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Additive interactions can have public health and etiological implications but are infrequently reported. We

assessed departures from additivity on the absolute risk scale between 9 established breast cancer risk factors

and 23 susceptibility single-nucleotide polymorphisms (SNPs) identified from genome-wide association studies

among 10,146 non-Hispanic white breast cancer cases and 12,760 controls within the National Cancer Institute’s

Breast and Prostate Cancer Cohort Consortium.We estimated the relative excess risk due to interaction and its 95%

confidence interval for each pairwise combination of SNPs and nongenetic risk factors using age- and cohort-

adjusted logistic regression models. After correction for multiple comparisons, we identified a statistically significant

relative excess risk due to interaction (uncorrected P = 4.51 × 10−5) between a SNP in the DNA repair protein

RAD51 homolog 2 gene (RAD51L1; rs10483813) and body mass index (weight (kg)/height (m)2). We also com-

pared additive and multiplicative polygenic risk prediction models using per-allele odds ratio estimates from previ-

ous studies for breast-cancer susceptibility SNPs and observed that the multiplicative model had a substantially

better goodness of fit than the additive model.

additive interactions; breast cancer; genome-wide association studies; single-nucleotide polymorphisms

Abbreviations: BMI, body mass index; BPC3, Breast and Prostate Cancer Cohort Consortium; COX11, cytochrome C oxidase

assembly homolog 11 gene; ER, estrogen receptor; GWAS, genome-wide association study(ies); LSP1, lymphocyte-specific protein

1 gene; PRS, polygenic risk score;RAD51L1, DNA repair proteinRAD51 homolog 2 gene; RERI, relative excess risk due to interaction;

SNP, single-nucleotide polymorphism.

Genome-wide association studies (GWAS) have identified
at least 74 independent susceptibility loci for breast cancer
(1–12) or for specific subtypes, such as estrogen receptor
(ER)-negative breast cancer (13–16). Characterization of
the joint effects of multiple susceptibility loci and established

risk factors such as number of livebirths and body mass index
(BMI; weight (kg)/height (m)2) may shed light on biological
mechanisms of breast cancer etiology and help improve risk
prediction, potentially influencing public health guidelines.
Todate, 4 large-scale studies have explored gene-environment
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interactions between GWAS-identified single-nucleotide
polymorphisms (SNPs) and breast cancer risk (17–20).While
3 of these studies found no evidence for departure from mul-
tiplicativity after correction for multiple comparisons, the
fourth found evidence of effect-measure modification be-
tween the lymphocyte-specific protein 1 gene (LSP1) variant
rs3817198 and breast cancer risk by parity (20).

Epidemiologists most frequently report departure from
multiplicativity while characterizing interactions (21), and
they assume multiplicative joint effects on the absolute risk
scale while predicting risk (22–24). It is important to consider
other measures of interaction between risk factors as well,
such as additive joint effects on the absolute risk scale, in
order to benefit from the additional information obtained
from them (25, 26). To our knowledge, tests for additive in-
teraction between confirmed susceptibility SNPs and estab-
lished breast cancer risk factors have not been reported.

Additive interactions—departures from additivity on the
absolute risk scale—have public health as well as etiological
implications (25, 27, 28). Additive interactions between an
environmental risk factor (exposure) and a genetic risk factor
(SNP) test whether the excess in absolute risk of the disease
due to presence of the exposure is the same in persons who
carry the SNP and those who do not. They help identify
subgroups of individuals for whom a targeted intervention
designed to reduce a modifiable exposure could have the
highest impact. Assessment of changes in risk differences be-
tween exposed and unexposed subjects is straightforward
when genotype and exposure data are available on a full co-
hort of subjects with prospective disease follow-up. How-
ever, departures from additivity on the absolute risk scale can
also be estimated from case-control data. Several measures of
additive interaction that can be calculated from case-control
data have been introduced (29–31). The relative excess risk
due to interaction (RERI) may be the most useful in terms
of assessing synergism between 2 binary risk factors (32, 33).

GWAS SNPs have also been used to improve existing
breast cancer risk prediction models (22, 24, 34–37). In
these studies, polygenic models have generally assumed mul-
tiplicative joint effects of SNPs on the relative risk scale.
Under this multiplicative model, the absolute risk in the
tails of the distribution can be strikingly elevated relative to
the average risk. As more markers are identified and added to
the risk model, the increase in risk in the tails may be clini-
cally useful—for example, by identifying women whowould
benefit from earlier screening or chemoprevention. However,
for most women (those in the middle of the risk distribution),
their estimated risks under additive and multiplicative risk
models are quite similar, while the estimated absolute risks in
the tails under an additive risk model are much less extreme
(women in the top1%of thedistributionhave a1.3-fold higher
risk of breast cancer than average) (38). Thus, how well the
multiplicative model fits the observed risk in the tails is an
important practical question that has not yet been extensively
studied.

