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Abstract

With the existence of biologically distinctive malignant cells originated within the same tumor, intratumor functional
heterogeneity is present in many cancers and is often manifested by the intermingled vascular compartments with distinct
pharmacokinetics. However, intratumor vascular heterogeneity cannot be resolved directly by most in vivo dynamic
imaging. We developed multi-tissue compartment modeling (MTCM), a completely unsupervised method of deconvoluting
dynamic imaging series from heterogeneous tumors that can improve vascular characterization in many biological contexts.
Applying MTCM to dynamic contrast-enhanced magnetic resonance imaging of breast cancers revealed characteristic
intratumor vascular heterogeneity and therapeutic responses that were otherwise undetectable. MTCM is readily applicable
to other dynamic imaging modalities for studying intratumor functional and phenotypic heterogeneity, together with a
variety of foreseeable applications in the clinic.
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Introduction

Intratumor genetic or epigenetic heterogeneity has been found

in many cancers as evidenced by deep sequencing selectively

applied to different parts of the same tumor [1,2]. Consequently,

cancer cells display remarkable phenotypic variability, including

ability to induce angiogenesis, seed metastases, and survive

therapy [3–5]. Advanced solid tumors often contain vascular

compartments with distinct pharmacokinetics, comprising hypoxic

regions and spatially intermingled irregular vasculature that is

leaky and inefficient [6–8]. The complexity of heterogeneity has

clinical implications. A more heterogeneous tumor is more likely to

fail therapy due to increased drug-resistant variants [3,5], and

characteristics of the dominant cell type will not necessarily predict

the behaviors of interest rooted in specific cells [4].

Dynamic contrast-enhanced magnetic resonance imaging

(DCE-MRI) provides a noninvasive in vivo method to evaluate

tumor vasculature architectures based on contrast accumulation

and washout [7,9]. While DCE-MRI can potentially depict the

intratumor heterogeneity of vascular permeability [10], the

quantitative application of DCE-MRI has been hindered by its

inability to accurately resolve vascular compartments with distinct

pharmacokinetics due to limited imaging resolution [7,11]. We

emphasize that identification of spatially mixed multiple vascular

cytotypes is principally different from imaging an inhomogen-

eously distributed single vascular cytotype, and it is the former

scenario that presents significant technological challenges to

portraying tumor cytotypes. This indistinction among the contri-

butions of different compartments to the mixed tracer signals can

confound compartment modeling and deep phenotyping for

association studies [4,12,13]. The goal of the present work was

to discern vascular heterogeneity and its changes in tumors using

DCE-MRI and novel mathematical models, for personalized

cancer diagnosis and treatment.

We developed a computational method (multi-tissue compart-

ment modeling - MTCM) for deconvolving intratumor vascular

heterogeneity and identifying pharmacokinetics changes in many

biological contexts [5,14,15]. MTCM works by applying a convex

analysis of mixtures that enables geometrically-principled delinea-

tion of distinct vascular structures from DCE-MRI data (Fig. 1a–
c). A formal mathematical description of the method and its

detailed implementation is available in Methods.

PLOS ONE | www.plosone.org 1 November 2014 | Volume 9 | Issue 11 | e112143

http://www.nih.gov/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0112143&domain=pdf


Results

Overview of MTCM
Tumors to be analyzed by MTCM contain unknown numbers

of distinct vascular compartments. The pixel-wise tracer concen-

tration in a particular vascular compartment is modeled as being

proportional to the local volume transfer constant of the vascular

compartment (Method). Because there are often significant

numbers of partial-volume pixels, MTCM instead estimates

pharmacokinetic parameters (flux rate constants) via the time-

courses of pure-volume pixels (pixels whose signal is highly

enriched in a particular vascular compartment). Convex analysis

of mixtures identifies those pure-volume pixels present at the

vertices of the clustered pixel time series scatter simplex, without

any knowledge of compartment distribution (Method). When the

number of underlying vascular compartments is detected using the

minimum description length (MDL) criterion, MTCM provides a

completely unsupervised approach to characterize intratumor

heterogeneity (Methods and Appendix S1 in File S1).

Modeling the pharmacokinetics of each vascular compartment

using pure-volume pixel time-courses allowed us to estimate

individual compartment flux rate constants (Fig. 1d–e). Non-

negative least-square estimation yielded pixel-wise local volume

transfer constants (Methods and Fig. 1f). Using synthetic and

mouse DCE-MRI experiments, we showed that MTCM can be

used to estimate pharmacokinetic parameters in several vascular

compartments simultaneously and to quantitatively reconstruct

tissue-specific local volume transfer constants (Data S1–S2,
Figs. 2, S1–S2 and Tables S1–S2). Furthermore, MTCM

enabled quantitation of differences in tissue-specific vascular

permeability across time (for example, therapeutic responses in

longitudinal studies; Methods). Thus, the change in values of flux

rate constants in a given vascular compartment could be

determined, despite an expected difference in that vascular

compartment’s relative abundance.

