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Abstract

Understanding the relative contributions of various evolutionary processes—purifying selection, neutral drift, and adaptation—is

fundamental to evolutionary biology. A common metric to distinguish these processes is the ratio of nonsynonymous to synonymous

substitutions (i.e., dN/dS) interpreted from the neutral theory as a null model. However, from biophysical considerations, mutations

have non-negligible effects on the biophysical properties of proteins such as folding stability. In this work, we investigated how

stability affects the rate of protein evolution in phylogenetic trees by using simulations that combine explicit protein sequences with

associated stability changes. We first simulated myoglobin evolution in phylogenetic trees with a biophysically realistic approach that

accounts for 3D structural information and estimates of changes in stability upon mutation. We then compared evolutionary rates

inferred directly from simulation to those estimated using maximum-likelihood (ML)methods. We found that the dN/dS estimated by

ML methods (!ML) is highly predictive of the per gene dN/dS inferred from the simulated phylogenetic trees. This agreement is strong

in the regime of high stability where protein evolution is neutral. At low folding stabilities and under mutation-selection balance, we

observe deviations from neutrality (per gene dN/dS> 1 and dN/dS<1). We showed that although per gene dN/dS is robust to these

deviations, ML tests for positive selection detect statistically significant per site dN/dS>1. Altogether, we show how protein

biophysics affects the dN/dS estimations and its subsequent interpretation. These results are important for improving the current

approaches for detecting positive selection.
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Introduction

Zuckerkandl and Pauling (1962) and subsequently Margoliash

(1963) observed that the amino acid differences between two

orthologous proteins are approximately proportional to the

elapsed time since their common ancestor. This apparently

steady rate of protein evolution is known as the molecular

clock (Zuckerkandl and Pauling 1965). Over the last five dec-

ades, the molecular clock has been central to debates in

evolutionary biology (i.e., selectionism vs. neutralism), and

provided a basis for estimating the divergence time of popu-

lations and species, detecting natural selection at genomic

scales and understanding the origin of sequence variations

(Rannala and Yang 2003; Kumar 2005; Yang and Rannala

2012; Du et al. 2013).

Traditionally, the ratio of the rates of nonsynonymous sub-

stitutions and synonymous substitutions (dN/dS) has been

used to detect patterns of selection in molecular evolution

(Kimura 1977; Yang and Bielawski 2000). A protein is con-

sidered under positive selection when the normalized rate of

nonsynonymous substitutions (dN) exceeds the rate of syn-

onymous substitutions (dS). Conversely, dN/dS<1 is usually

interpreted as meaning that the protein evolves slowly under

negative (purifying) selection (i.e., is more conserved), because

most of the nonsynonymous substitutions are detrimental to

fitness and consequently have low fixation probabilities. When

the normalized dN/dS ~ 1, the protein is considered to evolve

neutrally (Kimura 1977).

GBE

� The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

2956 Genome Biol. Evol. 6(10):2956–2967. doi:10.1093/gbe/evu223

-
-
http://creativecommons.org/licenses/by-nc/4.0/


Estimating dN/dS in practice requires statistical models of

sequence evolution, such as Markov chains (Felsenstein and

Churchill 1996; Lio and Goldman 1998; Holder and Lewis

2003). Specifically, maximum-likelihood (ML) and Bayesian

methods determine the probabilities of substitutions between

orthologous sequences using different nucleotide/amino acid

substitution models (Whelan and Goldman 1999; Anisimova

et al. 2001; Yang et al. 2005). It is likewise possible to test

several biological hypotheses with regards to dN/dS-variation

across different sites in a protein and along branches and

clades of phylogenetic trees and distinguish between them

using the likelihood ratio tests (LRT) (Yang 1998).

Despite the prevalence and utility of these statistical tools, it

is still largely unclear when and why rate variations occur, and

how they are influenced by real properties of the proteins.

From a molecular biophysics perspective, the protein stability

(folding free energy, i.e., �G) is one of the major determinants

of sequence evolution (Dokholyan and Shakhnovich 2001;

Taverna and Goldstein 2002a,b; Bloom et al. 2005; Williams

et al. 2006; Zeldovich et al. 2007; Goldstein 2008). Regardless

of specific function, proteins must be stable enough to pre-

serve their functional native structures, except perhaps the

special cases of intrinsically disordered proteins (Dyson and

Wright 2005). Furthermore, misfolding is emerging as an im-

portant etiological basis of many diseases (Soto 2003; Chiti

and Dobson 2006; Serohijos et al. 2008). Selection for protein

folding, including selection against detrimental effects of pro-

tein aggregation, is an important selection pressure in molecu-

lar evolution (Mirny et al. 1998; Li et al. 2000; Drummond

et al. 2005; Chen and Dokholyan 2008; Drummond and

Wilke 2008; Cherry 2010; Lobkovsky et al. 2010; Serohijos

et al. 2012, 2013; Goldstein 2013; Serohijos and Shakhnovich

2014).