Our objective in this study was to test for departures from
additivity on the absolute risk scale between 9 established
risk factors for breast cancer and 23 GWAS-identified breast
cancer susceptibility SNPs within the National Cancer Insti-
tute’s Breast and Prostate Cancer Cohort Consortium (BPC3).

We also assessed whether an additive joint-effects model or a
multiplicative joint-effects model based on external individual-
marker odds ratio estimates was a better fit for the combined
effects of 19 independent GWAS-identified breast cancer sus-
ceptibility SNPs (excluding 4 ER-negative SNPs).

METHODS

Study population

Cases and matched controls were drawn from 8 prospec-
tive cohort studies (39–46) conducted in the United States,
Europe, and Australia, as described in the Web Appendix
(available at http://aje.oxfordjournals.org/). We restricted
analysis to 10,146 cases of invasive breast cancer and 12,760
controls of European ancestry, matched on age and additional
criteria specific to the cohorts.

SNP selection and genotyping

We selected for analysis 23 independent SNPs from 23 dis-
tinct risk loci that had been identified in GWAS published be-
fore November 2012. Details on the selection process and
genotyping are given in the Web Appendix.

Assessment of established nongenetic breast cancer

risk factors

Risk factor data were obtained prior to disease diagnosis
(at the time of inclusion in the cohort or at blood draw) using
structured questionnaires. These datawere sent to the German
Cancer Research Center (Deutsches Krebsforschungszentrum,
Heidelberg, Germany) for systematic, centralized data checks,
removal of inconsistencies, and harmonization. We had in-
formation on established breast cancer risk factors, including
age, height, weight, BMI, age at menarche, number of full-
term pregnancies, age at first full-term pregnancy, age at
menopause, history of oral contraceptive use, smoking status
(never, former, or current smoker), alcohol intake (g/day),
and family history of breast cancer in first-degree relatives
(Web Table 1).

Statistical analysis

For analyses of gene-gene and gene-environment interac-
tion, we converted all genetic and exposure variables into bi-
nary forms to allow for easy interpretability and to draw
possible mechanistic conclusions within the sufficient-cause
framework (47). Furthermore, since these SNPs and expo-
sures were established risk factors for breast cancer, it was
possible (at least for very strong risk factors such as family
history) to code our variables so that their expected marginal
odds ratios, based on previous literature, would be greater
than 1.0. This is consistent with the monotonicity assumption
for synergism, but we note that this assumption cannot be
verified empirically, as it is based on individuals’ disease out-
comes under counterfactual exposure patterns (48). There-
fore, all SNPs were assumed to have a dominant effect of
the risk allele and were represented in models by a coding
of 0 or 1, based on whether the study participant had at
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least 1 risk allele for the SNP. The 9 exposure variables were
transformed to their binary forms based on previously used
cutpoints (19)—height (≤1.63 m vs. >1.63 m), BMI (<30
vs. ≥30), age at menarche (>11 years vs. ≤11 years), ever
having a full-term pregnancy (yes vs. no), age at first full-
term pregnancy (<30 years vs. ≥30 years), age at menopause
(<50 years vs. ≥50 years), smoking (never vs. ever), alcohol
intake (<14 g/day vs.≥14 g/day), and family history of breast
cancer in a first-degree relative (no vs. yes).
In addition to the 9 exposure variables, we created a risk

score based on the Gail model (49), henceforth called the
“modified Gail score,” because we did not have information
on number of biopsies for all study participants. Themodified
Gail scorewas set to missing for 7,085 study participants who
had missing values on any of the remaining variables used to
calculate the Gail score (age, age at menarche, age at first live-
birth, and number of first-degree relatives with breast cancer).
The modified Gail score was converted to its binary form by
using the 90th percentile among controls as the cutoff. We
created a similar polygenic risk score (PRS) for SNPs, which
was the count of the number of risk alleles in 19 SNPs (ex-
cluding 4 SNPs identified in ER-negative breast cancer
GWAS scans), weighted by their log odds ratios as reported
in external GWAS (Web Table 2). Missing values for the 19
SNPs were imputed on the basis of allele frequencies in cases
and controls. The observed count of risk alleles ranged from
9 to 30, with a mean of 18.3 among controls and 19.1 among
cases. The PRS (weighted count of risk alleles) was used to
dichotomize participants into 2 groups using the 75th per-
centile among controls, thus creating a binary variable named
the “polygenic score.”
Unconditional logistic regression models were used to test