We also analyzed the same realistic synthetic dataset using a

‘‘traditional’’ way of principal component analysis - PCA. By a

comparison of the tracer concentration extracted by PCA

(Fig. 2e) to that estimated by MTCM (Fig. 2d), we can see that

tracer concentration curves estimated by PCA are highly fluctuant

and significant deviated from the ground truth. In fact, similar

unsatisfactory results produced by PCA or classic factor analysis

have been observed in the earlier studies by us and others (Cinotti,

Bazin et al. 1991, Zhou, Huang et al. 1997, Hillman and Moore

2007, Hillman, Amoozegar et al. 2011). We should clarify that

MTCM consists of two major analytic parts: convex analysis of

mixtures (CAM) and compartment modeling (CM), where the

CAM is a critical step that automatically identifies the pure tissue

pixels and their time activity curves, followed by the CM that

estimates the pharmacokinetics parameters without being con-

taminated by the partial-volume effect. In contrast, since PCA

does not enforce the nonnegative constraint for tracer concentra-

tion estimation, a subsequent compartment modeling cannot be

performed to estimate pharmacokinetic parameters.

Intratumor vascular heterogeneity in breast cancer
revealed by MTCM

In keeping with our goal to use MTCM to better uncover

vascular heterogeneity in human tumors, we applied MTCM to

DCE-MRI sequence data obtained from a case of advanced breast

cancer (Fig. 1a). In this breast tumor [7], vascular heterogeneity is

characterized by active angiogenesis in the peripheral ‘‘rim’’ and

Figure 1. The proposed multi-tissue compartment modeling pipeline for uncovering intratumor vascular heterogeneity. (a) On the
DCE-MRI sequence, tumor region is extracted using a digital mask. Then, pixel time-courses are collected and normalized over time. (b) Pixel time-
courses are grouped into clusters with initialization-free multivariate clustering techniques. On the simplex of pixel time-courses, the clusters present
at the vertices are identified by a convex analysis of mixtures. (c) Using pure-volume pixels, multi-compartment modeling is performed to estimate
tissue-specific flux rate constants and volume transfer constants. (d) Scatter simplex of real DCE-MRI data from an advanced breast cancer. (e)
Estimated tissue-specific compartmental time-activity curves: ‘blue’ – plasma input function; ‘red’ – fast flow kinetics; ‘green’ – slow flow kinetics; and
example images of the associated local volume transfer constants. (f) Illustrative microscopic images of normal and abnormal vessel architecture
(McDonald and Choyke, Nat Med 9, 2003).
doi:10.1371/journal.pone.0112143.g001
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concurrent inner-core hypoxia. Upon preliminary analysis using

MDL, we found that a two-tissue compartment model of the fast

and slow tracer clearance rates was sufficient to account for the

variable permeability at the majority of pixels (Methods). Thus, we

used pure-volume pixels associated with these two vascular pools to

estimate tissue-specific flux rate constants and to reconstruct local

volume transfer constant maps (Methods). MTCM reveals two

vascular compartments with distinct flux rate constants (Fig. 1e).

Accordingly, we detected distinct spatial patterns of specific local

volume transfer constant in the two vascular compartments

(Fig. 1f) with a significant fraction of partial volume pixels.

Intratumor vascular heterogeneity identified by MTCM is

consistent with the knowledge obtained from ex vivo microscopic

and molecular studies [7,13]. Defective endothelial barrier

function is one of the better documented abnormalities of tumor

vessels, resulting in functional heterogeneity in vascular perme-

ability to macromolecules [7,11]. As a tumor rapidly outgrows its

blood supply, it requires neovessel maturation, often leaving an

inner core of the tumor with regions where blood flow and oxygen

concentration are significantly lower than in normal tissues [6].

MTCM reconstructed local volume transfer constant maps

correlate well with the differential gene expression known to

regulate angiogenesis [7,13].

Changes in intratumor vascular heterogeneity in
longitudinal studies

We also detected changes in pharmacokinetic patterns among

longitudinal DCE-MRI data from breast cancer acquired before,

during, and after treatment (Fig. 3a), quantified as different flux rate

constants over time (Methods and Table S3). For example, the two

vascular compartment time-activity curves revealed by MTCM in

the baseline data are highly distinct (Fig. 3b). We detected

significantly higher permeability in a fast-flow pool and slightly

lower permeability in a slow-flow pool when compared with the

normal state. In contrast, the interim response (Fig. 3c) exhibits

vascular compartment time-activity curves that are distinct but much

closer to each other, whereas the closing response (Fig. 3d) shows a

significant decrease in permeability of the fast-flow pool. We also

detected different local volume transfer constant maps (Fig. 3b–d)

and changes in the fractions of partial-volume pixels (Table S4).

