthesis pathway to facilitate salvage of folic

acid (figs. 1 and 2). A similar pattern of gene presence/absence

was identified for the Trypanosoma (Excavata), Naegleria

(Excavata), and Thecamonas (Apusomonadida) genomes, sug-

gesting that these protists acquire folate, or precursors of

folate (e.g., folic acid), by salvage from external sources. We

can therefore infer that these heterotrophic characteristics

have resulted in concordant loss of the de novo folate biosyn-

thesis. Likewise the absence, or near absence, of the entire

folate biosynthesis pathway in Entamoeba, Trichomonas,

and Giardia suggests a dependence on hosts or phagocytosed

food for provision of intact folate, as such inhibiting folate

synthesis as a therapeutic target is not viable for these parasitic

protists, but inhibition of uptake transporters of intact folate

may offer an alternative therapeutic strategy.

In many Diaphoretickes genomes (e.g., taxa from the SAR

groupandCryptophyta)both folKand folPgeneswerepresent,

but a putative homologue of the folB gene was not identified.

These results suggest that this part of the pathway is absent

from these taxa or performed by a highly divergent or nonho-

mologous gene family. A paralogue of folB: folX has been iden-

tified in Escherichia coli with30%identical amino acid residues.

This protein was classified as an epimerase and performs the

equivalent aldolase type reaction with less than 1% velocity as

the DHNA encoded by the Ec. coli folB gene (Haussmann et al.

1998) suggesting this paralogue is not functionally equivalent.

Comparative genomic analysis of the distribution of folB gene

in prokaryotes identified many phylogenetically disparate

groups without an identifiable putative homologue (de

Crecy-Lagard et al. 2007) leading these authors to make two

suggestions: 1) the enzyme that catalyses this step is encoded

by a uncharacterized putative transaldolase gene often found

to cluster in the same operons as folK, and/or 2) because other

taxa lacked the folB gene and a putative alternative

transaldolase-encoding gene; a currently unidentified gene

family must encode this enzyme (de Crecy-Lagard et al.

2007). Later work then showed some evidence that the folB

in many bacteria has been replaced with a functionally equiv-

alent six-PTPS (Pribat et al. 2009). Analysis of eukaryotic ge-

nomes demonstrates many eukaryotic protists lacking an

identifiable folB or PTPS encoding gene, suggesting that a cur-

rently unidentified functionally equivalent but phylogenetically

dissimilar gene may encode an enzyme that catalyses this step.

Gene Fusion as an Adaptation for Folate Biosynthesis

Our data identified a number of variant gene fusions in pterin

branch of the folate biosynthesis genes. These included a gene

consisting of three domains and therefore the likely product of

two distinct gene fusion events. Our comparative genomic

survey suggests that this characteristic is only found in

opisthokont taxa including the: Fungi, F. alba, Microsporidia,

and a range of Amoebozoa (e.g., Dictyostelium,

Acanthamoeba, and Copromyxa). Moreover, two domain var-

iations of these gene fusion forms were identified in a range of

eukaryotes (fig. 2). Gene fusions have been identified else-

where in the folate biosynthesis pathway (Stechmann and

Cavalier-Smith 2002, 2003; de Crecy-Lagard et al. 2007) sug-

gesting that gene fusion has been an important process in the

evolution of the eukaryotic folate biosynthesis, possibly as a

consequence of selection for: Cotranscription, colocalization,

promotion of metabolic channeling, or a general improve-

ment of enzyme kinetics (Welch and Gaertner 1975; Meek

et al. 1985; Ivanetich and Santi 1990; Miles et al. 1999;

Richards et al. 2006). This pattern is consistent with other

secondary metabolic pathways that are also localized in the

cytosol and show complex patterns of gene fusion (e.g., Nara

et al. 2000; Stover et al. 2005; Richards et al. 2006).

A genome database search identified fragments of the

folB-folK-folP genes in the Ac. castellanii sequencing project

(Baylor College of Medicine—https://www.hgsc.bcm.edu/

microbiome/acanthamoeba-castellani-neff, last accessed

October 3, 2014) and within the recently completed

genome sequence (Clarke et al. 2013). To confirm that this

was a bona fide folB-folK-folP triple domain gene fusion, we

performed nested PCR on cDNA derived from an axenic cul-

ture of Ac. castellanii Neff strain grown in folate-limiting con-

ditions (GenBank Acc: AFW17812.1). This work confirmed

that Ac. castellanii transcribes a single gene fusion encoding

the folB-folK-folP domain architecture and provides evidence

of active folate biosynthesis via a complete pterin branch in

Ac. castellanii. Acanthamoeba can cause keratitis infection of

the cornea linked to use of contaminated contact lenses

(Radford et al. 1995). These data suggests the potential for

antimicrobial agents that inhibit pterin branch of folate bio-

synthesis (e.g., sulfonamides and sulfones) as therapeutic

treatment for Acanthamoeba keratitis or as an additive to

eye-care and contact lens solutions to prevent infections.