To systematically investigate the influence of protein stabil-

ity on estimating dN/dS in phylogenetic trees, we constructed

a population of model organisms whose genomes encode for

a single protein Myoglobin (Mb). Similar to prior works (Chen

and Shakhnovich 2009; Goldstein 2011; Wylie and

Shakhnovich 2011), we assumed that the fitness of the

organism is proportional to the total number of folded Mb

proteins in the cell and hence a function of the folding stabil-

ity of Mb (Materials and Methods). The population was

subjected to the evolutionary process of mutation, drift, and

selection (Materials and Methods). The model explicitly

mapped the sequence to folding stability and fitness.

This approach enabled us to record complete evolutionary

histories and compare dN/dS from simulations (explicit count

of mutations that were fixed during simulation) with rates

estimated from the trees using standard approaches such

as ML.

We used Mb as the model protein because its main func-

tional phenotype (i.e., O2-binding as measured by the O2 pres-

sure at half Mb saturation [P50]) is almost constant in

mammals (Dasmeh and Kepp 2012), which is also reflected

in the conservation of the important functional residues

(Suzuki and Imai 1998; Scott et al. 2000). Many of these

sites are close to the heme group and are accordingly under

strong purifying selection. Thus, Mb provides a good test case

for investigating both nearly neutral drift, purifying, and posi-

tive selection for folding stability, as was in fact recently found

in Mbs of diving mammals (Dasmeh et al. 2013), suggesting

that all three types of evolutionary processes can be identified

and distinguished in this important protein.

First, we demonstrated that the biophysics-based evolu-

tionary model can recapitulate the pattern of conservation

in sequence alignment of real Mbs. We found a strong cor-

relation between ML-estimated per gene dN/dS and the com-

puted dN/dS from simulations when the evolving proteins are

very stable. In this regime of high stability, the arising muta-

tions are more neutral, producing the agreement with the ML

method. In the regime of less stability, we observed deviation

from neutrality and per gene dN/dS<1 and dN/dS>1.

However, the dN/dS>1 observations are not statistically sig-

nificant according to the LRT. Altogether, these observations

validate the ML approach for estimating the per gene dN/dS.

These statistical approaches are robust to the nonneutral ef-

fects of mutations on folding stability at the whole gene level.

Second, we explored per site dN/dS using ML approaches.

In the regime where proteins are less stable, stability effects

had major influence on the dN/dS estimates, showing that ML

methods are highly sensitive to underlying biophysical proper-

ties such as stability. Furthermore, the resolution of the phylo-

genetic tree affected the likelihood of observing positive

selection: Specifically, per gene dN/dS> 1 was observed

more frequently at higher resolution (i.e., shorter branch

lengths). These results are consistent with the molecular

clock being constant mainly over longer evolutionary times

due to cancellation of low and high rates of evolution and

suggest that observations of neutrality may be overestimated

due to such averaging effects.

Materials and Methods

Selection for Thermodynamic Stability

To investigate dN/dS of a protein evolving under a selection

pressure to maintain folding stability, the fitness F was

assumed proportional to the fraction of folded proteins in

the cell defined as F / Pnat where Pnat is the probability that

a sequence is in the native state at equilibrium given the

two-state model for protein unfolding (Privalov and

Khechinashvili 1974; Shakhnovich and Finkelstein 1989):

Pnat ¼
1

1þ expð b�GÞ
ð1Þ

Here, �G is the free energy of folding and b= 1/RT. The

Fermi–Dirac like form of equation 1 suggests that fitness ef-

fects of mutations are more dramatic at lower stabilities (Chen
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and Shakhnovich 2009). The effect of mutations on folding

stability is modeled as:

�Gafter ¼ �Gbefore þ��Gmutation ð2Þ

An arising mutation would have a selection coefficient s

defined as (Goldstein 2011; Wylie and Shakhnovich 2011):

s ¼
Fafter � Fbefore

Fbefore

~e b�Gbefore 1� e b��Gmutation
� �

ð3Þ

which can be positive, negative, or nearly zero corresponding

to mutations being beneficial, deleterious, or neutral. In a

monoclonal, haploid population, each arising mutation has a

probability of fixation described by the Kimura formula

(Kimura 1962):

Pfix ¼
1� expð�2sÞ

1� expð�2s� NeffÞ
ð4Þ

where Neff is the effective population size, which is approxi-

mately 104
�105 for mammals (Lynch and Conery 2003;

Mailund et al. 2011).