Comparative studies using standard compartment
modeling

We compared tissue-specific pharmacokinetics detected with

MTCM to the results of a standard compartment analysis of (total)

vascular pool within the region of interest. Total time-activity curves

were indistinct across time (Fig. S2) owing to therapeutic effects in

some parts of the tumor but not in others and large fractions of

partial-volume pixels. In this longitudinal study, we deconvolved

total time-activity curves into two phased therapeutic effects using

MTCM: a transient ‘‘normalization’’ of abnormal yet surviving

tumor vasculature together with the significant and consistent drop

in the relative volume transfer constants [6,16]. In contrast,

standard analysis may not return informative results when both

the flux rate constant and volume transfer constant change

heterogeneously in response to therapy. These examples illustrate

the ability of MTCM to discover intratumor vascular heterogeneity

and to detect changes in each vascular compartment over time.

Finally, we tested the applicability of MTCM to dynamic

fluorescence imaging data acquired on a mouse after bolus injection

of indocyanine green dye by deconvolving biodistribution dynamics

of the major organs [17] (Fig. S3). The dissected tissue

compartments constitute anatomical structures of the mouse that

agree well with a digital anatomical mouse atlas.

Discussion

Several previous studies have discussed the problem of

intratumor vascular heterogeneity in compartment modelling

[7,11,16,18], a major outstanding issue for the characterization

of complex phenotypes and therapeutic responses. Some methods

have addressed the estimation of multi-compartment pharmaco-

kinetics in the presence of varying partial-volume effects, relying

on known regions of pure-volume pixels and number of

compartments [10,13,16,17]. The significant advantage of our

strategy is its ability to detect and quantify intratumor vascular

heterogeneity without any type of external information. The

benefits of such a method include its wide applicability, sensitive

detection of heterogeneity dynamics, and reliance on longitudinal

data from one single subject (Appendix S1 in File S1).

We have identified differential and heterogeneous changes in

tissue-specific vascular pharmacokinetics in tumors during treat-

ment that were undetected using standard analysis, including

tumor islands of persistent enhancement that have escaped the

effects of therapy [18]. These results are particularly intriguing

when considered together with recent imaging studies describing

foci of resistant and more aggressive clones within a tumor [5,13].

While it is not yet possible to assign causality, these in vivo results

allowed us to propose new hypotheses regarding the complex

relationships between intratumor heterogeneity, clonal repopula-

tion, cancer stem-cell, and therapeutic efficacy [1,3,5,10,19].

In metastatic disease, recent studies have revealed the emergence

of treatment-resistant subclones that were present at a minor

frequency in the primary tumour [20]. Thus, modeling cancer

diagnosis and treatment in the future should involve characteriza-

tion of subpopulations within the primary tumour, monitoring of

clonal dynamics during treatment and eradication of treatment-

emergent clones [21]. To prospectively assess intratumor heteroge-

neity, profiling of multiregional tumour samples would be required.

However, it is impractical and potentially risky to take multiple

‘random’ biopsies in every patient, owing to both sampling bias and

the inability to resolve intermingled heterogeneity [22]. MTCM

would not only make longitudinal in vivo surveillance possible but

also enable imaging-informed selective biopsies.

The future challenges of applying MTCM lie in the gap

between research experiments and clinical practice. Unlike high-

quality data in well-designed research studies, clinical data are

usually with limited spatial and/or temporal resolution, accom-

panied by higher noise level (Fig. S4). Lower spatial resolution

results in less pure-volume pixels and thus reduces the accuracy of

MTCM; while limited temporal resolution prevents accurate

differentiation and estimation of pharmacokinetic parameters

associated with distinctive vascular compartments.

So far we have tested MTCM method on DCE-MRI data [7],

dynamic contrast-enhanced optical imaging data [17,23], and

Figure 2. MTCM estimates time-activity curves in multiple vascular compartments simultaneously and quantitatively reconstructs
tissue-specific local volume transfer constants - synthetic DCE-MRI experiments: (a) synthesis of image series; (b) scatter simplex of
synthesized image series; (c) tissue-specific compartmental tracer concentration curves and local volume transfer constant maps,
estimated by MTCM; (d) MDL model selection to detect the number of compartments; (e) tissue-specific compartmental tracer
concentration curves estimated by principle component analysis (PCA).
doi:10.1371/journal.pone.0112143.g002
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dynamic PET imaging data [24], acquired from both human

tissue/organ and whole-body mouse model (e.g., Fig. S4).