for associations between each of the 23 SNPs (Table 1) and
breast cancer, as well as ER-negative breast cancer. All mod-
els adjusted for age at baseline (5-year interval groups) and
for cohort using indicator variables.
We tested for departure from additivity on the absolute risk

scale for the joint association of each SNP-exposure combi-
nation, by estimating the RERI and computing 95% confi-
dence intervals around the estimated RERI, using the delta
method described by Hosmer and Lemeshow (29). RERIs
and 95% confidence intervals were calculated for all pairwise
combinations of 24 genetic variables (23 SNPs and poly-
genic score) with 10 exposure variables (including modified
Gail score), using unconditional logistic regression models
adjusting for age at baseline (5-year interval groups) and
for cohort. We accounted for multiple comparisons through
family-wise error rate correction of P values (Bonferroni cor-
rection); that is, adjusted P values were calculated by multi-
plying unadjusted P values by 240 (the number of tests).
When the adjusted P value for the RERI was less than 0.05,

we also calculated point estimates and confidence intervals for
other measures of additive interaction—the attributable propor-
tion and the synergy index. For these SNP-exposure combina-
tions, we also further characterized interactions after stratifying
participants by menopausal status and by restricting analysis to
ER-positive or ER-negative cases.
We next tested whether an additive or multiplicative model

was a better fit for the simultaneous combination of 19
SNPs known to be associated with overall breast cancer. To

this end, we calculated expected cell counts in the cross-
tabulation of case-control status by risk allele count, condi-
tional on the marginal distribution of genotypes and disease
indicators and under the assumption of multiplicative com-
bined effects of SNPs (PRSM) and of additive combined ef-
fects (PRSA). For calculation of PRSM and PRSA, weweighted
each risk allele by the strength of the association (relative risk
estimate from log additive models) obtained from exter-
nal, independent GWAS or GWAS validation studies (Web
Table 2). The expected number of cases from multiplicative
and additive models was compared with the observed number
of cases within each observed count of risk alleles. Partici-
pants with fewer than 10 risk alleles (n = 9) were assigned
a value of 10, and participants with more than 28 risk alleles
(n = 4) were assigned a value of 28, to ensure adequate num-
bers in each cell. We assessed the goodness of fit of the mul-
tiplicative model by comparing a model containing counts of
risk alleles as indicator variables with a model in which the
β estimate for log(PRSM) was constrained to 1 using the like-
lihood ratio test. The goodness of fit for the additive model
was calculated similarly.
We estimated allele-count-specific 1-year risks via Bayes’

theorem (50, 51) and 95% confidence intervals for 50-year-
old non-Hispanic white females, using relative risks esti-
mated from the BPC3 case-control data and assuming the
average annual breast cancer incidence rate to be 200 per
100,000 women (approximated from Surveillance, Epidemi-
ology, and End Results data (52)). These values were then
compared with predicted absolute risks for each study partic-
ipant, calculated under the assumptions of multiplicative joint
effects (using PRSM) and additive joint effects (using PRSA).
All statistical inferences were made using 2-sided tests.

Statistical analyses were conducted using R, version 2.13.1
(R Foundation for Statistical Computing, Vienna, Austria),
and STATA/SE, version 11.2 (StataCorp LP, College Station,
Texas).

RESULTS

Web Table 1 shows average age, stage at diagnosis, and
tumor characteristics (ER status and progesterone receptor
status) for the 10,146 case participants, by cohort. The aver-
age age at diagnosis was lower in the Nurses’Health Study II
cohort (47.6 years, as compared with 61.3 years for all co-
horts combined), because it is predominantly a cohort of pre-
menopausal females (67% premenopausal, compared with
23% in all other cohorts combined). Our study population in-
cluded a total of 2,540 cases of advanced breast cancer and
1,563 cases of ER-negative breast cancer.
Table 1 shows the associations between the 23 selected

SNPs and breast cancer and ER-negative breast cancer. Sev-
enteen SNPs (including 1 of the 4 ER-negative SNPs) were
statistically significantly associated with breast cancer. All
statistically significant associations were comparable in mag-
nitude and direction with those reported in previous literature.
We did not see a statistically significant association for 3 of
the 19 breast cancer SNPs (rs2380205/10p15.1 (intergenic);
rs909116/LSP1; rs6504950/cytochrome C oxidase assembly
homolog 11 (COX11)). Five SNPs, including 2 of the 4
ER-negative SNPs, showed an association with ER-negative
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breast cancer (Table 1). The associations of the selected non-
genetic risk factors with breast cancer and with ER-negative
breast cancer are reported in Web Table 3.