The effect of all single-point mutations on folding

stability was assumed to be additive (Fersht et al. 1992):

�G ¼ �G0 þ
Xn

i¼1

��Gi ð5Þ

Here, �G0 is the stability of the protein at time = 0, before

simulation, and ��Gi is the change in stability due to single-

point mutation i (supplementary table S1, Supplementary

Material online). Because of this additivity assumption and

the absence of epistatic energetic interactions between resi-

dues, any correspondence between calculated stability of pro-

teins using our approach and experimental stability should be

taken with caution. Mutation in one site of the protein could

affect the propensity of other sites toward mutation and

would change the phenotypes of the multisubstituted des-

cendants. Additional terms correcting for such epistasis in

the energy function have been suggested by Goldstein et al.

(Goldstein 2011; Pollock et al. 2012). However, for computa-

tional tractability, we keep our assumption of the additivity of

��G because this still maintains some important features of

the biophysics-based evolutionary models (Serohijos et al.

2013) (see the Materials and Methods section for details).

We show that despite the simplified assumption, the model

recapitulates the pattern of sequence divergence in real Mb

sequences and the general results are not influenced by epis-

tasis (see fig. 1C and description below).

Estimating the Effect of Point Mutations on Protein
Folding Stability

We used the structure of sperm whale Mb (PDB

code = 1MBO) (Phillips 1980) as our model protein. The as-

sumption of additivity (eq. 5) requires ��G due to single-

point mutations. We estimated the folding free energy

�Gwild type using the flexible-back bone method of the ERIS

algorithm (Yin et al. 2007a,b). To calculate the �Gmutant, we

replaced the amino acid in the PDB 1MBO and repacked and

optimized the side-chains to within 10Å of the site being

mutated. Backbone dihedrals were also allowed to relax to

minimize backbone strain. The �G was calculated for both

wild type and the mutant and ��G reported as �G

(mutants)��G (wild type). Altogether, we arrived at a

154�20 matrix of ��G values where each row corres-

ponded to a specific residue in sperm whale Mb and each

column to a possible mutated amino acid (see supplementary

table S1, Supplementary Material online).

For mutations in the residues important for O2 binding (i.e.,

residues 29, 43, 63, 64, 65, 68, 91, 92, and 93) (Dasmeh and

Kepp 2012), we did not calculate the ��G, but a priori as-

signed Pfix = 0 to mimic full conservation of these sites as seen

across mammalia. The obtained distribution of ��G distribu-

tion is consistent with experimental ��G values in the

ProTherm database (Sarai et al. 2001) and with data from

exhaustive computational mutagenesis (Tokuriki et al. 2007).

Protein Evolution Model and the Simulated Phylogenies

We evolved the Mb sequences using a model population of

Neff = 104 individuals, a reasonable effective population size

for mammals (Mesnick et al. 1999; Lynch and Conery 2003;

Charlesworth 2009). The population is assumed to be mono-

clonal. Under this assumption, the evolution could require an

update upon a mutation (see the Materials and Methods sec-

tion for details). When a mutation occurs, we randomly picked

a site and randomly performed a nucleotide substitution. If the

substitution is missense, we estimated the change in protein

folding stability ��G using equation 2.

The initial folding stability of the Mb was set to

�G =�7.5 kcal/mol (experimentally measured by [Scott

et al. 2000]). The Mb was evolved under selection for stability

(i.e., eqs. 3 and 4) toward the dynamic equilibrium of muta-

tion-selection balance. The last sequence in this equilibration

(~32% identical to the sperm whale Mb (see the supplemen-

tary information, Supplementary Material online, for details)

became our “ancestor” sequence in simulating the phylogen-

etic tree, as shown in figure 1B. The ancestor population was

bifurcated after � arising mutations, defined in multiples of

population size (e.g., �= 10Neff = 105 arising mutations). We

refer to l as resolution parameter throughout the text of this

paper. We continued this bifurcation procedure until the simu-

lated phylogenetic tree reached 1,024 external nodes.

Bioinformatics

We used the CODEML program within the PAML suite (Yang

2007) to calculate the ML-based dN/dS (denoted as !ML) for

the pairwise comparison of Mb sequences obtained from the

simulations. We estimated the equilibrium codon frequencies

from the products of the average observed nucleotide

Dasmeh et al. GBE

2958 Genome Biol. Evol. 6(10):2956–2967. doi:10.1093/gbe/evu223

&sim;
single 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu223/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu223/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu223/-/DC1
 in the supplementary information
s
-
and coworkers
single 
; Yin etal. 2007
 - 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu223/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu223/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu223/-/DC1
 in the supplementary information
-
(
)
s
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu223/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu223/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu223/-/DC1
``
'' 


frequencies in the three-codon positions (F3X4 model). No

codon preference was assumed in the model.

