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Abstract

Previous research has found evidence of an association between indoor air pollution and asthma
morbidity in children. Environmental intervention studies have been performed to examine the
role of household environmental interventions in altering indoor air pollution concentrations and
improving health. Previous environmental intervention studies have found only modest effects on
health outcomes and it is unclear if the health benefits provided by environmental modification are
comparable to those provided by medication. Traditionally, the statistical analysis of
environmental intervention studies has involved performing two intention-to-treat analyses that
separately estimate the effect of the environmental intervention on health and the effect of the
environmental intervention on indoor air pollution concentrations. We propose a principal
stratification (PS) approach to examine the extent to which an environmental intervention’s effect
on health outcomes coincides with its effect on indoor air pollution. We apply this approach to
data from a randomized air cleaner intervention trial conducted in a population of asthmatic
children living in Baltimore, Maryland, USA. We find that amongst children for whom the air
cleaner reduced indoor particulate matter concentrations, the intervention resulted in a meaningful
improvement of asthma symptoms with an effect generally larger than previous studies have
shown. A key benefit of using principal stratification in environmental intervention studies is that
it allows investigators to estimate causal effects of the intervention for sub-groups defined by
changes in the indoor air pollution concentration.
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1. Introduction

Previous studies have established an association between outdoor fine particulate matter
(PM> 5) and the risk for mortality and morbidity [1-6]. In particular, research has shown an
association between ambient outdoor PM> 5 and respiratory health [2, 6] and more
specifically, found that higher concentrations of particulate matter air pollution (PM5 5 and
PM1o) were associated with a greater number of symptom days for asthmatic children [7, 8].
Interventions to lower outdoor PM,, 5 are typically conducted at the national or state level
through government regulatory agencies [9]. This process can be time-consuming and may
take years to have an effect. Interventions at the individual or community level are more
manageable and less expensive to implement. This suggests that environmental interventions
to reduce indoor air pollution may be relatively simple and inexpensive ways to improve
health. Recent research suggests that environmental interventions reduce indoor air pollution
and allergens. It also suggests that they are associated with improved asthma in children
[10-14]. However, the health benefits observed in these studies were generally modest and
questions remain regarding whether environmental modification provides a significant
benefit over standard medication-based treatments. The effectiveness of environmental
interventions on health and asthma symptoms continues to be an area of active research
[10-15].

The statistical analysis of environmental intervention studies has generally consisted of an
intention-to-treat (ITT) analysis for the effect of the intervention on the health outcome and
an ITT analysis for the effect of the intervention on the environmental factor(s) of interest
[10, 11]. However, this approach does not allow one to simultaneously consider the
relationship between the environmental intervention, environmental factor, and asthma
morbidity. One can only detect an association between the intervention’s effect on health
and the intervention’s effect on environmental factors. Studies performing regression
analysis of indoor air pollution and respiratory health, such as in Hunt et al. [16], identify
associations between indoor air pollution and respiratory health. Yet, in general, such
analyses cannot estimate causal effects and their effect estimates may be biased due to
potential confounding.

In many environmental intervention studies, the interventions are implemented to improve
health by modifying an environmental factor that has been shown to be associated with
health. As discussed in Frangakis and Rubin [17] and Stuart and Jo [18], conditioning on
variables that may be affected by treatment assignment can result in biased treatment effect
estimates. In Frangakis and Rubin [17], the authors introduced the principal stratification
(PS) framework to estimate the effect of treatment when a key post-treatment variable is
present. The PS approach estimates causal effects of the treatment by grouping individuals
into principal strata based on the potential outcomes of the post-treatment variable. Because
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we do not observe all the potential outcomes of the post-treatment variable, principal
stratum membership is generally not known and must be inferred. Propensity score
approaches can be used to estimate principal stratum membership and obtain causal
treatment effect estimates [18, 19]. Other studies analyze data with post-treatment variables
using a PS framework and Bayesian models [20-23]. A spatial Bayesian PS method to
examine the causal effects of outdoor air quality regulations is proposed in Zigler et al. [9].