RERI point estimates and 95% confidence intervals for the
240 pairwise SNP-exposure combinations are shown in Web
Table 4, and Q-Q plots are shown in Web Figure 1. Five
SNP-exposure additive interactions with unadjusted P values
less than 0.005 were observed, of which 3 involved a SNP in
the DNA repair protein RAD51 homolog 2 gene (RAD51L1),

rs10483813. After family-wise error rate correction, depar-
ture from additivity on the absolute risk scale was observed
for this RAD51L1 SNP and BMI (BMI <30 vs. BMI ≥30;
RERI = 0.49 (95% confidence interval: 0.26, 0.73); un-
adjusted P = 4.51 × 10−5, family-wise error rate-corrected
P = 0.011). To preserve consistency of interpretation across
several measures of additive interaction (53), we recoded the
reference category based on the lowest risk stratum in the
joint-effects model (Web Table 5). We observed main-effects

Table 1. Associations of Selected Single-Nucleotide Polymorphisms With the Risks of Breast Cancer and Estrogen Receptor-Negative Breast

Cancer in the Breast and Prostate Cancer Cohort Consortium

SNPa Locus and/or
Gene

Chr Position
First Author, Year
(Reference No.)

All Breast Cancer ER-Negative Breast Cancer

ORb 95% CI P Value ORb 95% CI P Value

rs11249433 NOTCH2/1p11.2 1 120,982,136 Thomas, 2009 (4) 1.13 1.06, 1.20 0.0002 1.04 0.92, 1.17 0.534

rs1045485 CASP8 2 201,857,834 Cox, 2007 (8) 1.29 1.02, 1.64 0.035 1.69 0.98, 2.92 0.059

rs13387042 2q35 2 217,614,077 Stacey, 2007 (2) 1.18 1.10, 1.26 7.31 × 10−6 1.10 0.96, 1.26 0.178

rs4973768 3p24.1/SLC4A7 3 27,391,017 Ahmed, 2009 (11) 1.13 1.05, 1.20 0.0006 1.01 0.89, 1.15 0.870

rs10069690c TERT 5 1,332,790 Haiman, 2011 (14) 1.05 0.99, 1.12 0.089 1.13 1.01, 1.27 0.032

rs10941679 5p12 5 44,742,255 Stacey, 2008 (3) 1.16 1.09, 1.23 7.20 × 10−7 1.02 0.90, 1.14 0.798

rs889312 MAP3K1 5 56,067,641 Easton, 2007 (1) 1.13 1.07, 1.20 4.78 × 10−5 1.04 0.93, 1.16 0.531

rs17530068c 6q14.1 6 82,249,828 Siddiq, 2012 (15) 1.09 1.02, 1.15 0.006 1.09 0.96, 1.24 0.165

rs2046210 6q25.1/ESR2 6 151,990,059 Zheng, 2009 (10) 1.11 1.05, 1.18 0.0005 1.14 1.01, 1.28 0.030

rs1562430 8q24.21 8 128,457,034 Turnbull, 2010 (5) 1.16 1.07, 1.25 0.0004 1.03 0.87, 1.23 0.699

rs1011970 CDKN2BAS 9 22,052,134 Turnbull, 2010 (5) 1.08 1.02, 1.15 0.012 1.14 1.00, 1.30 0.055

rs865686 9q31.2 9 109,928,299 Fletcher, 2011 (6) 1.19 1.09, 1.30 5.87 × 10−5 1.32 1.09, 1.61 0.005

rs2380205 10p15.1 10 5,926,740 Turnbull, 2010 (5) 1.05 0.97, 1.13 0.209 1.04 0.89, 1.22 0.592

rs10995190 10q21.2/ZNF365 10 63,948,688 Turnbull, 2010 (5) 1.30 1.04, 1.62 0.021 1.28 0.79, 2.09 0.312

rs1250003d ZMIZ1 10 80,516,820 Turnbull, 2010 (5) 1.08 1.02, 1.15 0.014 0.98 0.86, 1.11 0.744

rs2981582 FGFR2 10 123,342,307 Easton, 2007 (1);
Hunter, 2007 (7)

1.25 1.18, 1.33 1.87 × 10−12 1.04 0.92, 1.17 0.533

rs909116 LSP1 11 1,898,522 Turnbull, 2010 (5) 1.06 0.98, 1.14 0.133 1.04 0.89, 1.21 0.625

rs614367 11q13 11 69,037,945 Turnbull, 2010 (5) 1.16 1.09, 1.24 7.91 × 10−6 1.07 0.93, 1.23 0.339

rs10483813d RAD51L1 14 68,101,037 Thomas, 2009 (4) 1.28 1.11, 1.47 0.0005 0.99 0.77, 1.28 0.947

rs3803662 TNRC9/TOX3 16 51,143,842 Easton, 2007 (1);
Stacey, 2007 (2)