To check whether positive selection can be detected in

different amino acid sites of Mb sequences, a multiple se-

quence alignment of 1,024 Mb sequences of external nodes

of simulated phylogeny was used along with the tree in

Newick format (fig. 1C). The tree branch lengths were first

estimated with the M0 model that assumes one o across all

branches. Branches with dN or dS> 1.5 were removed from

the total number of branches to avoid problems associated

with saturation of synonymous and nonsynonymous sites. We

then used the branch lengths estimated by the M0 model in

more advanced codon substitution models as described

below. Essentially, codon models fit a set of Markov models

to the observed data (here: the extant sequences and the

phylogenetic tree) and calculate a likelihood function under

Gafter = Gbefore + G

s e Gbefore 1 e G( )
Pfix (s) =

1 exp 2s( )
1 exp 2Neff s( )

X
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FIG. 1.—Schematic and performance of structural and evolutionary analyses used in this study. (A) The Mb sequences were evolved in a population of

Neff = 104 cells under monoclonal conditions with selection for folding (eqs. 3 and 4). (B) A bifurcating simulated phylogeny with 1,024 external nodes was

constructed from an initial Mb sequence with �G =�6.84kcal/mol. Each bifurcation happens after � arising mutations in the ancestral sequence. (C)

Sequence conservation of simulated Mb sequences calculated with Kullback–Leibler score correlates with mammalian Mbs (see Materials and Methods

section and supplementary information, Supplementary Material online). (D) The pairwise distance distribution of subsequent substitutions on branches of

simulated (in blue) and real mammalian (in red) phylogenetic trees.
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different assumptions regarding variability of dN/dS across dif-

ferent sites of the protein, branches of the phylogeny, or both

(Yang 2006). We investigated five different site-models

described as M1, M2, M7, M8, and M8fix. The M1 model

assumes two categories of sites undergoing purifying selection

(o< 1) and neutral evolution (o= 1). In the M2 model, a third

set of sites with o> 1 is added to M1 model. The M7 model

partitions all the sites into ten different categories with o< 1

and fits a beta distribution to o. M8 adds an 11th category to

the M7 model witho allowed to have values> 1, and finallyo
is fixed to 1 for the 11th category of sites in M8fix model.

Because these models are inherently nested, different LRT can

be designed to investigate different hypotheses on the

observed sequences and phylogeny (Nielsen and Yang 1998).

Within a LRT test, twice the log-likelihood difference be-

tween two nested models should have a �2 distribution that

has a number of degrees of freedom equal to the differences

of free parameters in two models. For example, the nested

pair of site models M1 and M2, M7, or M8 or more rigorously

M8 and M8fix can be used to test whether there are sites

evolving under positive selection (i.e., o> 1) in the protein.

It is noteworthy that LRT in these cases only predicts the ex-

istence of such sites but not their exact location in the protein.

To identify the position of residues with significant dN/dS>1,

an Empirical Bayesian framework is implemented in CODEML

that calculates the probability that each site is sampled from a

particular site class. We recorded the posterior probabilities of

sites putatively under positive selection using the Bayes

Empirical Bayes (BEB) method that takes into account uncer-

tainties in the ML estimates of the parameters (Yang et al.

2005).

To compare sequence conservation of simulated Mbs

versus real mammalian Mbs, we used the Kullback–Leibler

(KL) conservation score (Kullback and Leibler 1951) for each

residue:

KL ¼
XN

i¼1

ln
PðiÞ

QðiÞ

� �
ð6Þ

where P(i) is the probability of amino acid i in that specific

residue and Q(i) is the background natural frequency of that

specific amino acid from the Uniprot database (UniProt

Consortium 2008). Eighty-three mammalian Mb sequences

were retrieved from the Uniprot database similar to our pre-

vious study (Dasmeh et al. 2013), and the KL conservation

score was compared with ten independent sets of 1,024 simu-

lated sequences using the MISTIC web server (Simonetti et al.

2013). We excluded the invariable residues in simulations (i.e.,

residues 29, 43, 63, 64, 65, 68, 91, 92, and 93) from this

analysis.

To investigate the importance of epistatic interactions in

our model, we calculated the pairwise distance distribution

of substitutions on each branch of simulated phylogenetic

trees. The distance of beta carbons, Cb, for all residues

(except for glycine where we used Ca) was used as the dis-

tance measure. For mammalian Mbs, we used the inferred

substitutions on each branch of mammalian phylogeny by

ancestral sequence reconstruction from the previous study

(Dasmeh et al. 2013) and applied the same measure to calcu-

late the distance distribution.

Results

Selection for Folding Stability, Epistasis, and Patterns of
Sequence Conservation

From in silico simulations in protein engineering, it is generally

known that selection for protein folding stability could repro-

duce the pattern of sequence conservation in real sequences

(Mirny and Shakhnovich 1999; Kuhlman and Baker 2000;

Dokholyan and Shakhnovich 2001; Ding and Dokholyan

2006). We first investigated whether our model can recapitu-

late the pattern of sequence conservation among real Mb

sequences. We constructed an alignment of “orthologous”

sequences from our evolutionary simulations (i.e., sequences

in the external nodes of a simulated phylogenetic tree) and

compared the patterns of sequence conservation with real

mammalian Mbs using the Kullback–Leibler conservation

score (Materials and methods). As shown in figure 1C, se-

quence conservation of simulated Mb sequences is signifi-

cantly correlated with real Mb sequences (P value ~2�10�4

for Spearman rank correlation). We further confirmed this

correlation by using ten independent simulated data sets

(see supplementary fig. S1, Supplementary Material online).