Exploiting metabolic differences between Acanthamoeba

and the human host is a potentially important avenue to iden-

tify new antimicrobials and limit toxic effects (Roberts and

Henriquez 2010), particularly in the eye. For example, sulpha-

diazine has been used to target different metabolic pathways

for the successful inhibition of Acanthamoeba growth in vitro

(Mehlotra and Shukla 1993) and encouraging reports of its

use in vivo have been made in experimentally induced

Acanthamoeba meningoencephalitis in mice (Rowan-Kelly

et al. 1982) and in granulomatous amoebic encephalitis in

AIDS patients (Seijo Martinez et al. 2000).

Phylogenetic Evidence for Frequency of Gene Fusion and
Fission Events

We conducted a series of phylogenetic analyses to investigate

if the gene fusion characters were monophyletic and identify
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any cases of gene fissions. Our results demonstrate the pres-

ence of a complex pattern of gene loss (discussed above).

Comparisons of the distribution of different folate fusion

genes to the established Opisthokonta phylogeny (James

et al. 2006; Torruella et al. 2012) combined with individual

domain phylogenetic analyses suggest a minimum of nine

gene fission events (five by fission through domain loss [dele-

tion] and four by fission through separation and retention of a

separate genes encoding the constituent domains) (fig. 3).

These suggest that gene fissions occur at a high rate in this

pathway and folB-folK-folP gene fusions are not stable char-

acters. This is consistent with a growing body of data demon-

strating that the process of gene/domain separation is an

important factor in gene evolution (Kummerfeld and

Teichmann 2005; Nakamura et al. 2007; Leonard and

Richards 2012).

Next, we used phylogenetic analysis to polarize the ances-

try of the folB-folK-folP gene fusion. Our phylogenetic analysis

generally proved inconclusive, because we failed to recover

tree resolution and specifically because there is no

Diaphoretickes and Excavata orthologue of the Amoebozoa

and Opisthokonta folB gene. Taken together the phylogenies,

therefore, do not constitute an appropriate test of the mono-

phyly of the three-domain gene fusion clade (i.e., Amoebozoa

and Opisthokonta). Furthermore, as the individual folate path-

way gene phylogenies were generally unresolved, it is possible

that undetected cases of hidden paralogy, multiple folB

tandem duplications, and HGT may have occurred in the evo-

lution of this pathway. HGT is especially a concern as some

literature suggests that gene clustering increases the possibility

that genes become fixed by selection once they have under-

gone transfer. This is because they lead to the acquisition of

functional modules, either as an operon and/or gene fusions

(e.g., Andersson and Roger 2002; Slot and Rokas 2010,

2011). Such factors would therefore act to further complicate

the evolution of this pathway, but at present are hard to

quantify using single-gene phylogenies. As we saw no addi-

tional evidence for HGT other than that discussed (i.e., ances-

tral acquisition of the folB gene in the Archaeplastida and

acquisition of a folB-folK gene fusion in Branchiostoma from

a likely prokaryotic source), we use the more parsimonious

interpretation of vertical inheritance to explain the gene dis-

tribution observed.

The phylogenies provided no strong support for the para-

phyly and convergent evolution of the three-domain gene

fusion in the Amoebozoa and Opisthokonta. Therefore, in

the absence of strong signal to support an alternative hypoth-

esis and based on current taxonomic distribution of this

character, we currently favour the null hypothesis that the

folB-folK-folP three-domain gene fusion is monophyletic and

arose once and before the diversification of the opisthokonts

and amoebozoans. We do acknowledge that alternative hy-

potheses involving fissions and loss in the Diaphoretickes and

Excavata taxa, or convergent gene fusions in the Amoebozoa

and Opisthokonta taxa are only slightly less parsimonious

given current data. This is an important concern as our data

demonstrated that this gene fusion is not a stable character,

subject to frequent gene fission and partial and total gene

loss. Consequently, perhaps the overriding message of this

work is that rare-derived genomic characters, such as gene

fusions, can be noisy and therefore these data should not be

applied to resolving evolutionary relationships without testing

their ancestry and susceptibility to homoplasy.

Supplementary Material

Supplementary figures S1–S7 and tables S1–S4 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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