1.23 1.16, 1.31 6.12 × 10−12 1.11 0.99, 1.24 0.079

rs6504950 COX11 17 50,411,470 Ahmed, 2009 (11) 1.10 0.98, 1.24 0.091 1.11 0.89, 1.40 0.344

rs8170c C19ORF62 19 17,250,704 Antoniou, 2010 (13) 1.01 0.95, 1.07 0.780 1.25 1.11, 1.41 0.0002

rs2284378c,d 20q11.22/RALY 20 32,051,756 Siddiq, 2012 (15) 1.00 0.94, 1.05 0.878 1.11 0.98, 1.25 0.087

Abbreviations: CASP8, caspase 8, apoptosis-related cysteine peptidase gene; CDKN2BAS, CDKN2B antisense RNA (non-protein coding)

gene; Chr, chromosome; CI, confidence interval; C19ORF62, chromosome 19 open reading frame 62 gene; COX11, cytochrome C oxidase

assembly homolog 11 gene; ER, estrogen receptor; ESR2, estrogen receptor 2 gene; FGFR2, fibroblast growth factor receptor 2 gene; LSP1,

lymphocyte-specific protein 1 gene; MAP3K1, mitogen-activated protein kinase kinase kinase 1, E3 ubiquitin protein gene; NOTCH2, Notch

(Drosophila) homolog 2 gene; OR, odds ratio; RAD51L1, DNA repair protein RAD51 homolog 2 gene; RALY, RALY heterogeneous nuclear

ribonucleoprotein gene; SLC4A7, solute carrier family 4, sodium bicarbonate cotransporter, member 7 gene; SNP, single-nucleotide polymorphism;

TERT, telomerase reverse transcriptase gene; TNRC9, trinucleotide repeat-containing 9 gene; TOX3, TOX high mobility group box family

member 3 gene; ZMIZ1, zinc finger, MIZ-type containing 1 gene; ZNF365, zinc finger protein 365 gene.
a Associations in the Breast and Prostate Cancer Cohort Consortium were determined for each SNP, assuming a dominant effect of risk alleles

reported in previous studies.
b ORs and 95% CIs were calculated using unconditional logistic regression models adjusting for age at baseline (5-year intervals) and cohort.
c SNP identified from an ER-negative genome-wide association study scan.
d Some cohort studies genotyped proxy SNPs for the reported SNP. For example, rs704010 was a proxy for rs1250003 (r2 = 1 in the HapMap

CEU population (Utah residents with Northern andWestern European ancestry) (65)); rs999737 was a proxy for rs10483813 (r2 = 1 in the HapMap

CEU population); and rs6059651 was a proxy for rs2284378 (r2 = 1 in the HapMap CEU population).
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odds ratios greater than 1 for the TA/TT genotype as well as
BMI <30; however, the estimated increase in absolute risk of
breast cancer among persons with BMI <30 and the TA/TT
genotype was less than expected by addition of the excess
risk due to BMI reduction alone or by TA/TT genotype
alone: RERI = −0.95 (95% confidence interval: −1.77,
−0.12). We observed an inverse association between BMI
and breast cancer risk among women with the rs10483813
AA genotype but not among women with the TA or TT
genotype (Tables 2 and 3). This interaction pattern did not

change substantially within strata of menopausal status or
family history (Web Table 6). We note that the risk allele
for rs10483813 is quite common (minor allele frequency =
0.23), so the reference category (women homozygous for
the reference allele and with BMI ≥30) was rather small (n =
148; 0.9% of total). This suggests that this interaction may
have been a false-positive finding due to low power or to sta-
tistical properties of the RERI in small samples.
When comparing risks predicted on the basis of a PRS

using external weights with the observed data in the BPC3,

Table 2. Relative Excess Risk of Breast Cancer Due to Interactiona Between the RAD51L1 Single-Nucleotide Polymorphism rs10483813 and

Body Mass Index in the Breast and Prostate Cancer Cohort Consortium

rs10483813b

Genotype
Genotype
Frequency

Body Mass Indexc

<25 25–<30 ≥30

No. of
Cases

No. of
Controls

OR 95% CI
No. of
Cases

No. of
Controls

OR 95% CI
No. of
Cases

No. of
Controls

OR 95% CI

AA 0.056 180 287 1.00 Referent 110 186 0.92 0.68, 1.24 34 114 0.50 0.33, 0.78

TA 0.347 1,153 1,725 1.05 0.86, 1.29 774 1,086 1.12d 0.90, 1.38 378 560 1.07e 0.85, 1.35

