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Abstract

The presence and composition of lymphocytes characterizing an immune response has been connected to prognosis in
advanced ovarian cancer. Our aim is to establish novel associations between prognosis and the expression of immune-
related genes through a focused screen utilizing publicly available high-throughput assays. We consider transcriptome
profiles from n~1137 advanced ovarian cancer patients observed in four separate studies divided into discovery/validation
sets (n~503/n~634). We focus on a subset of lymphocyte markers, antigen presentation and processing genes, T cell
receptor associated co-stimulatory/repressor genes and cancer testis (CT) antigens. We modeled differential expression and
co-expression using these subsets and tested for association with overall survival. Fifteen of 64 immune-related genes are
associated with survival of which 5 are reproduced in the validation set. The expression of these genes defines an
immunoreactive (IR) subgroup of patients with a favorable prognosis. Phenotypic characterization of the immune
compartment signal includes upregulation of markers of CD8z T-cell activation in these patients. Using multivariate model
building, we find that the expression of 6 CT antigens can predict IR status in the discovery and validation sets. These
analyses confirm that a genomic approach can reproducibly detect lymphocyte signals in tumor tissue suggesting a novel
way to study the tumor microenvironment. Our search has identified new candidate prognostic markers associated with
immune components and uncovered preliminary evidence of prognostic subgroups associated with different immune
mechanisms.
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Introduction

Recent, high-throughput gene expression profiling studies in

ovarian cancer have identified a theme of differentially regulated

immune signaling molecules related to prognosis [1,2]. The

finding is consistent with mounting evidence that ovarian cancers

are strongly immunogenic: spontaneous humoral and cellular

immune reactions develop in response to disease [3], form

characteristic epitopes [4], and are subject to complex up- and

down-regulation by immune processes [5,6]. The degree of tumor

infiltration by host immune cells has been associated with good

prognosis [7] as well as the balance of lymphocyte subtypes.

Subtypes of lymphocytes have diverse functions related to

antigen recognition and immune suppression [8] and are thought

to indicate a dynamic and evolving response to cancer [9]. For

example, an increase in CD8z T cells was found to be associated

with good prognosis, but a rise in regulatory T cells was found to

counteract this benefit [10]. Thus, studying components of the

ovarian tumor microenvironment [11] is a critical angle for

identifying prognostic associations [12].

However, few array-based expression studies have sampled both

the host’s reaction as well as the tumor. Most large observational

studies [1,2,13,14] considered only tumor tissue because their goal

was prognostic modeling; immune associations were made post hoc
based only on enrichment inferred from a small number of

significant immune genes. Other array-based studies that focused

on immune characterization were small and observational (n = 38)

[15] or case control (n = 25, n = 25) [16]. These studies showed

positive associations between lymphocyte-specific markers and

prognosis implying that the sampled tissue contained some

microenvironment signal.

Recent work in expression arrays is able to computationally

separate tumor, stromal and immune components of these

complex tissues. For example, the ESTIMATE algorithm [17]

uses 141 genes to estimate the fraction of expression signal

attributable to the immune compartment. While this approach is

useful for eliminating the noise due to impure samples, this study

noted that the immune signals did seem to carry mild association

with clinical outcomes. Based on the presence and potential

prognostic value of immune markers, we conjecture that the

apparent associations can be traced to residual lymphocyte RNA

and that further analysis of these markers can be attributed to

signal from the microenvironment. As such, we might simply

model markers that we suspect are highly likely to be immune-

specific a priori.
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We rely on two large cohorts of public data organized into a

discovery set and a validation set: 503 biobanked high-grade

serous ovarian cancer samples from the Cancer Genome Atlas

(TCGA) [2] form a focused training and exploration set and a

more clinically-representative mix of 634 samples from 3 Gene

Expression Omnibus (GEO) studies [1,13,14] form the validation

set. The clinical features of the data are described in their original

papers, but briefly, all of the patients in these studies have

advanced, primary ovarian cancer (a small number of primary

peritoneal and fallopian tube in the validation set) and received

adjuvant platinum and taxane treatments following surgery.

We study first the specificity of immune-related genes to

lymphocyte tissues and then explore univariate prognostic

associations. Using clustering algorithms, we identify a subset of

cancer cases with high adaptive immunity signals and we show

that this subset can be predicted by the tumor expression of

cancer-testis antigens. Taken together, these results imply that

significant prognostic value remains untapped in the tumor

microenvironment.