Another commonly used approach for analysis of data with post-treatment variables,
proposed in Baron and Kenny [24], is to test for indirect effects of the post-treatment
variable by fitting three regression models and then multiplying the estimates for the effect
of the treatment on the post-treatment variable and the effect of the post-treatment variable
on the outcome. Other causal analyses use marginal structural models (MSMs) to estimate
the direct and indirect causal effects when post-treatment variables are present [25-28]. In
Ten Have et al. [29], the authors propose a linear rank preserving model (RPM) approach
that avoids making the assumption of sequential ignorability for the relationship between
post-treatment variable and outcome as is assumed in MSMs. However, the RPM assumes
no interaction between treatment and post-treatment variables.

In this paper, we extend the research examining the effectiveness of environmental
interventions on health and asthma symptoms by using PS to analyze data from a
randomized trial of air cleaners. The PS framework allows us to estimate the causal effect of
an air cleaner on asthma symptoms for sub-populations of interest, such as for individuals
for whom the air cleaner would reduce indoor PM 5. If the air cleaner improves health by
reducing indoor PM 5, we would expect the health effect estimate for the sub-population of
individuals for whom the air cleaners would meaningfully reduce indoor PM 5 to be greater
than the health effect estimate found in a traditional ITT. The PS approach allows us to take
advantage of the randomized experimental design and avoid bias in the environmental
intervention effect estimates that may be introduced by an analysis that simply conditions on
the post-treatment variable. Using PS as opposed to testing for mediation as in Baron and
Kenny [24] or performing mediation analysis estimating indirect effects as in VanderWeele
[26], allows us to examine the relationships between the environmental intervention, indoor
PM, 5, and health while avoiding making assumptions about a priori counterfactuals for
interventions on indoor PM, 5 [26]. Our analysis includes a treatment by post-treatment
variable interaction which is assumed not to exist in the RPM proposed in Ten Have et al.
[29]. Unlike causal analyses using propensity scores and other causal analysis using PS that
assume discrete post-treatment variables, such as in Elliott et al. [21] and Gallop et al. [22],
we treat indoor PMs, 5 as a continuous variable. By treating indoor PM, 5 as continuous as
opposed to a discrete outcome, we are able to consider several different cutoffs to define a
meaningful reduction in indoor PM, 5 and obtain causal treatment effect estimates for a
multitude of potential PM, 5 outcome values. Our analysis parallels the work of Zigler et al.
[9], Schwartz et al. [20] and Jin and Rubin [23] by considering a PS model with a
continuous post-treatment variable and adapts it to the context of environmental intervention
studies with a randomized treatment assignment. Section 2 describes the data used in our
analysis, Section 3 discusses our PS model and estimation procedure, and Section 4 gives
the results obtained from applying the PS analysis to data from a randomized trial in which
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air cleaners are randomly assigned to inner-city households with asthmatic children and
smokers. We end with a discussion and recommendations for using a PS approach in
environmental intervention studies in Section 5.

2. PREACH Data

Our analysis uses data collected for the Particulate Reduction Education in City Homes
(PREACH) study [11]. Previous studies have suggested that multi-modal intervention
programs that combine environmental interventions and asthma education improve the
health of asthmatic children [10, 30-32]. The main objective of the PREACH study was to
compare the effect of air cleaners, air cleaners and a health coach, and no intervention on
measures of second hand smoke exposure and asthma symptoms among children living with
a smoker. It was a randomized trial with 3-arms: (1) control group receiving 4 asthma
education sessions, (2) air cleaner group receiving 4 asthma education sessions and 2 air
cleaners, and (3) air cleaner plus coach group receiving 2 air cleaners and 4 asthma
education sessions which also include behavioral interventions with a health coach.
Households randomized to the control case received four asthma education sessions during 4
nurse home visits. They served as an attention control group and received the same number
of nurse contacts as the treatment arms [11]. For households assigned to the air cleaner
groups, an air cleaner was placed in the room in which the child slept for 4 or more nights
per week and in the family or living room. In the air cleaner plus coach treatment arm, the
health coach worked with the caregiver to reduce the child’s exposure to tobacco smoke and
achieve a total home smoking ban.