TT 0.598 2,122 2,933 1.15 0.95, 1.40 1,286 1,755 1.15f 0.94,1.40 724 971 1.18g 0.95, 1.46

Abbreviations: CI, confidence interval; OR, odds ratio; RAD51L1, DNA repair protein RAD51 homolog 2 gene; RERI, relative excess risk due to

interaction.
a The RERI is a measure of departure from additivity on the absolute risk scale. RERIs and 95%CIs were calculated using unconditional logistic

regression models adjusting for age at baseline (5-year intervals) and cohort.
b Some cohort studies genotyped the proxy single-nucleotide polymorphism rs999737 for rs10483813 (r2 = 1 in the HapMap CEU population

(65)). The T allele is the risk allele for rs10483813, and the A allele is the protective allele (4). The P value for multiplicative interaction between

rs10483813 and body mass index was 0.002. Synergy indices for interaction between rs10483813 and body mass index were undefined using

this reference category.
c Weight (kg)/height (m)2; categorized into 3 levels based on the World Health Organization classification (66).
d RERI = 0.15 (95% CI: −0.15, 0.45); P-RERI = 0.335.
e RERI = 0.52 (95% CI: 0.25, 0.79); P-RERI = 0.000168.
f RERI = 0.08 (95% CI: −0.21, 0.38); P-RERI = 0.603.
g RERI = 0.52 (95% CI: 0.22, 0.82); P-RERI = 0.000621.

Table 3. Relative Excess Risk of Breast Cancer Due to Interactiona Between the RAD51L1 Single-Nucleotide

Polymorphism rs10483813 and Body Mass Index After Designation of the Lowest Risk Category (Body Mass

Index ≥30 and AA Genotype) as the Reference Category in the Breast and Prostate Cancer Cohort Consortium

rs10483813b

Genotype

Body Mass Indexc

≥30 ≥25–<30 <25

OR 95% CI OR 95% CI OR 95% CI

AA 1.00 Referent 1.81 1.15, 2.85 1.98 1.29, 3.04

TA 2.13 1.42, 3.20 2.21d 1.48, 3.29 2.08e 1.41, 3.09

TT 2.33 1.57, 3.47 2.27f 1.54, 3.37 2.29g 1.55, 3.38

Abbreviations: CI, confidence interval; OR, odds ratio; RAD51L1, DNA repair protein RAD51 homolog 2 gene;

RERI, relative excess risk due to interaction.
a The RERI is a measure of departure from additivity on the absolute risk scale. RERIs and 95% CIs were

calculated using unconditional logistic regression models adjusting for age at baseline (5-year intervals) and cohort.
b Some cohort studies genotyped the proxy single-nucleotide polymorphism rs999737 for rs10483813 (r2 = 1 in the

HapMap CEU population (65)). The T allele is the risk allele for rs10483813, and the A allele is the protective allele (4).

The P value for multiplicative interaction between rs10483813 and body mass index was 0.002.
c Weight (kg)/height (m)2; categorized into 3 levels based on the World Health Organization classification (66).
d RERI =−0.73 (95% CI:−1.6, 0.14); P-RERI = 0.097; synergy index = 0.62 (95% CI: 0.45, 0.86).
e RERI =−1.02 (95% CI: −1.95, −0.101); P-RERI = 0.030; synergy index = 0.51 (95% CI: 0.40, 0.67).
f RERI =−0.87 (95% CI: −1.76, 0.015); P-RERI = 0.054; synergy index = 0.59 (95% CI: 0.45, 0.78).
g RERI =−1.03 (95% CI: −1.91, −0.14); P-RERI = 0.023; synergy index = 0.56 (95% CI: 0.43, 0.73).
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there was evidence of departure of the observed data from ad-
ditivity (P < 10−15) as well as frommultiplicativity (P = 0.0027)
(Table 4). This departure was in the direction of submultipli-
cative but supra-additive effects (Figure 1), and it did not
change substantially within the 3 strata of modified Gail
score (Web Figures 2–4). Therefore, based on the comparison
of the assessed goodness of fit with respect to a full model
containing counts of risk alleles as indicator variables, the
multiplicative model was a substantially better fit for the em-
pirical data than the additive model.