Theoretically, the MTCM method can produce confident

estimation on any ‘dynamic contrast-enhanced’ imaging data with

sufficient quality (e.g., spatial and temporal resolution) [25,26].

However, we should emphasize that there are a few fundamental

assumptions behind the MTCM methodology, as specified in the

newly proved theorems (e.g., linear convex combination, existence

of pure-tissue pixels). As in most medical imaging analysis, object

motion constitutes a major source of error and can significantly

confound the modeling results. Currently, MTCM is limited to

‘parallel’ compartment models, while the CAM part of the

MTCM algorithm is applicable to resolving partial-volume

contamination problem independent of the compartment models

being used for subsequent parameter estimation.

Methods

Multi-tissue compartment modeling of DCE-MRI series
Let us consider J-tissue compartment model of DCE-MRI series

(the Jth tissue compartment corresponds to tracer plasma input,

indexed by p), whose tracer concentration kinetics are governed by

a set of first-order differential equations (Fig. 1c) [27,28]

dC1(t)

dt
~K trans

1 Cp(t){kep,1C1(t),

..

.

dCJ{1(t)

dt
~K trans

J{1 Cp(t){kep,J{1CJ{1(t),

Cmeasured(t)~C1(t)z � � �zCJ{1(t)zKpCp(t),

ð1Þ

where Cj(t) is the tracer concentrations in the interstitial space

weighted by the fractional interstitial volume in tissue-type j at

time t for j = 1,…, J, where J is the total number of vascular

compartments;Cp(t) is the tracer concentration in plasma (tracer

input function); Cmeasured(t) is the measured tracer concentration;

K trans
j is the unidirectional volume transfer constant (/min)from

plasma to tissue-type j; kep,j is the flux rate constants (/min) in

tissue-type j; and Kp is the plasma volume[28].

Solving (1) leads to Cj(t)~Cp(t)6 exp ({kep,j t), j~1,:::,J-1,

where :denotes the mathematical convolution, and CJ (t)~Cp(t).

The spatial-temporal patterns of tracer concentrations (pixel time-

course) can be expressed as[29]

Cmeasured(i,t1)

Cmeasured(i,t2)

..

.

Cmeasured(i,tL)

2
6666664

3
7777775

~

C1(t1) � � � CJ{1(t1) Cp(t1)

C1(t2) � � � CJ{1(t2) Cp(t2)

..

.
� � � ..

. ..
.

C1(tL) � � � CJ{1(tL) Cp(tL)

2
6666664

3
7777775

K trans
1 (i)

..

.

K trans
J{1 (i)

Kp(i)

2
6666664

3
7777775

,

ð2Þ

where Cmeasured(i,tl) is the tracer concentration at time tl at pixel i,

L is the number of sampled time points, K trans
1 (i),:::,K trans

J{1 (i) are

the local volume transfer constants of the tissue-types 1 to (J-1), at

pixel i, respectively; and Kp(i) is the local plasma volume at pixel i.

Figure 3. Quantitative estimates of tissue-specific pharmacokinetic parameters in a longitudinal breast cancer study reveal
changes in tumor vascular behavior in response to hybrid anti-angiogenesis chemotherapy. While tumor size regression (largely
determined by bulk tumor populations rather than rarer cancer stem cells) is clearly observed, together with a transient ‘‘normalization’’, the detected
tumor islands of persistent enhancement predict the confirmed recurrence despite the dramatic size changes. (a) Snapshots of DCE-MRI sequences
taken from the same tumor before, during, and after therapy. (b) Scatter simplex of baseline DCE-MRI data taken before therapy; estimated tissue-
specific compartmental time-activity curves; and example images of the associated local volume transfer constants. (c) Scatter simplex of interim
DCE-MRI data taken during therapy; estimated tissue-specific compartmental time-activity curves; and example images of the associated local volume
transfer constants. (d) Scatter simplex of closing DCE-MRI data taken after therapy; estimated tissue-specific compartmental time-activity curves; and
example images of the associated local volume transfer constants.
doi:10.1371/journal.pone.0112143.g003
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Parallelism between multi-tissue compartment modeling
and the theory of convex sets

Apply a sum-based normalization to pixel time-course

Cmeasured(i,tl) and using vector-matrix notation, we can re-express

(2) as

Cmeasured(i)~
XJ

j~1
K trans

j (i)Cj , ð3Þ

where K trans
j (i) is accordingly normalized over j, Cmeasured(i) and

Cj are the vector notations (over time) of pixel time course

Cmeasured(i,tl) and compartment time course Cj(tl), respectively.