Epistasis is inherent to the model due to the curvature of

fitness landscape. The “Fermi–Dirac” form of equation 1 im-

poses a noncommutative effect for mutations (Wylie and

Shakhnovich 2011). However, the site–site epistasis in the

3D structure is not explicit because of the assumed additivity

of ��G. We also investigated to what extent epistatic inter-

actions among residues are recapitulated by the model.

Specifically, we asked whether mutations that are fixed in

each branch of the simulated phylogenetic tree are correlated

in the 3D structure of the Mb. We calculated the pairwise

distances of Cb (Ca for glycine) for mutations that were sub-

sequently fixated in the simulations (Materials and Methods).

As shown in figure 1D, the average distance between substi-

tutions is approximately 20Å with approximately 5% of mu-

tations having a distance less than 5Å. Therefore, in the

simulated trajectories, substitutions are less likely to be af-

fected by a substantial epistasis, although there are cases

where such substitution patterns occur. Importantly, these

correlations can have both positive and negative effects on

total stability and hence, Pfix, which will reduce total epistatic

contributions to dN/dS. We also investigated the distance dis-

tribution for substitutions occurring in the real evolution of

mammalian Mbs. From figure 1D, substitutions in branches

of the phylogenetic tree of real Mb occur (on average) in
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residues closer in the 3D structure compared with simulation.

This is expected because real Mbs are under selection for bio-

physical properties beyond folding stability. Nonetheless,

there is still epistasis in real sequences probably due to coevo-

lutionary constraints among the residues (de Juan et al. 2013).

Taken together, epistasis has a minor effect in the

simulated sequences compared with real Mbs but clearly of

relevance in future, more refined approaches, and we

conclude that our model is realistic enough for our scope,

that is, to capture the effect of selection for protein stability

on dN/dS.

Statistical Estimation of dN/dS Is Accurate When Proteins
Are Stable

We used the codon models and the ML estimation imple-

mented in CODEML to compute pairwise dN/dS (i.e., oML)

for proteins evolving under selection for stability (eqs. 3 and

4) in each branch of simulated phylogenies. Because we know

the full history of the simulated population, we can estimate

dN/dS (denoted as opop) by counting the number of synonym-

ous and nonsynonymous substitutions normalized by the aver-

age number of synonymous and nonsynonymous sites using

the sequence information in the simulation trajectories.

Figure 2A shows the �G versus oML for simulated protein

sequences. Each point corresponds to �G of a protein in in-

ternal nodes of the phylogenetic tree with the oML value cal-

culated between the protein sequence itself and its closest

extant sequence in the phylogenetic tree. We performed

these calculations over 12 simulated phylogenetic trees that

originated from the same ancestral Mb sequence. The stability

of the ancestral Mb is �G =�6.84 kcal/mol. Bifurcations

occurred after every �= 105 mutational attempts (i.e., the

resolution parameter) in the Mb sequence, which corresponds

to approximately 5 amino acid substitutions. Most branches

had !ML< 1 with an average of 0.55 and a standard deviation

of 0.51 (fig. 2A). These low evolutionary rates imply partial

conservation of the initial stability due to selection against

destabilizing mutations (eqs. 3 and 4), that is, purifying selec-

tion. However, 3,035 out of 20,887 branches displayed an

elevated rate of nonsynonymous versus synonymous substitu-

tions. �G spanned from approximately �4 kcal/mol to

�10 kcal/mol with an average of�6.34 kcal/mol and a stand-

ard deviation of 0.83 kcal/mol. The final obtained skewed dis-

tribution of �G was in good agreement with the empirical

distribution of stabilities derived from the Protherm database

(see the bottom panel in fig. 2A) (Sarai et al. 2001). This dis-

tribution has been articulated in several works (Bloom et al.

2005; Zeldovich et al. 2007; Goldstein 2011; Wylie and

Shakhnovich 2011).

There is a higher probability of deviation from neutrality

(i.e., oML = 1) at lower stabilities (fig. 2B), in agreement with

the theoretical prediction (Serohijos et al. 2013). During simu-

lated evolution, Mb spends much of its time under purifying

selection (i.e., oML< 1) while traversing to very high and low

stabilities as reflected in oML ~ 1 and oML>1, respectively.