DISCUSSION

In this large breast cancer consortium study with prospec-
tively obtained risk factor data, we investigated departure
from additive combined effects on an absolute risk scale of
23 susceptibility SNPs and 9 established risk factors in the
risk of breast cancer. We observed evidence of additive inter-
action between BMI and a SNP in RAD51L1, rs10483813.
BMI was inversely associated with breast cancer risk among
women with the AA genotype but not among women who
carried the T allele at rs10483813.

The biological mechanisms behind such an interaction,
particularly the inverse association between BMI and breast
cancer among persons with the AA genotype, are unclear.
There is limited information about the functional significance
of rs10483813 alleles. This SNP has been not been shown to
have significantly different associations with different breast

cancer subtypes (54) or to interact with ionizing radiation
exposure (55). Vachon et al. (56) recently reported an inverse
association between the rs10483813 A allele and mammo-
graphic density, after adjusting for age and BMI. Mammo-
graphic density—a measure of the proportion of nonfat breast
tissue—is one of the strongest known risk factors for breast
cancer and is also known to be inversely associated with BMI.
Because this is the first report of an additive interaction be-
tween rs10483813 and BMI, to our knowledge, and because
of the small numbers of cases and controls in some strata,
these intriguing results could possibly be false-positive and
should be replicated.

Our results regarding the RAD51L1 locus cannot be directly
compared with other studies that have previously examined
risk ratio heterogeneity between confirmed GWAS-identified
SNPs and breast cancer risk, including 1 from the BPC3
(17–20). Campa et al. (19) and Nickels et al. (20) reported
no departure from multiplicativity between BMI and the
RAD51L1 locus. The other studies did not examine SNPs
at this locus.

Although most large studies testing for interaction between
GWAS-identified breast cancer risk alleles have not found
any statistically significant multiplicative interactions, Nickels
et al. (20) recently showed multiplicative interactions between
SNPs at the LSP1 locus and number of births. Specifically,
they found that the per-risk-allele odds ratio for rs3817198
increased with increasing number of births, from 1.03 among
women with 1 birth to 1.26 among women with 4 or more
births (Ptrend = 2.4 × 10−6). We did not genotype rs3817198,
but we did genotype another SNP at LSP1, rs909116 (r2 =
0.33). In our sample, the trend was reversed and nonsignifi-
cant: The per-risk-allele odds ratios for womenwith 4 ormore
births and women with 1 birth were 1.03 and 1.14, respec-
tively (Ptrend = 0.43). Themultiplicative trend interaction odds
ratios (1.06 for Nickels et al. (20) and 0.98 for this study) were
statistically significantly different (P < 0.001). These differ-
ences may be due to the relatively modest linkage disequili-
brium between these 2 SNPs, or the interaction observed by
Nickels et al. may not generalize to our sample.

Overall, the paucity of heterogeneity in odds ratios or risk
differences for the combined effects of genes and exposures
in breast cancer risk is consistent with supra-additive and sub-
multiplicative effects of SNP-exposure combinations, which
would reduce the power to detect differences from either side.
Moreover, we tested only for 2-level interactions—pairwise
for each genetic variant and each exposure—and specific
higher-order interactions may have been missed because they
were not investigated (although power to detect such interac-
tions will typically be lower than for pairwise interactions).
Due to the lack of strongly statistically significant interactions
and the violation of monotonicity assumptions, strong public
health recommendations as well as sufficient component-
cause inferences could not be made from this study.

We also investigated whether an additive joint-effects
model or a multiplicative joint-effects model is a better fit
for empirical data on the combined effects of 19 confirmed
breast cancer susceptibility loci. We found a statistically sig-
nificant deviation from both the additive model and the mul-
tiplicative models, in the direction of submultiplicativity and
supra-additivity. The heterogeneity of the observed data from

Table 4. Expected and Observed Numbers of Breast Cancer Cases

Under Additive and Multiplicative Joint-Effects Model Assumptions in

the Breast and Prostate Cancer Cohort Consortium

No. of Risk
Alleles

No. of Cases
Expected

(Additive Model)

No. of Cases
Observed

No. of Cases
Expected

(Multiplicative
Model)