Since K trans
j (i) is always non-negative, as a non-negative linear

combination of CJ~ Cj

� �
, the set of pixel time-course

Cmeasured~ Cmeasured(i)f g forms a subset of the convex set readily

defined by the set of Cj

� �

Cmeasured~
XJ

j~1
K trans

j (i)Cj ,K
trans
j (i)§0,

n
XJ

j~1
K trans

j (i)~1,i~1,:::,N
o ð4Þ

MTCM exploits the strong parallelism between the multi-

compartment model (3) and the theory of convex set. The

fundamental principle is that latent compartments are pure

vasculatures in a tumor whose pharmacokinetics Cj

� �
reside at

the extremities of the scatter simplex occupied by the pixel time-

courses, and accordingly, the interior of the simplex is occupied by

the partial-volume pixels (linear non-negative mixtures of com-

partments) (Fig. 1b). Estimates of compartment pharmacokinetics

may then be derived from the vertices of the multifaceted simplex

that most tightly encloses the pixel time-courses and has the same

number of compartments as vertices (Fig. 1d) [30]. MTCM

algorithm is supported theoretically by a well-grounded mathe-

matical frameworkas summarised below (see formal proofs in

Appendix S2 in File S1).

Theorem 1 (Convexity of pixel time-course)
Suppose that the J compartment pharmacokinetics Cj

� �
are

linearly independent, and Cmeasured(i)~
PJ

j~1 K trans
j (i)Cj where

local volume transfer constants K trans
j (i)

n o
are non-negative and

have at least one pixel whose signal is highly and exclusively
enriched in a particular vascular compartment, then, Cmeasured

uniquely specifies a convex set H Cmeasuredf g~
PN

i~1 ai

n
Cmeasured(i),ai§0,

PN
i~1 ai~1g which is in fact identical to the

convex set H CJf g~
PJ

j~1 bjCj ,bj§0,
PJ

j~1 bj~1
n o

, whose ver-

tices are the J compartment pharmacokinetics Cj

� �
.

Theorem 2 (Optimum source dominance)
Suppose that the local volume transfer constants

Ktrans(vj)~ K trans
1 (vj),:::,K

trans
m (vj),:::,K

trans
J (vj)

� �� �
are the vertices

of the pixel time-course scatter simplex. Then the MTCM solution
based on these vertices Ktrans(vj)

� �
achieves the maximum source

dominance in the sense of K trans
m (vj)~ max

i~1,2,:::N
K trans

m (i).

From Theorems 1 and 2, there is a mathematical solution

uniquely identifying the compartment model (3) based on the

observed set of pixel time-course Cmeasured~ Cmeasured(i)f g (iden-

tifiability and optimality): The vertices of convex set H Cmeasuredf g

are the J compartment pharmacokinetics Cj

� �
when there is at

least one pixel whose signal is highly and exclusively enriched in a

particular vascular compartment(Fig. 1b). This means that, in

principle, under a noise-free scenario, we can directly estimate

Cj

� �
by locating the vertices of H Cmeasuredf g (Fig. 1d).

Data preprocessing
First, the tumor area is extracted by masking out the non-tumor

tissues surrounding the tumor site [31] (Fig. 1a). Second, the first

few image frames, such as the four initial images of DCE-MRI

sequences in our experiments, are removed because they

correspond to the time prior to sufficient onsite tracer uptake.

Third, pixels whose temporal average signal intensity is lower than

5% of the maximum value, or whose temporal dynamic variation

is lower than 5% of the maximum value, are eliminated, because

these non-informative pixels could have a negative impact on

subsequent analyses. Fourth, the pixel time series is normalized

over time using a sum-based normalization scheme, focusing the

analysis on the ‘‘shape’’ of pharmacokinetics rather than on

absolute tracer concentration.

It is true that accurate extraction of tumor region is critical to

any image-based analysis that is focused on tumor characteriza-

tion, where non-tumor tissue would constitute a confounding

factor. Theoretically, MTCM method can handle well such

situation since it is a completely unsupervised approach, relying on

the MDL-based model selection. Specifically, since MTCM is

specifically designed to work on multiple tissue compartment

modeling, when a significant portion of the surrounding healthy

tissue is included in the processed ‘tumor’ area, the healthy tissue

will be considered as an additional/individual compartment in Eq.

(1) and Fig. 1c. The MDL-based model selection procedure will

statistically determine the number of underlying tissue compart-

ments in the processed area, e.g., whether the contribution of

surrounding healthy tissues is significant to be considered as an

independent compartment. Though MTCM methodology can

accept the processed area extracted by any image segmentation

methods, the tumor region in our study can be outlined by a

collaborative effort by computer scientists and clinicians (Wang,

Adali et al. 1998, Xuan, Adali et al. 2000, Li, Wang et al. 2001). In

the case of heavy noise and fuzzy boundary, a consensus approach

may be adopted that surveys the results of multiple methods.