Children between the ages of 6 and 12 who were physician-diagnosed asthmatics with
persistent asthma were enrolled in the study using patient rosters from an urban pediatric
emergency department and 2 community practices. The children in the study were limited to
children who live with a smoker in the home who smoked at least 5 cigarettes per day and
resided in the home at least 4 days a week. There were 126 households enrolled and
randomized. Data was collected at baseline and a six month follow-up visit. Data collected
at baseline and follow-up includes the number of symptom days for asthmatic child in
previous two weeks of visit, the total cotinine concentration in child’s urine in ng/mL, the air
nicotine concentration, the concentration of particulate matter air pollution less than 10
micrometers in diameter (PM1), and the concentration of particulate matter air pollution
less than 2.5 micrometers in diameter (PM5 5). PM1g and PM, 5 were measured using 4-
L/min impactors sampling for 7 days within 2 weeks of the clinic visit. The number of
symptom days was determined by asking the caregiver how many days in the past two
weeks did the child experience "wheezing, coughing, shortness of breath, or tightness in the
chest” and the number of symptom free days (SFDs) was calculated by subtracting the
number of symptom days from 14 [11]. More details on the PREACH study can be found in
Butz et al. [11]. One outcome of interest in the PREACH study is the change in PM; 5
concentrations between baseline and follow-up visits. No significant differences in this
outcome were detected between the two groups with air cleaners [11]. After combining the
two air cleaner groups, a significant decrease in PM, 5 concentrations between baseline and
follow-up for the combined air cleaner group was found with a mean decrease of 18 pg/m3
[11]. The mean change in PM; 5 for the control group was estimated to be 2.4 pg/m?3 and
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found not to be significantly different than zero. In Butz et al. [11], they also found that the
combined air cleaner group had a significant increase in number of SFDs (mean increase of
1.36 SFDs) compared to control group with a mean increase of 0.24 SFDs which was not
found to be significantly different than zero. The authors conclude that the significant
improvement in health was most likely due to the reduction in indoor PM, 5 concentrations.

3. Methods

We consider a PS framework and a potential outcomes model [17, 33]. Let A; be the random
variable representing the level of treatment assigned to individual i and Z; be the s x 1
column vector of observed baseline covariates. In our case, Aj = aj with a; € {0, 1} where g;
= 1 indicates that individual i is assigned to the treatment group and receives air cleaners.
Let Y; be the response variable, which in our case is the change in SFD from baseline to
follow-up, and let Y; (a;j) be the potential outcome for the response variable given that
individual i is assigned to treatment level a;. Let X; be the random variable that is not
directly controlled and whose levels depends on treatment assignment. For the PREACH
analysis, this is the change in PM5 5 levels from baseline to follow-up. To simplify the
notation throughout the rest of the paper, we will lose the subscript when denoting fine
particulate matter and simply refer to PM, 5 as PM. Let X; (a;) be the potential outcome for
Xj given individual i is assigned to treatment level a;.

3.1. Assumptions

We assume the stable unit treatment value assumption (SUTVA) which is a common
assumption in causal inference [29, 33]. SUTVA has two parts where the first assumes that
there is no interaction between units of the study and thus, the potential outcomes of an
individual are not influenced by the treatment assignment of other individuals. The second
assumes that there are no other possible treatments or versions of the treatment in the study
[33]. We also assume another common but untestable assumption in causal inference, the
ignorability of treatment assumption [9, 29, 33]. This assumption implies that conditional on
observed covariates, there is no unmeasured confoundedness in the relationship between the
treatment and potential health outcomes and there is no unmeasured confoundedness in
relationship between the treatment and potential outcomes for the environmental factor. This
assumption is often reasonable for data obtained from randomized experiments. Since little
is known about the mechanisms that contribute to indoor PM levels, we make a minimal
amount of assumptions about indoor PM. We do not assume sequential ignorability since
sequential ignorability implies that there does not exist extraneous variables that influence
both indoor PM and the health outcome [22, 34]. We also do not assume another common
assumption, the exclusion restriction [18, 22, 35]. In this case, the exclusion restriction
would imply that there is no treatment effect on individuals whose PM levels are not
affected by treatment level assignment. We also avoid making the monotonicity assumption,
which would imply that there does not exist individuals for whom indoor PM would
increase when assigned to air cleaner and decrease when assigned to the control case [22,
35].
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Note that we do not observe all the potential outcomes for a given individual. Thus, without
further assumptions, we will not be able to identify a full joint density with which to draw
inference. We, therefore, assume a model for the change in SFDs and the change in PM
concentrations. For the model for the change in SFDs, the SFD model, we assume

Y (a;) =Z;Oé+516li+ﬂin (a;) +B3a; X; (a;) +na;i (1)

where 7; j is normally distributed with mean 0 and variance &, 7, j ~ N (0, &), Let X; =
(Xi (0), X; (1)) and Y; = (Y; (0), Y; (1)). We assume that Y; given Z; and X; is independent
of Yj given Zj and X; for i # j. We further assume that given X; (0), X; (1) and Z;,