Methods

Clinical and Gene Expression Data
TCGA is a biorepository study of n~503 high-grade serous

ovarian cancers from multiple centers in the United States and is

described extensively in the original article [2]. Relevant to our

analysis, this study strictly included ovarian primaries and

papillary serous histologies. Samples were originally assessed as

Stage III-IV and Grade 2,3 (later re-staged by a TCGA

pathologist) and the patient received adjuvant platinum and

taxane based chemotherapy. We adopt the view that these cases

reflect a biased but homogenous clinical presentation more likely

to yield a consistent biological mechanism.

Three clinical datasets were downloaded from the NCBI GEO

database and are described below. Table 1 is a summary of

clinically relevant differences between the studies.

GEO:GSE9891 is an Australian observational study [14] of

n~285 mostly serous (227) ovarian cancer including some

peritoneal (34) and fallopian (5) primaries. Conditioning on

patients receiving platinum/taxol and removing the LMP samples,

we analyze n~240 samples. For reproducibility purposes, we work

with normalized data from GEO.

GEO:GSE32062 is a Japanese observational study [1] of

n~270 samples including 10 control samples, 193 recurrences,

121 deaths yielding n~260 samples to analyze. An adjuvant

platinum/taxol regimen was recorded for all patients.

GEO:GSE3149 is an observational study [13] of n~134 arrays

after combining redundant ones. Significant work has been have

been published on the difficulties in the original analysis of this

data [18]; we have implemented the recommended similarity

checks and averaged arrays when they appear to come from the

same patient. This analysis begins with the GEO banked data and

should be immune to data conversion problems.

A biological dataset, NCI-60 cell line data were taken from

GEO:GSE5846 [19] where all of the cell lines were measured

under untreated conditions. As positive controls, ovary cell lines,

IGROV-1, OVCAR-3, OVCAR-4, OVCAR-5, OVCAR-8, SK-

OV-3 and NCI/ADR-RES; should express no immune markers.

For negative controls, we also study leukemia lines CCRF-CEM,

HL-60(TB), MOLT-4, RPMI-8226, SR, and K-562.

Candidate Immune-related and Cancer-Testis Antigen
Genes

Candidate genes were selected from KEGG:Antigen processing

and presentation (hsa04612) focusing on surface receptors and

genes involved in plasma membrane transport. Surface markers

and co-regulatory molecules of the T-cell receptor signaling

pathway (hsa04660) were added, excluding the internal signaling

mechanisms (for example: phospholipases, secondary messengers,

and the kinase cascades) as these are non-specific and related to

other signaling pathways. Cancer-testis antigen genes were defined

based on overlap with the CT Database [20]. The full gene list is

provided in Tables S1 and S4.

All genes were aligned using official gene names mapped using

the provided GEO platform annotation (i.e., an associated GPL

file) and R package hthgu133a.db-2.8.0 [21]. Expression values

were scaled and centered for comparability across genes. Note that

the highly variable parts of the T-cell receptor (TCA, TCB) cannot

be measured on the hybridization-based oligonucleotide arrays.

Table 1. Descriptive statistics for data sets used in this study.

Discovery Validation

Study TCGA [2] Australian [14] Japanese [1] US [13]

n 503 240 260 134

GEO Array Type GPL570* GPL570 GPL6480 GPL96

GEO identifier NA GSE9891 GSE32062 GSE3149

Age (Range) 59.7 (30–89) 60.2 (23–80) NA NA

Stage (% III, IV) 92% 5% 100% NA

Grade (% 3,4) 87% 61% 50% NA

Residual Disease (% None) 23% 27% 40% NA

Neoadjuvant (% Yes) 0% 7% 0% NA

Median Months OS 44 (40–48) 44 (38–57) 60 (50–80) 74 (35–98)

Median Months PFS 18 (15–19) 15 (14–18) 19 (18–23) NA

* TCGA uses 3 array types. Only the Affymetrix array was used for completeness.
doi:10.1371/journal.pone.0111586.t001
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Computational Methods
Univariate associations were performed with proportional

hazards regression. No time truncation, to reduce the effect of

long survivors, was performed. Significance was cut at pv0:05
and was adjusted for multiple testing unless otherwise noted. The

reported FDR calculation is based on the expected number of false

positives assuming all tests are null.