Clustering of pixel time-course
To reduce the impact of noise/outlier data points, improve the

efficiency of subsequent convex analysis of mixtures, and permit an

automated determination of the number of underlying vascular

compartments using the minimum description length (MDL)

criterion, we aggregated pixel time-courses into representative

clusters using a combined affinity propagation and expectation-

maximization clustering [32] (Fig. 1b, Appendix S2 in File S1).As

an initialization-free and near-global-optimum clustering method,

affinity propagation clustering (APC) simultaneously considers all

data points as potential exemplars and recursively exchange real-

valued messages between data points until a high-quality set of

exemplars and corresponding clusters gradually emerges. Let the

‘‘similarity’’ s i,mð Þ indicate how well the mth data point is suited to

be the exemplar for ith data point; the ‘‘responsibility’’ r i,mð Þ reflects

the accumulated evidence for how well-suited the mth data point is to

serve as the exemplar for the ith data point; the ‘‘availability’’ a i,mð Þ
reflects the accumulated evidence for how appropriate the ith data

point chooses mth data point as its exemplar. Then, supposing that

there are N data points (e.g., pixels) in total, the responsibilities r i,mð Þ
are computed based on

Unsupervised Deconvolution of Intratumor Heterogeneity
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r i,mð Þ/s i,mð Þ{ max
m0[f1,:::,Ng\ m0=m

a i,m0ð Þzs i,m0ð Þf g, ð5Þ

where the availabilities a i,mð Þ are initialized to zero and the

competitive update rule (5) is purely data-driven. Whereas the

responsibility update (5) allows all candidate exemplars to compete

for ownership of a data point, the availability update rule

a i,mð Þ/min 0,r m,mð Þz
X

i0[f1,:::,Ng, i0=i, i0=m

max 0,r i0,mð Þf g

8<
:

9=
; ð6Þ

collects evidence from data points to support a good exemplar, where

the ‘‘self-availability’’ is updated differently a m,mð Þ/X
i0=[m

max 0,r i0,mð Þf g. Then, the availabilities and responsibilities

are combined to identify exemplars m �~ arg max
m

a i,mð Þzf
r(i,m)g. The update rules are repeated iteratively and terminated

when no change occurs for 10 iterations [32].

Convex analysis of mixtures
To identify the vertices of convex set H Cmeasuredf g, we

performed convex analysis of mixtures (CAM) on the obtained

M cluster centers Cmf g (Fig. 1d). We assumed J vascular

compartments and conducted an exhaustive combinatorial search

(with total CM
J combinations), based on a convex-hull-to-data

fitting criterion, to identify the most probable J vertices

(Appendix S2 in File S1). We used the margin-of-error

d
m, 1,:::Jf g[CM

J
~ min

a1,:::aJ
Cm{

XJ

j~1
ajCj

��� ���
2
,

aj§0,
XJ

j~1
aj~1,

ð7Þ

to quantify the distance between Cm and convex set H C
J[CM

J

� �
,

where we have d
m, 1,:::Jf g[CM

J
~0 if Cm is inside H C

J[CM
J

� �
. We

then selected the most probable J vertices when the corresponding

sum of the margin between the convex hull and the remaining

‘‘exterior’’ cluster centers reaches its minimum:

1 � ,:::J�f g~ arg min
1,:::Jf g[CM

J

XM

m~1
d

m, 1,:::Jf g[CM
J
: ð8Þ

Model selection procedure
One important discovery step concerning MTCM is to detect

the number J of the underlying tissue compartments. We used

MDL, a widely-adopted and consistent information theoretic

criterion, to guide model selection (Appendix S2 in File S1). We

performed CAM on several competing candidates, and selected

the optimal model that assigns high probabilities to the observed

data while at the same time whose parameters are not too complex

to encode [33]. Specifically, a model is selected with J tissue

compartments by minimizing the total description code length

defined by

MDL Jð Þ~{ log L CM DH Jð Þð Þð ÞzJ{1

2
log Mð ÞzJM

2
log (L), ð9Þ

where L :ð Þ denotes the joint likelihood function of the clustered

compartment model, CM denotes the set of M cluster centers, and

H Jð Þ denotes the set of freely adjustable parameters in the

clustered compartment model (see Appendix S2 in File S1).