Compared with the regime of stable proteins where evolution

is neutral, the probability of observing oML>1 or oML< 1

increases at intermediate stabilities up to its maximum at

�G ~�6 kcal/mol where �G has its most probable value

(fig. 2B). Although the molecular clock is expected to tick

fastest at the least stable regime (Serohijos et al. 2012), the

probability of observing oML>1 decreases because the prob-

ability density (i.e., distribution function of �G) approaches 0

at �G = 0 kcal/mol (Bloom et al. 2005; Zeldovich et al. 2007;

Goldstein 2011; Serohijos et al. 2012, 2013; Serohijos and

Shakhnovich 2014) (see supplementary information,

Supplementary Material online, for a detailed mathematical

analysis). This mechanism shows how the biophysical proper-

ties such as folding stability could affect the rate of protein

evolution. We note that because the folding stability is a global

property of proteins, it has a direct effect on the evolutionary

rate even in the absence of selection for particular protein

functions.

The recently derived relationship between protein stability

and dN/dS (Goldstein 2011; Serohijos et al. 2012, 2013) pro-

vides better understanding of these results. For an evolving

protein under selection for stability, there are three distinct

regimes for dN/dS, and these three regimes are obtained in

our simulations as well: First, at high stabilities, most mutations

do not have a selective advantage/disadvantage. For a protein

with �G =�10 kcal/mol, an average mutation with

��G = 1 kcal/mol has a fixation probability of approximately

10�4, similar to a neutral mutation at moderate population

size (i.e., Pfix& 1/Neff). Thus, within this regime of high stabil-

ity, most mutations are neutral with dN/dS ~ 1. However,

when proteins are unstable, destabilizing mutations are

either purged from the population (i.e., purifying selection

and thus dN/dS< 1) or randomly fixated to decrease folding

stability. In the latter case, even a slightly beneficial mutations

with ��G =�0.5 kcal/mol can be subsequently fixated with

probabilities that are approximately 10 times higher than for a

neutral mutation with ��G = 0 (see eqs. 3 and 4). As ex-

pected, in the regime of very low stability, protein evolution

is dominated by substitutions that increase stability (see sup-

plementary fig. S2, Supplementary Material online).

We wanted to investigate whether the current observa-

tions of per gene dN/dS> 1 are statistically significant. The

ML approach typically assigns significance to the estimated

dN/dS by comparison with neutral evolution (e.g., see

Nielsen et al. 2005). In figure 2C, we calculated twice the

difference of the logarithm of likelihood functions in the null

model of oML = 1 and the alternative model of free oML and

plotted oML versus this measure. Indeed the observed dN/dS

values> 1 are not deemed statistically significant, which

shows that ML approaches are robust against false detection

of positive selection at the level of the whole gene.
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We next compared the estimated dN/dS per gene as expli-

citly counted in the simulation (Materials and Methods) and

the dN/dS estimated using ML. Because the full history of the

population is known, one can explicitly count dS, dN, and

consequently compute dN/dS (See supplementary table S2,

Supplementary Material online, for the statistics of dN and

dS themselves). We thus asked whether ML methods could

accurately estimate the rates obtained from simulation.

Theoretically, in ML estimation of dN/dS, the rate ratio for

each site in the protein is treated as a variable in the transition

rate matrix of the relevant Markov model. The branch length

and transition/transversion ratio are estimated using ML.

These estimates are subsequently used in the evaluation of

per gene dN/dS as oML (Yang 2006).

Figure 3A shows the distribution of the ratio opop/oML

with a peak at opop/oML = 1; specifically, more than 90% of

all comparisons show opop/oML ~ 1 (fig. 3B). However, there

are deviants in the ML inference of opop (i.e., oML) that

are more frequently observed at lower folding stabilities. The

null hypothesis of opop and oML being independent random

samples from the same distributions with equal means

and equal but unknown variances is strongly rejected

when �G greater than�6 kcal/mol (supplementary fig. S3,

Supplementary Material online). This indicates a system-

atic deviation of oML from opop in the regime of modest

stability.

At higher folding stabilities, most mutations do not have a

significant effect on dN/dS. For Mb with �G =�9 kcal/mol,
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dN/dS is only altered by mutations having ��G> 4 kcal/mol

which have a probability of occurrence<0.04 (supplementary

fig. S4, Supplementary Material online). For proteins having

stabilities close to the average observed stabilities in the simu-

lated phylogenies (i.e., �G =�6.34 kcal/mol), dN/dS fluctu-

ates between high and low values due to the more frequent

mutations with marginal effects on stability (~±1 kcal/mol).

There is thus a stronger agreement between ML estimation

and explicit dN/dS values at higher stabilities where changes in

folding stability have neutral effects because of the extra

buffer in pre-mutation stability.