Y; (0) | Z;0+5:X; (0) & 0
[ Y; (1) }N ({ Zio+P1+ (Ba+83) X (1) } ’ [ 0 & D @

For the model for the change in PM, the PM model, we assume

X;(0) |- o2 000
O (e [g ) e

where 11, =W, ~, ju1,=W, v+4, and & is the effect of the air cleaner on the PM potential
outcome. We let W; be a r x 1 column vector of observed baseline covariate for individual i,
which do not necessarily have to be the same as the covariates in Z;. Note that p is the
correlation between an individual’s PM potential outcome under treatment and that same
individual’s PM potential outcome under control. Larger values of p will occur if there are
unmeasured factors about an individual or in an individual’s environment that effect PM
level concentrations. Since we do not observe an individual under both the treatment and
control condition, the data provide no information on p. Thus, for our analysis, we will fix
the value of p and check the sensitivity of our results to different values of p. Relaxations of
the assumption that o is fixed are discussed in Section 5. We assume that X given W; is
independent of X; given W; for i # j.

Hoi
H1i

3.3. Bayesian Analysis

To estimate the parameters of interest and obtain causal effect estimates, we use a Bayesian
approach as in Zigler et al. [9] and Jin and Rubin [23]. Let X be a n x 2 matrix with the ith
row equal to the X! and Y be a n x 2 matrix with the ith row equal to the Y ' . Note that Y; (1)
and X; (1) are unknown for the individuals in the control group and that Y; (0) and X; (0) are
unknown for the individuals in the treatment group. Let Y MiS be a n x 1 column vector
where the ith element, y;™s, is the missing SFD potential outcome for individual i and let
YObs he a n x 1 column vector where the ith element, Y;°b%, is the observed SFD potential
outcome for individual i. Likewise, let XM be a n x 1 column vector where the ith element,

X, is the missing PM potential outcome for individual i and let X5 he a n x 1 column
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vector where the ith element, y°t¢, is the observed PM potential outcome for X; for
individual i. The unknown potential outcomes, often referred to as counterfactuals, can be
thought of as missing data that need to be estimated along with other parameters in the
model [26, 33, 36]. Let = (¢ &, oy, o1, &/, Bu. o, B, &) bea(r + s+ 7) x 1 vector of the
parameters from the SFD and PM models in (2) and (3), respectively. The posterior
distribution for @is proportional to

f (6) jjf (Xmis, XObs, Ymis’ Y()bs|Z, W, 0) 8Xﬁusa Ymis @)

where Z is a n x s matrix with the ith row equal to Zg and Wis a n x r matrix with the ith

row equal to Wi’. Note that this is difficult to integrate since we need to integrate over
missing potential outcomes. Thus, similar to the analysis in Zigler et al. [9], we focus on
sampling from the joint posterior proportional to

. . bs bs n . bs <rmmis bs
f (0’ XTTLZ(S’ Y’"L’I“S|X()).S’ 'Y() (SZ’ W) o f (6) 7(1:_,[1‘}‘. (X’”L’I“S’X() S Y"LLS’ Y())(S|0’ Z, W) . (5)

Markov Chain Monte Carlo (MCMC) techniques are used to sample from this distribution.
We iteratively sample the missing PM potential outcomes followed by the missing SFD
potential outcomes. We then update the (r + 1) x 1 column vector & = (¥, &), followed by
the (s + 3) x 1 column vector & = (a’, 1, A, /&) - Lastly, we update the variance
components &, gy, and o1. Details of the sampling algorithm can be found in the
Supplemental Material.

For the variance parameter in (2), &2, we select an inverse gamma prior (shape and scale
parameters are 0.01 in our analysis). For the standard deviations in the PM model in (3), oy
and o7, we assume lognormal priors. We let the priors for log (op) and log (o7) be normal

distributions with mean zero and variance m2 and m2, respectively

(m2=5 and m3i=>5Iinour analysis). As explained in Section 3.2, p is fixed as opposed to
a free parameter. By fixing p, we are able to check the sensitivity of our causal effects
estimates under different values of p. As an alternative, one could let p be a free parameter,
using an inverse-Wishart prior for the covariance matrix in the PM model or by using a
Dirichlet process mixture model [20]. If pis a free parameter, the causal effect estimate
would be found by integrating over p as opposed to assuming p is equal to a fixed value.
This adds a greater computational burden and since no household is observed under both
treatment conditions, the data does not provide any additional information on p (See Section
5).