Estimation of pharmacokinetics parameters in MTCM
Having determined the pure-volume pixels associated with the

vertices of H CJf g and the value of J, we estimated the values of

tissue-specific vascular compartment pharmacokinetics parame-

ters, i.e., flux rate constants kep,j

� �
and volume transfer con-

stants K trans
j

n o
, where the vertex of fastest tracer enhancement

(reaching its peak most rapidly) is identified as Cp (Appendix S2

in File S1). We constructed the Toeplitz matrix H kep,j

	 

(sampled

system impulse response) and solved the following optimization

problem

k̂kep,j ,K̂K
trans
j

n o
~ arg min

Ktrans
f

,kep,f

Cmeasured,j{K trans
j H kep,j

	 

Cp

��� ���
2

subject to K trans
j w0and kep,jw0

ð10Þ

,for j~1,:::,J{1. Subsequently, we estimated local volume

transfer constants by solving

K̂K trans
j ið Þ

n o
~ arg min

Ktrans
j

ið Þ
n o Cmeasured ið Þ{

XJ

j~1
K trans

j (i)Cj k̂kep,j

� ���� ���
2

subject to K trans
j ið Þ§0,Vj

ð11Þ

which readily reveals the intratumor vascular heterogeneity.

Synthetic DCE-MRI datasets
We first validated MTCM-generated estimates of tissue-specific

vascular pharmacokinetics parameters using a set of realistic

synthetic DCE-MRI data with known parameter values. We set

J = 3, indexing two tissue compartments and one plasma input.

We generated a large number of synthetic DCE-MRI time series

by multiplying the customized local volume transfer constant maps

K trans
j ið Þ

n o
with known compartment pharmacokinetics

Cj kep,j

	 
� �
. Synthetic data were comprised of 50 replicated

datasets generated for each of the 12 parameter settings (Data
S1). We performed MTCM on all the datasets and compared the

estimates of tissue-specific kinetic parameters produced by MTCM

with the ground truth, in terms of both biases (accuracy) and

variance (reproducibility) of the estimates, measured over 50

replicated datasets. For comparison purposes, we also evaluated

the three most relevant methods (Table S1). To determine

whether the proposed MDL criterion detects the correct number

of underlying tissue compartments, we calculated the MDL values

for J~2, 3, :::, 6 and identified the most probable value of J when

MDL achieves its minimum value(s) (Fig. 2).
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Characterization of differential vascular pharmacokinetics
in advanced breast cancer case

In the second application, we analyzed the real DCE-MRI data

of an advanced breast tumor using both MTCM and the classic

method. The T1-weighted gadolinium-enhanced (Gd-DTPA)

DCE-MRI data set was acquired by three-dimensional scans

performed every 30 seconds for a total of 11 minutes after the

injection, on a 1.5 Tesla magnet using three-dimensional spoiled

gradient-echo sequences (TR,7 msec, TE,1.5 msec, flip angle

= 30u, matrix = 1926256, 0.5 averages). Typically, 12–15 slices

are obtained and 15–18 time frames are acquired for each case.

We visually examined the convexity of projected pixel time-course

via the top two convexity-preserved projections where the margin

between the ‘‘exterior’’ data points and the convex hull is

minimized. We observed that two-tissue compartments (a three-

vertex convex set) were sufficient to describe the observed pixel

time-course scatter simplex. While additional compartments can

be used to account for outlier vertices, these compartments

become difficult to interpret. We analyzed the dataset by setting

J~4,5,6 and observed noise-like and biologically implausible

pharmacokinetics patterns. The minimum value of MDL

confirmed J = 3. The number of clusters M takes values between

12 and 18, determined automatically by the APC algorithm.

Characterizing longitudinal changes of differential
vascular pharmacokinetics in treating angiogenic-active
breast cancer case

Vascular pharmacokinetics parameter values estimated by

MTCM reveal longitudinal changes that may serve as the

evidence of differential and heterogeneous responses to therapy.

We analyzed the data sets arising from a longitudinal study of

tumor response to anti-angiogenic therapy using similar imaging

protocols (Data S3). Three sets of DCE-MRI data were acquired

during standard treatment, each three months apart, serving as the

potential endpoints in assessing the response to therapy. To detect

various yet potentially hidden changes accounting for intratumor

heterogeneity, we applied the same MTCM and MDL (as well as

the classic method) to the three data sets separately.

Open source multiplatform standalone MTCM Java-R
software

Java GUI supported MTCM was implemented in both R and

MATLAB, and runs on both Microsoft Windows and Linux

platforms (http://mloss.org/software/view/437/). MTCM takes

input the.mat data files that record the pixel time-course of DCE-

MRI data in matrices. Each row corresponds to a time frame and

each column corresponds to a pixel. Results of MTCM are

provided to the users via a Java-based GUI (Fig. S5).