To explore the robustness of our method with respect to

population sizes, we simulated a phylogenetic tree with

1,024-extant sequences and Neff = 105. The average and the

variance of dN/dS was 0.51 and 0.22, respectively, for larger

population size (i.e., Neff = 105), significantly smaller than 0.55

and 0.26 for Neff = 104 (two sample t-test at the significance

level of 0.05). Furthermore, P(oML> 1) was slightly but signifi-

cantly higher at the smaller population size with 0.14 and 0.13

for Neff = 104 and Neff = 105, respectively. With the larger

population size, the average �G decreased to approximately

�7.66 kcal/mol, consistent with previous studies on the rela-

tion between population size and the strength of selection for

folding stability (Goldstein 2011; Wylie and Shakhnovich

2011). This effect is mainly due to the fact that in smaller

populations, drift is more prevalent and deleterious mutations

have a higher chance of fixation. Therefore, on average, pro-

teins are more stable (have a more negative �G) at larger

population sizes Neff = 105. Because proteins are more stable

in larger populations, we observed a lower probability of

oML>1.

We also checked the sensitivity of our results to the choice

of resolution parameter. Figure 4A and table 1 both show that

P(oML> 1) increases at higher resolutions (i.e., smaller values

for resolution parameter or fewer amino acid substitutions,

see supplementary fig. S5, Supplementary Material online).

As an example, the distributions of oML for �= 105 (in blue)

and �= 5�105 (in red) shown in figure 4B have aver-

ages ± standard deviations of 0.55 ± 0.51 and 0.46 ± 0.24, re-

spectively. The coefficient of variation (the standard deviation

divided by the mean) ofoML, as a measure of the dispersion of

the distribution, is likewise higher at higher resolutions.

Because proteins have a longer residence time in intermediate

stabilities, lower resolutions (i.e., larger values of resolution

parameter), mask infrequent transitions from low to moderate

stabilities in simulated phylogenies and hence, we observe

oML< 1 more frequently. Furthermore, more finite effects

are expected in the calculation of dN/dS at lower resolution

(e.g., compare the banding patterns between the blue and

the red scatter plots in fig. 4B). For a more systematic com-

parison of this finite effect artifact see supplementary figure

S8, Supplementary Material online.

Observation of Residues with Significant per Site
dN/dS> 1

We showed in the analysis of oML that the observation of per

gene dN/dS>1 is not statistically significant when compared

with neutral evolution. However, it has been shown that pro-

teins with per gene dN/dS values in the range of approxi-

mately 0.25 still have signatures of dN/dS> 1 at specific

sites (Swanson et al. 2004; Sawyer and Malik 2006). In the

same way that rates appear more “neutral” over time, that is,
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Table 1

Probability of Observing oML>1 and Coefficient of Variation of oML at Different Resolutions (i.e., �-parameter)

j= 105 j= 1.5� 105 j= 2� 105 j= 3� 105 j= 5� 105

P(oML> 1) 0.11 0.10 0.08 0.04 0.01

Coefficient of variation of oML 0.94 0.93 0.89 0.76 0.51
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in longer branches, due to cancellation of negative and posi-

tive selection processes, they also appear more neutral when

averaged over sites in the protein. We then determined if

folding stability also affects the estimation of per site dN/dS.

To identify residues with dN/dS> 1, we used the codon-based

models across different sites (i.e., site models). For an evolving

Mb sequence with l= 105 mutational attempts, three pair-

models as M1–M2, M7–M8, and M8fix-M8 were employed

to identify sites with dN/dS>1 as presented in table 2

(Materials and Methods). As shown in table 2, the LRT gave

a significant result, with six sites detected to show dN/dS> 1

significantly having high posterior probabilities using the BEB

test (Yang et al. 2005). Therefore, substitutions in these resi-

dues contribute to dN/dS> 1 and thus to higher ��G when

proteins are at low folding stabilities (see fig. 4C and D and

supplementary table S3 and fig. S6, Supplementary Material

online, for posterior probabilities of per site dN/dS).

Finally, we investigated the reproducibility of the results by

comparing results obtained from ten different phylogenetic

trees with evolving Mb sequences and �= 105. LRT was sig-

nificant in all cases, and different sites were detected to be

under positive selection (see the supplementary information,

Supplementary Material online, for LRT results). As presented

in table 2, the maximum !ML for the sites under positive se-

lection was 1.5, pointing to a weak yet significantly elevated

rate of evolution in these positions (fig. 4C and D). Altogether,

this shows that per site dN/dS estimated using ML provides

statistically significant dN/dS> 1 values when the entire evo-

lution is under mutation-selection balance. Thus, these results

suggest that the observation of per site dN/dS could be due to

transient substitutions to maintain the biophysical properties

(such as folding stability) under mutation-selection balance,

hence, not truly adaptive.

Discussion

Maintenance of folding stability is universal selection pressure

acting on all proteins except perhaps intrinsically disordered

proteins (Dokholyan and Shakhnovich 2001; Williams et al.

2006; Goldstein 2008; Soskine and Tawfik 2010; Heo et al.

2011; Serohijos et al. 2012, 2013; Serohijos and Shakhnovich

2014). We have shown in this work that such a type of selec-

tion pressure can directly influence rates of protein evolution,

estimated by dN/dS and distinguish regimes of neutral drift

(high stability) from regimes of selection (low stability).