≤10 15.5 11 9.3

11 30.4 28 19.8

12 73.5 67 50.9

13 152.4 124 111.5

14 329.7 268 255.9

15 559.0 495 460.1

16 873.3 796 757.9

17 1,158.8 1,085 1,061.0

18 1,382.9 1,354 1,328.8

19 1,398.8 1,414 1,412.0

20 1,298.5 1,340 1,369.5

21 1,087.7 1,132 1,196.1

22 808.5 896 924.0

23 480.3 561 569.2

24 275.9 299 337.1

25 126.5 161 159.9

26 58.8 69 75.4

27 24.7 32 33.0

≥28 10.8 14 14.7
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the additive joint-effects model was very strong in magnitude
and highly statistically significant.
Polygenic models used in disease risk prediction have gen-

erally assumed multiplicative joint effects of SNPs on the ab-
solute risk scale. We find that a multiplicative model for the
joint effects of multiple risk SNPs is substantially better than
an additive model. This provides some support for the use of
a multiplicative model based on individual-SNP marginal
odds ratios, as has been suggested in the context of risk
screening and implemented by several consumer genetics
companies (24, 57–60).
However, the statistically significant submultiplicative de-

viation of empirical data from multiplicative effects leaves
some scope for improvement. This deviation may reflect
the fact that the external odds ratios used to define the multi-
plicative risk score were overestimated due to the “winner’s
curse” (61, 62). In sensitivity analyses where we adjusted all
per-allele β coefficients by a constant deflation factor (ad-
justed β = 0.9 × unadjusted β) or by a factor proportional to
the per-allele odds ratio (ranging from 0.92 to 0.997 (63)),
themultiplicativemodelwas amuch betterfit (goodness offit:
P = 0.99 for constant adjustment and P = 0.45 for propor-
tional adjustment).This suggests thatmultiplicative riskmodels
constructed using odds ratios from initial discovery publica-
tions are likely to be overestimates (or underestimates) in the
upper (respectively lower) tails. However, when accurate odds
ratio estimates from large studies independent of the original
discovery samples are used, a multiplicative polygenic risk
model may be a good fit, and this model could be utilized to
identify a small number of women at markedly increased risk
who would benefit from risk-reducing interventions or more
intensive screening. We stress that risk estimates for women

in the tails of the risk distribution are projections beyond the
support of the bulk of the training data and that we had limited
statistical power to detect departures from multiplicativity in
the tails; note the wide confidence interval for the count ≥28
group in Figure 1.
Tests for pairwise interactions between the 23 SNPs failed

to show statistically significant departures from additivity be-
tween these low-penetrance variants. This may reflect the low
power to detect small departures from a pairwise additive risk
model, even with our large sample size. The departure from
an additive joint-effects model from the observed fitted risks
for the combination of 19 SNPs suggests the presence of ad-
ditive interactions between the SNPs and breast cancer risk.
This study had several other weaknesses. First, although

data on exposure variables were prospectively collected in
all of the cohorts, the instruments used to collect the informa-
tion were not uniform across cohorts, potentially inducing ex-
posure misclassification during harmonization. It has been
demonstrated that nondifferential misclassification of 2 inde-
pendent exposures preserves the validity of tests for additive
interaction (64). Furthermore, for ease of interpretation of ad-
ditive effects, these exposure variables were represented using
dichotomized categories, which may not be the optimal mod-
eling strategy for reflecting their biological associations with
breast cancer. However, in most cases the cutoffs for exposure
variables were not arbitrary, and a priori information was used
to choose them. Similarly, genetic variants were also dichoto-
mized assuming a dominant effect for the risk allele, without
a priori evidence for the same.Our results formarginal effects of
most of the SNPswere not substantially different from results of
previous studies that assumed log-additive SNP effects. More-
over, adjustment for age and cohort may not have sufficiently
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Figure 1. Estimated absolute risk of breast cancer according to number of risk alleles among 50-year-old non-Hispanic white females, derived
using case-control data from the Breast and Prostate Cancer Cohort Consortium (19, 39) and population incidence rates from the Surveillance,
Epidemiology, and End Results Program (52), and comparison with expected risk assuming multiplicative and additive joint-effects models.
Bars, 95% confidence intervals.
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controlled for the variability among the included studies. The
calculation of exposure risk score (Gail score) could not be
done in a manner that would allow for comparison with previ-
ous studies, because we did not have information on the num-
ber of biopsies for all study participants.

The results from our study are generalizable only to
females of European descent, since participants who self-
reported ethnicities other than non-Hispanic white were
excluded from the analyses due to the limited sample size.

To our knowledge, this is one of the largest studies (10,146
cases and 12,760 controls) to have investigated interactions
between known breast cancer risk factors and GWAS-
identified susceptibility loci, and the first study to find addi-
tive interactions. In this study we also replicated previous
associations of 23 known SNPs with breast cancer risk using
the risk-dominant model. We did not observe strong evidence
of 2-level additive interactions between SNPs and the estab-
lished breast cancer risk factors, except for a statistically
significantly protective association with rs10483813 in
RAD51L1 among obese females. This study also showed
that the multiplicative joint-effects model is a substantially
better fit than the additive joint-effects model in the predic-
tion of absolute risk of breast cancer.
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