Supporting Information

Figure S1 MTCM estimates time-activity curves in
multiple vascular compartments simultaneously and
quantitatively reconstructs tissue-specific local volume
transfer constants – mouse DCE-MRI experimental
data. (a) Snapshots of DCE-MRI sequence taken from the same

tumor at 26 time points. Time point 1 is pre-contrast, and time

points 2-26 are post-contrast. The first two time points are

removed in the experiment. Each time point contains 4 sections

from the same tumor. (b) The MDL curve of model selection and

3 is the optimal choice corresponding to the minimum MDL

value. (c) Estimated tissue-specific compartmental time-activity

curves: ‘blue’ - plasma input function; ‘red’ – fast flow kinetics;

‘green’ – slow flow kinetics. (d) Estimated maps of local volume

transfer constants from four sections in the same tumor.

(TIFF)

Figure S2 Comparison of time-activity curves of total
vascular pool within the region of interests and tissue-
specific time-activity curves estimated by MTCM, in a
longitudinal DCE-MRI study on a breast cancer tumor:
(a) – (c) time-activity curves of total vascular pool; (d) –
(f) MTCM-estimated time-activity curves of fast flow
pool; (g) – (i) MTCM-estimated time-activity curves of
slow flow pool; (j) – (l) MTCM-estimated time-activity
curves of plasma input function.
(TIFF)

Figure S3 MTCM dissects tissue compartments into
anatomical structures of the mouse using dynamic
fluorescence molecular imaging data acquired on a
mouse after bolus injection of indocyanine green dye,
allowing the longitudinal identification of the internal
organs. (a) Physiologically interpretable biodistribution dynamics

of the major organs with ten fluorescence time courses showing

distinct patterns of circulating, accumulating, or metabolizing the

dye in different organs. (b) The merged and color-coded maps of

the dissected tissue compartments agree well with a digital

anatomical mouse atlas. (c) The gray-scale maps of the dissected

individual tissue compartment (Kidney: Ktrans = 1.0004,

kep = 0.0134; Spine: Ktrans = 1.0269, kep = 0.0241; Antipose:

Ktrans = 0.7333, kep = 0.0100; Large intestine: Ktrans = 0.7808,

kep = 0.0203; Nodes: Ktrans = 0.6719, kep = 0.0049; Blood vessels:

Ktrans = 0.9891, kep = 0.0222; Liver: Ktrans = 0.7839, kep = 0.0128;

Brain: Ktrans = 0.7553, kep = 0.0258; Stomach: Ktrans = 0.8955,

kep = 0.0143; Lung: Ktrans = 0.6656, kep = 0.0167).

(TIFF)

Figure S4 MTCM estimates time-activity curves in
multiple DCE-MRI data produced in clinical practice.
(a) – (c) show raw image series, scatter simplex of image series and

estimated tissue-specific compartmental time-activity curves and

local volume transfer constant maps, respectively for a case; (d) – (f)

display the same things for another case.

(TIFF)

Figure S5 MTCM software package in R and Java is
developed to implement MTCM algorithm, as well as
the other algorithms widely used in blind source
separation. The user-friendly Java GUI (a) can generate the

tissue-specific local volume transfer constants and pharmacokinetic

parameters on the right. Two pop-up windows (b) will show the

projection of clustered pixels on the simplex, and (c) will display

the estimated tissue-specific compartmental time-activity curves.

(TIFF)

Table S1 Comparison of tissue-specific kinetic param-
eter estimation by MTCM and three most relevant
methods, based on synthetic DCE-MRI experimental
data.
(DOCX)

Table S2 Tissue-specific kinetic parameter estimates
by MTCM on mouse DCE-MRI experimental data.
(DOCX)

Table S3 MTCM estimates of flux rate constants and
volume transfer constants of a breast cancer tumor
before, during, and after treatment in the longitudinal
study.
(DOCX)

Unsupervised Deconvolution of Intratumor Heterogeneity

PLOS ONE | www.plosone.org 8 November 2014 | Volume 9 | Issue 11 | e112143

http://mloss.org/software/view/437/


Table S4 Fractions of partial-volume pixels before,
during, and after treatment in the longitudinal study.
(DOCX)

Table S5 MTCM estimated tissue heterogeneity score
before, during, and after treatment in the longitudinal
study.
(DOCX)

Data S1 Synthetic datasets generated for 12 parameter
settings.
(PDF)

Data S2 DCE-MRI data sets arising from mouse DCE-
MRI experiments.
(PDF)

Data S3 DCE-MRI data sets arising from a longitudinal
study of tumor response to anti-angiogenic therapy.
(PDF)

File S1 Supplementary discussion (appendix S1) and
supplementary method (appendix S2).

(DOCX)
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