Clustering analysis in the TCGA data is based on complete

hierarchical clustering under Euclidean distance. Subgroups were

picked by splitting the tree at 4 leaves based on visual inspection

and a within/between group sum of squares criterion. Cluster

centers were used to seed a k-means clustering algorithm in the

validation data and the p-value is reported for a study-stratified 4-

group log-rank test.

The volcano plot uses literature-based surface markers and co-

regulators based on a simple t-test. Highlighted genes were

significant above the Bonferroni pv0:001 mark and had

biologically extreme fold change values.

Partial correlations were computed using the class averages for

genes assigned to CD4, CD8, CD3, MHCI and MHCII-based

sets. The GeneNet algorithm [22] using FDR v0:05 and hard

thresholding at absolute correlation 0:15 was used to infer

Gaussian graphical models.

To infer the missing nodes in the GGM, a hidden node must

satisfy three properties. Using MHCII - X - CD8 as an example:

MHCII and CD8 must be conditionally independent given Gene

X (pw0.05); MHCII and Gene X must be conditionally

dependent given all other genes (Bonferroni pv0.05); CD8 and

Gene X must be conditionally dependent given other genes

(Bonferroni pv0.05). Each of these can be reduced to a p-value

statement using standard linear model theory and added variable

analysis.

Predictions from a multivariate logistic regression model were

categorized into immunoreactive class calls based on thresholding

the predicted value from the model. This threshold was chosen

using the sensitivity/specificity intersection point across all

validation datasets.

All statistical analysis was performed in the R statistical

programming language.

Results

Expression of genes specific to lymphocytes is
measurable in tumor samples

We observed that selected lymphocyte specific markers are

present in measurable quantities in sampled tumor tissue from our

discovery set. The distribution of average expression (Figure 1A)

shows the typical multimodal pattern in expression arrays: the

lower peak reflects the background noise for genes that are not

expressed in the sample and the higher peak represents signal. The

lymphocyte marker CD45 is in the signal peak and is relatively

highly expressed (Table S2). We conjecture that a measurable

portion of the cells in each sample contain lymphocyte RNA

which would represent the tumor microenvironment.

Comparison with the GeneAtlas tissues [23] confirms that the

nominal action of these expression array probes is lymphocyte-

specific. We considered probe expression in ovarian NCI-60 cell

lines [19] to exclude the possibility that genes are normally

expressed in tumor tissue (Table S2). Considering the mean

quantile of expression versus other probes, surface markers CD64,

CD1D, CD14, CD33, CD8A, CD16b, CD45 maintain a low level

in cell lines versus microdissected tumor (all lower than the 35th

quantile, pv0:05). The near absence of IL6, IL12, IFNB1, and

IFNG (between the 2nd and 25th quantile) suggests that the ability

to measure cytokine signaling is lost in this in vitro system; notably,

the IL12 receptor is measurable, so surface markers do appear.

The exception to this pattern is that CD4 is over-expressed (51st

and 61st quantiles in tumor and cell line samples respectively).

This establishes that a reproducible immune signal can be

measured in sampled tumor tissue and we proceed assuming that

these markers form a representative cross-section of tumor and

immune system interaction.

Reproducible associations between candidate genes and
overall survival

Of the 64 candidate genes, 15 have univariate associations

(score test p-valuev0:05) with overall survival (OS) following

surgery and primary chemotherapy in the TCGA study (Table

S1). A further 5 of these can be validated in the withheld

independent studies (FDR~0:032).

The validated set can be organized by function: major

histocompatibility complex (MHC) I genes, HLA-F, and HLA-

G; an MHCII gene, HLA-DOB; the MHCI associated transport-

er, TAP1; and the co-receptor complex subunit, CD3D (TCR-d).

Increasing expression of each of these transcripts is associated with

better survival (Table 2). T-cell related genes are highly correlated,

which likely accounts for an indirect but positive association

between the suppressor HLA-DOB and survival (Univariate

HR = 0.74, 95% CI: 0.65–0.85, pv0:0001). We will examine

the multivariate expression of these genes next.