For the other parameters, we choose less informative normal priors. We let 6 be normally
distributed with mean equal to the zero vector and a diagonal variance matrix with diagonal

elements (02}, ... ,02,,05) With 03 = ... = 0,r = 05= 20 in our analysis. We let 6 be

normally distributed with mean equal to the zero vector and a diagonal variance matrix with
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diagonal elements o2, ,. . ., 04y, 05, 05,05 With 041 = ... = 045 = 0= 20 in our analysis. We
assume a priori independence among all parameters.

3.5. Causal Effects

We consider the average causal effect of the treatment within principal strata where the
principal strata are defined using the PM potential outcomes. The average causal effect can
be found for any combination of principal strata [9, 17]. We consider a level Zsuch that if X;
(1) = X; (0) < I, we conclude that the air cleaner would meaningfully reduce indoor PM. The
average causal effect of the air cleaner on SFDs for those individuals for whom there would
be a meaningful reduction in indoor PM under treatment is

ERE,=E[Y; (1) = Y; (0)|X; (1) — X, (0)<{]. ()

Thus, this is the average causal effect for individuals for whom the treatment would have
improved indoor PM levels. We refer to (6) as the expected reduced effect (ERE). If X; (1) -
Xi (0) = £ we conclude that the air cleaner would not meaningfully reduce indoor PM. The
average causal effect of the air cleaner on SFDs for those individuals for whom indoor PM
would not be meaningful reduced under treatment is

ENRE=E[Y; (1) - Y; (0) |X; (1) = X, (0) > . ()
Thus, this is the average causal effect for individuals for whom the treatment would not have
improved indoor PM levels. We refer to this as a expected not reduced effect (ENRE).

Another principal strata that may be of interest is the principal strata for which there would
be no meaningful change in indoor PM under treatment. The average causal effect of the air
cleaner on SFDs for those individuals for whom indoor PM would not meaningfully change
under treatment is

ENCE=E[Y;(1) - Y; (0)|X; (1) — X, (0) <[] 8)

We refer to this causal effect as the expected no change effect (ENCE). A large ENCE
estimate would suggest that the air cleaner is improving health by another mechanism
besides reducing indoor air pollution. The regulations for outdoor PM requires that it does
not to exceed 35 pg/m3 in a 24 hour time period but indoor PM levels are not regulated in
the United States [37, 38]. Thus, there is no clear choice for the value of £so we consider
several values for Zin our analysis.

4. Results

Our analysis of the PREACH data begins by focusing on the individuals for whom
researchers were able to obtain the number of SFDs and PM concentrations for both the
baseline and follow-up periods along with certain baseline covariates such as baseline
asthma severity. Thus, our analysis focuses on 75 out of 126 trial participants (60%). Like
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the analysis in Butz et al. [11], we combine the two air cleaner groups in the PREACH study
into one group referred to as the air cleaner group giving 46 observations in the treatment
group and 29 observations in the control group. Figure 1 summarizes the outcomes of
interest by treatment group with the left plot of Figure 1 giving boxplots of the change in
SFD from baseline to follow-up (in days) by treatment group. The right plot of Figure 1
gives boxplots of the change in PM concentrations from baseline to follow-up (in pg/m3) by
treatment group. Note that the air cleaner group generally has greater increases in SFDs
compared with control group and most of the observations for the air cleaner group lie above
zero. Also, the air cleaner group appears to have a greater decreases in PM concentrations
when compared to control group and most of the observations in the air cleaner group lie
below zero.

For our PS analysis, we ran the MCMC algorithm for 200,000 iterations discarding the first
20,000 as burn-in. We let #=-10 in (6), (7) and (8) but look at the sensitivity of the results
to the choice of Zin Appendix A. We find that our results are generally robust to the choice
of £ The baseline covariates used for the PM model in (3) are initial PM, 5 and initial logg
(cotinine). The baseline covariates used for the SFD model in (1) are initial PM> 5, initial
logyg (cotinine), age, gender, and asthma severity based on national asthma guideline
categories: Intermittent Asthma, Mild Persistent Asthma, Moderate Persistent Asthma, and
Severe Persistent Asthma [39]. For the PM model, we selected to use only a subset of the
covariates used in the SFD model since age, gender and baseline asthma severity are
believed to affect the health outcome but are not believed to influence indoor PM levels.