First, at higher folding stabilities, most arising mutations are

neutral and do not have tangible effects on fitness (i.e., Pnat): A

highly stable protein (e.g., �G<�9 kcal/mol) is still “stable

enough” after a typical mutation reducing stability by

1 kcal/mol. This stems from the sigmoidal relation between

the fraction of folded proteins and folding free energy (eq.

1) (Chen and Shakhnovich 2009). In the process of calculating

dN/dS by ML methods, the ratio of the rates of nonsynon-

ymous to synonymous substitutions is assumed to be un-

changed for all nonsynonymous substitutions, which is most

likely the case at higher folding stabilities. For proteins in this

regime, dN/dS inferred from ML methods, oML, correlates

more strongly with the dN/dS from simulations calculated by

explicitly tracking the number of synonymous and nonsynon-

ymous substitutions and normalizing by the number of syn-

onymous and nonsynonymous sites, oPOP. Thus, ML estimates

of dN/dS using codon models, as widely done in the commu-

nity, are more reliable in the regime of high folding stability

because mutations are neutral and the molecular clock as-

sumption is valid.

Second, in the unstable regime where proteins are prone to

unfolding, protein evolution has two forms of selection. One is

purifying selection against destabilizing mutations leading to

dN/dS< 1, and another is positive selection of stabilizing mu-

tations leading to dN/dS> 1. We showed that per gene ML

estimation of dN/dS is robust to such sporadic deviations from

neutrality and the proteins as a whole remain in the nearly

neutral regime, consistent with the fact that whole-gene es-

timates are insensitive to local selection patterns and are too

coarse-grained to detect selection.

In contrast, per site estimation of dN/dS reveals statistically

significant selection signatures in different residues with

dN/dS ~ 1.5. This observation is consistent with the require-

ment of approximately 1�2 nonsynonymous substitutions to

bring the folding stability of Mbs back to its average value, as

shown in figure 2A. This contrast between per gene and per

site estimation of dN/dS is analogous to the loss of information

Table 2

Log-Likelihood Values of the Site Models with Detected Sites Having dN/dS> 1

Models (number

of parameters)

ln L 2�l = 2� (ln L1–ln L2) P value Positively Selected Sites (BEB:

Pr(u>1)> 0.5)a [uML]

M1a (2) �65,183.82 — — —

M2a (4) �65,141.86 (M1a vs. M2a) 83.92 <10�16 34 [1.47], 48 [1.49], 59 [1.50], 119 [1.49],

133 [1.50], 139 [1.50]

M7 (2) �64,591.18 — — —

M8 (4) �64,563.17 (M7 vs. M8) 56.02 6.84� 10�13 48 [1.32], 59 [1.50], 119 [1.48], 133 [1.50], 139 [1.50]

M8fix (3) �64,586.49 (M8 vs. M8fix) 46.64 8.53� 10�12 —

NOTE.—ln L is the logarithm of likelihood function fitted to the relevant model.
aPr(oML> 1)> 0.95 is shown in italics.
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of the inherent dynamics of the collision of particles when the

mean free path is much smaller than the chamber size, and

illustrates how gene-averaging destroys selection signatures.

We have shown that once these issues are resolved (in the

case of protein evolution by looking at per site dN/dS) the

fixation dynamics leaves an imprint on genomic sequences

via dN/dS ~ 1.5. Although the observation of dN/dS>1 is

often interpreted as positive selection due to adaptations

and niching, our study shows that compensatory substitutions

at very low stability regimes can also increase dN/dS signifi-

cantly. This conclusion is in line with the view that selection of

beneficial mutations is necessary in order to compensate for

deleterious mutations (Fisher 1999; Sawyer et al. 2007;

Mustonen and Lässig 2009).

One limitation of the model is that it does not explicitly

account the epistatic interaction among sites in the protein,

although the model itself has epistatic interactions because of

the curvature of the fitness function (Materials and Methods).

Ideally, one should update the folding stability by calculating

the ��G of the arising mutation using the physical force field

and the crystal structure as input. However, this is computa-

tionally prohibitive in evolutionary simulations. Importantly,

the major contributions to our observed rate variations

come from small groups of compensating substitutions, typ-

ically less than a handful. As was shown in this work, the

probability that these few sites are close together and thus

infer important epistasis to the observed dynamics is small,

especially because their effects can be both toward increasing

or reducing Pfix. Instead, the global stability compensation

drives the rate variations, and these are largely robust to epis-

tasis. Still, epistasis is observed in some instances where sub-

stitutions occur in nearby sites. Whether this has any effect on

true rate variations, that is, whether these correlations change

��G enough to change the general fixation dynamics, re-

mains to be investigated.

Supplementary Material

Supplementary information, figures S1–S7, tables S1–S3, and

trees S1–S10 are available at Genome Biology and Evolution

online (http://www.gbe.oxfordjournals.org/).
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