Using a hierarchical clustering algorithm, the discovery set

patients can be divided into four groups (Figure 1B) associated

with OS (p = 1.2e-05). Represented in the heatmap in Figure 1C,

the simultaneous expression of all five genes (colored purple)

confers the most benefit. The simultaneous expression of all five

genes is consistent with T cell activation, so we deem the high

expressing subgroup an immunoreactive (IR) subset.

The degree of expression is not associated with variation in poor

prognosis: the low expression of all genes (orange) does no worse

than a heterogenous pattern of high and medium expression

(yellow) or uniformly medium expression (green subgroup). This

suggests that the deficient expression of any one gene is sufficient

to lead to poor prognosis.

We assign validation patients to their most similar discovery set

subgroup by k-means clustering. In the second heatmap

(Figure 1D), the patients (columns) are ordered by hierarchical

clustering within the validation data set. So, the clustered

subgroups are strengthened by the observation that the class

labels are preserved in the validation set.

In the discovery data, the survival benefit for the high expressers

(n = 55, 10%) is a median of 70.9 months (95% CI: 58.1–98.0)

versus 41.4 (36.9–45, p = 3.5e-05) OS; the median progression free

survival (PFS) benefit is significant (p = 3.1e-04) at 30.4 (18.2–91.3)

months versus 16.4 (14.7–18). This subgroup accounts for 5% of

the deaths observed in the dataset and 7% of the recurrent cases.

This benefit is weakly reproduced in the validation data:

(p = 0.0335) with a difference of 64.0 months versus 51 months

median OS. The PFS difference was not significant in the

validation set.

Association with immunoreactive subgroup and immune
markers

The TCGA analysis confirmed a set of genetic subsets [2]

identified in a previous study [14]. Our high expression subgroup

(purple, n = 55) is associated with their IR subgroup (38/55, 69%)

(pv0:0001) (Table 3). The orange subgroup (n = 39) is mostly

proliferative (31/37, 84%). Both of these associations hold in the

Antigen Expression and Immunoreactive Ovarian Cancer Subset
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Figure 1. Mean relative expression of the selected genes confirms that they are all expressed in the samples (A). Black ticks indicate
the mean expression of immune-related genes. CD45 is highlighted as a lymphocyte specific marker indicating the presence of lymphocytes.
Subgroup-based survival estimates (B) are shown for the TCGA data based on hierarchical clustering of relative expression of selected T-cell genes (C
and D). The four color bar on the left identifies the subgroups. The purple subset (n = 55, 11%) represents a significant survival benefit associated with
the expression of all five genes.
doi:10.1371/journal.pone.0111586.g001

Table 2. Validated immune genes related to overall survival and their correlation structure.

Correlation

Gene Name HR (95% CI) p-value HLA-G HLA-DOB TAP1 CD3D

HLA-F 0.89 (0.79–1.00) 0.0429 0.95 0.51 0.84 0.60

HLA-G 0.88 (0.79–0.99) 0.0282 0.48 0.81 0.54

HLA-DOB 0.74 (0.65–0.85) v0.0001 0.57 0.41

TAP1 0.88 (0.79–0.98) 0.0238 0.58

CD3D 0.85 (0.75–0.96) 0.0087

doi:10.1371/journal.pone.0111586.t002
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validation data with TCGA subtypes. Altogether, this suggests that

the hierarchical clustering derived subgroup is meaningful and

that it nuances the TCGA subtypes as the latter were found to

have no significant survival associations. Note that our study

focuses on the IR subset and we make no attempt to model the

other TCGA subtypes.

We examined the differential expression of standard immunol-

ogy markers in the good prognosis subgroup. Figure 2 plots the

change in expression across prognosis subgroups versus the

Table 3. Association between derived subgroups and previously identified TCGA subgroups in discovery and validation sets.