4.1. Principal Stratification Analysis of the PREACH Data

We present the results for our PS analysis assuming o = 0.1 in (3), which implies that there
is a non-zero correlation between an individual’s PM potential outcome for the treatment
group and that same individual’s PM potential outcome for the control group but this
correlation is positive and small. We then perform a sensitivity analysis with respect to pin
Section 4.2. Figure 2 gives the posterior predictive estimates for the difference in the SFD
potential outcomes, Y; (1) - Y;j (0), versus the posterior predictive estimates for the
difference in the PM potential outcomes, X; (1) — X; (0). For each individual i, the estimate
for Y; (1) - Y; (0) is found by computing the difference in the potential outcomes for each
MCMC iteration and then averaging across the MCMC iterations after discarding burn-in.
The same procedure is used to estimate X; (1) — X; (0). The dashed vertical lines mark where
X (1) =X (0) =-10and Xi (1) =X (0) =10.

Using 10 pg/m? to denote a significant difference in the PM potential outcomes between
treatment and control conditions, individuals whose X; (1) — X; (0) estimates fall to the left
of the dashed lines have PM outcome estimates that would be meaningfully lower when
assigned to the air cleaner group. Individuals whose X; (1) — X; (0) estimates fall between the
dashed lines have PM outcome estimates that would not be meaningfully different when
assigned to the air cleaner group compared to control and individuals whose X; (1) — X; (0)
estimates fall to the right of the dashed lines have PM outcome estimates that would be
meaningfully greater when assigned to the air cleaner group compared to control. Note that
there are very few individuals for whom we estimate the latter to be the case which is as
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expected since air cleaners are not likely to increase indoor PM. The estimate for Y; (1) - Y;
(0) for individuals with X; (1) — X; (0) estimates to the left of the dashed lines are of
particular interest since we are interested in the health effects for individuals for whom the
air cleaner reduces indoor PM. Figure 2 shows that the majority of these individuals also
have estimates for Y; (1) — Y; (0) > 0 suggesting improvement in the SFD outcome under
treatment.

Our causal inference approach also allows us to estimate causal effects as discussed in
Section 3.5. Letting ¢= -10, ERE_1q is the average effect of the air cleaner on the SFD
outcome for all individuals who also would have a meaningful reduction in indoor PM when
assigned to the air cleaner. We estimate ERE_1q to be 1.95 days with a 95% credible
interval of (0.14, 3.79) which suggests a rather large increase in SFDs for individuals who
are also estimated to have a meaningful reduction in PM when assigned to the air cleaner.
We estimate that 59% of the trial participants have a meaningful reduction in PM between
treatment and control. This estimate is found by first finding the number of observations for

which X; (1) = X; (0) < | for each MCMC iteration t, denoted by nl(t). We then take the mean

of n,@/n across all iterations after discarding burn-in where n = 75 is the number of
individuals in the trial.

The estimate for the corresponding ENRE when Z= -10 is the average causal effect estimate
for individuals who would either have no meaningful difference in PM between treatment
groups or a meaningful increase in PM under the treatment. We estimate ENRE_; to be
0.16 SFDs and the 95% credible interval for ENRE_1q to be (-2.00, 2.23). This suggests
that individuals whose PM would not be meaningfully reduced under treatment do not have
a significant improvement in asthma symptoms. Focusing on the subset of individuals who
would have no meaningful change in PM between treatment groups, we estimate the
ENCE_1q to be 0.52 SFDs and the 95% credible interval for ENCE_;¢ to be (-2.19, 3.19).
The relatively large estimate for the ERE compared to the ENRE estimate suggests there is a
much greater improvement in asthma symptoms for individuals whose households would
have a meaningful reduction in PM compared to those that would not. These results support
the hypothesis proposed in Butz et al. [11] that the air cleaner improves asthma symptoms
by reducing indoor air pollution.