Class Purple Yellow Aqua Orange

n 55 252 157 39

Overall Survival p = 1.2e-05

median months 71 43 38 55

Progression-Free Survival p = 6.7e-04

median months 30 18 15 17

Age p = 6.2e-03

Mean Years 58 57 61 63

Stage p = 2.8e-05

I/II 7 13 3 1

III/IV 48 239 154 38

Debulking Status p = 3.2e-03

Optimal 17 51 21 13

Suboptimal 29 170 124 25

Platinum Status p = n/s

Resistant 7 42 34 7

Sensitive 20 103 59 14

TCGA Class pv2.2e-16

Immunoreactive 38 59 7 0

Other 12 184 141 37

TCGA Class (Validation set) p = 6.4e-11

Immunoreactive 35 27 8 0

Other 15 52 58 29

The colors are consistent with Figure 1. Note that only one study in the validation set had predicted TCGA classes and totals may not sum to 503 due to missing data.
doi:10.1371/journal.pone.0111586.t003

Figure 2. Differential expression of immunological markers in discovery (n = 503) and validation (n = 634) sets. Markers with strong
biological and statistical significance (t-test Bonferroni pv0.001) are chosen in the discovery set and highlighted in both plots.
doi:10.1371/journal.pone.0111586.g002
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statistical evidence in both datasets. These markers imply an

inflammatory response mediated by the recruitment of CD45z

cells: CD8z cells and antigen-presenting cells (APC). No change

in CD4 expression suggests that there is likely to be an latent

background presence of CD4z T-cells and that the different

action is attributable to activation (represented by differential

ICOS expression). Absent are the NK cells (CD56z) reinforcing

the idea that the process is part of adaptive immunity.

We conjecture that these observations are consistent with an

immunoediting concept. The good prognosis group represents

equilibrium where a prevalence of APCs and activated CD4z cells

recruit CD8z T-cells to maintain adaptive immunity.

Prognostic co-expression suggests T-cell activation
To infer functional interactions between immune-related genes,

we performed a co-expression analysis which summarizes corre-

lation in the IR subgroup and the poor prognosis subgroups

graphically. Edges in these Gaussian graphical models (GGMs)

represent statistical dependence between immune components

(Figure 3A, 3B); positive dependence implies that both compo-

nents are present and are likely to be interacting while negative

edges imply mutually exclusive function or repression.

As in the differential expression analysis, CD4 and MHCII are

correlated in the IR subgroup and not in the poor prognosis

subgroups. Consistent with its reported function, RFX family

(RFX5, RFXANK, RFXAP) of transcription factors’ expression

increases concordantly with the rise in MHCII expression [24]. In

the IR subgroup, two edges imply anti-correlation between CD4

and MHCI which implies mutually exclusive function; and

correlation between CD8 and MHCII (Figure 3C, 3D) which

appears contrary to the specificity of MHC classes.

To explain this effect, we searched for missing genes whose

inclusion in the graph would remove these edges. A missing link

between CD8 and MHCII is GZMA a protease reflecting the

activity of cytolytic T-cells. Between CD4 and MHCI we infer that

CCR5, a cytokine receptor related to the activation of the T-cells,

Figure 3. Partial correlation graphs indicating conditional relationships between genes in poor prognosis (n = 39)(A) and good
prognosis (n = 55)(B) subgroups. Blue edges are positive associations and red are inhibitory associations. The highlighted orange edge can be
removed by considering an independent set of genes. CD8 and MHCII array expression separate good and poor prognosis subgroups in discovery (C)
and validation (D) data sets. MHCII expression is positively prognostic but appears in CD8 expressing samples. Shading is added for emphasis.
doi:10.1371/journal.pone.0111586.g003
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is missing. The common observation is that transcript associations

likely need to be considered alongside measures of T-cell

activation. The relevance of these genes is supported by the

statistical significance of the transcriptome-wide search (adjusted

pv:05) and the specificity of the selected genes’ expression in

lymphocyte tissues.

Focusing on CD8 and MHCII expression, we note that the

good prognosis group can be defined by high MHCII expression

where CD8 expression varies; CD8 expression is restricted when

MHCII expression is low. Therefore, we hypothesize that MHC

class II-mediated activation of CD4z T-cells are required for

infiltration by CD8z T-cells that provide protection.

Immunoreactivity predicted by cancer-testis antigen
profiles

We investigated the association of the IR subgroup with the

cancer testis (CT) family of antigens [20]. These genes are

frequently over-expressed in cancer cells and induce spontaneous

immune responses, which make them a primary target for

immunotherapy [25]. In particular, CT antigen expression is

believed to influence the IR subset by regulating T-cell responses

in the ovarian tumor microenvironment. The discovery set arrays

measured 98 CT antigens (Table S4) of which 3 were associated

with the IR subset (Bonferroni pv0:05): CEP290, CTNNA2,

TMEFF1.

Because membership in the IR class is binary, we used logistic

regression to model the multivariate set of antigens associated with

IR status. Table S3 is the regression table for a model fit using

BIC-based stepwise selection. Here, CEP290, CTNNA2,

TMEFF1, and TEX15 expression decreases the likelihood that

a patient is in the IR class. Antigens ZNF164 and MAGEA3
increase the chance. Other than CTNNA2, which is twice as

important as MAGEA3, the other genes have about the same

effect. In the independent data, predictions from this model are

strongly associated with the k-means derived associations

(HR = 3.96, 95% CI: 2.59–6.14, p = 1.47e-11) tuned for equal

sensitivity and specificity (0.66) given a moderate prevalence (140/

634, 20.5%).

We further stratified patients in IR subgroup into good and

poor prognosis based on OS to 33.5 months (overall study

population median OS). A set of 16 antigens includes the union of

the 3 IR subset genes and antigens associated with the difference in

survival. Figure 4 is a heatmap comprising the mean expression of

the 16 genes organized into three classes. The first class (orange) is

expressed in non-IR cases and may reflect the activity of

immunosuppressive elements. The second set (purple) is expressed

in IR cancers but is unrelated to prognosis. The third (cyan) is

Figure 4. Cancer testis antigens associated with prognosis or immunoreactive (IR) subgroup can be divided into three classes: non-
IR (orange), IR (purple) and immune stimulatory (cyan).
doi:10.1371/journal.pone.0111586.g004
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expressed strongly in IR cases with good prognosis and may

indicated immune stimulatory effects. A viable hypothesis might

be to see if T cells responding to the second set of antigens

(ZNF165, CEP55, ATAD2, MAGEZ3, CTAGE5) have regula-

tory phenotypes.

Discussion

We have analyzed the expression of 64 T-cell co-receptor and

antigen presentation/processing genes in advanced serous ovarian

cancer using a standard univariate screen and an analysis of their

co-expression. These analyses define a subset of ovarian cancer

cases with prognostically meaningful expression associated with T-

cell activation and a previously defined immunoreactive subgroup

[2]. In contrast to previous work [17,26], the subgroup can be

identified reproducibly with just 5 genes versus over a hundred.

This efficiency comes from our initial immunologic perspective.

We reduce significantly the extraneous genes, but trade the ability

to make a pan-ovarian cancer genetic characterization. As a result,

we make no claim about or attempt to model non-immunologic

signals.

We now have a small set of markers and antigens that may

make translational and biomarker work more feasible for

immunotherapy. With respect to the use of CT antigens, we have

found a set which predicts non-immunogenic cancers (putatively,

ones with low T-cell activation) and a set that might be targeted for

blockade type immunotherapy. Both biological studies to verify

regulatory activity of T cells in these cases and retrospective

clinical studies may be the next investigative step. We speculate

that the set of IR specific CT antigens stimulate immune responses

(e.g., recruiting activated T cells), but are insufficiently immuno-

genic to induce tumor eradicating immune reaction. Alternatively,

this group may prompt mixed effects: inducing immune responses

while promoting tumor progression.

Inferentially, we have adopted a discovery/validation frame-

work that allows us to make preliminary confirmations and to

avoid over-interpreting high-dimensional artifacts. The data are

limited by the nature of expression data from tumor samples; we

rely on the conjecture that even after microdissection, assayed

samples retain a portion of lymphocyte genetic material. Because

this effect appears independently in multiple studies, these

observations may be applicable to assays using this platform and

are less likely to be subject to batch effect bias. Additionally, this

work motivates the investigation of a structured way to analyze

residual stromal signal from the tumor samples and therefore infer

genetic interaction in the tumor microenvironment.

Supporting Information

Table S1 Univariate associations between genes and
overall survival measured by score test p-value.

(PDF)

Table S2 Tissue specific quantiles of expression of
lymphocyte specific markers. Low quantiles imply relatively

low or no expression.

(PDF)

Table S3 Regression table for multivariate logistic
regression model using antigen expression to predict
immunoreactive class status.
(PDF)

Table S4 List of identified cancer testis (CT) antigens.

(PDF)
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