4.2. Results for different values of p

We perform the PS analysis using different values for p since, as discussed in Section 3.2,
the data does not provide any information on what value of o to use in the analysis. We
consider four additional values for p (0.1, 0, 0.5, and 0.8). For p= 0.5 and 0.8, Figure 3
summarizes the posterior predictive estimates for the difference in the SFD potential
outcomes, Y; (1) - Y;j (0), and the posterior predictive estimates for the difference in the PM
potential outcomes, X; (1) — X; (0). The plots for p= 0 and p=-0.1 look similar to Figure 2
and thus are not shown here. Note that the distribution of the estimates for X; (1) — X (0)
differs depending on the value of p. Compared to Figure 2, the number of individuals whose
Xi (1) — X (0) estimates are greater than —10 is drastically less when p = 0.8 (right plot of
Figure 3). Since almost all of the X; (1) — X; (0) estimates fall to the left of the dashed lines
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when p= 0.8, it is hard to make comparisons of estimates for Y; (1) — Y; (0) between
individuals who would have a meaningful reduction in PM and individuals who would not.

For all values of p considered in our analysis, including o = 0.1, Figure 4 gives the ERE_1g
estimates (circles) as defined in (6) along with the 95% credible intervals (lines). No matter
which value we use for p, the estimate for ERE_1 is relatively large and between 1.4 and
2.0 days. Note that as p increases, the ERE_1( estimate decreases. Figure 4 also summarizes
the ENRE_ estimates (triangles) for all the values of p used in our analysis. For all values
of pexcept p=0.8, the ENRE_; estimate is much smaller than the corresponding ERE_
estimate. Assuming p = 0.8 implies that an individual’s PM potential outcome under
treatment is extremely correlated with an individual’s PM potential outcome under control.
This implies that the air cleaner has little effect on the PM potential outcome levels, which
we believe is not a reasonable assumption for the PREACH study. The relatively large ERE
estimates and relatively small ENRE estimates suggest that the air cleaner has the strongest
effect on health for individuals where it would also meaningfully reduce PM concentrations.
The causal effect estimates for individuals whose PM potential outcome would not
meaningfully change under treatment (squares) are similar to, but slightly larger than, the
ENRE estimates. This suggests that, regardless of the value selected for p, the air cleaner
would not significantly improve health for individuals whom it also would not meaningfully
change the PM potential outcomes.

4.3. Sensitivity Analysis

We also perform a sensitivity analysis to see how robust the results are to the removal of
outliers. We first perform a PS analysis after removing the observations corresponding to
eight individuals whose change in PM appear to be outliers when looking at the boxplot of
the distributions of X; by treatment group given in the right plot of Figure 1 and refer to this
as the “remove PM outliers analysis.” Fixing p = 0.1, the ERE, ENRE, and ENCE estimates
(points) along with their corresponding 95% credible intervals (lines) are given in Figure 5
and denoted by the label "PM.” The causal effect estimates from the analysis discussed in
Section 4.1 are also given in Figure 5 and are denoted by the label "original.” Note that the
ERE estimate for the remove PM outliers analysis is smaller than the corresponding estimate
from the original analysis. Though the credible interval does cross zero, the ERE estimate
for the remove PM outliers analysis is still relatively large. Figure 5 also shows that the
ENRE and ENCE estimates for the remove PM outliers analysis are smaller than their
corresponding estimates in the original analysis. However, we still see the pattern of a
relatively large ERE estimate and relatively small ENRE and ENCE estimates.

We also consider two other analyses that remove outliers. For p = 0.1, we perform the PS
analysis after removing the observations corresponding to the six individuals whose change
in SFDs appears to be outliers when looking at the boxplot of the distributions of Y; by
treatment group given in the left plot of Figure 1 and refer to this as the “remove SFD
outliers analysis.” The causal effect estimates are summarized in Figure 5 and are denoted
by label “SFD.” Likewise, for p= 0.1, we perform the PS analysis after removing the
observations corresponding to the 13 individuals with values that appear to be outliers when
looking at either the change in PM or the change in SFD (only one individual had values
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which were outliers when looking at both the change in PM and the change in SFD) and
refer to this as the “remove SFD and PM outliers analysis.” The causal effect estimates and
credible intervals are denoted by label ”SFD and PM” in Figure 5. Note that for both the
remove SFD outliers and the remove SFD and PM outliers analysis, the ERE estimates are
much smaller than their corresponding values in the original and remove PM outliers
analyses but are still positive. Also, for the remove SFD outliers and the remove SFD and
PM outliers analyses, the ERE estimates are only slightly larger than their corresponding
ENRE and ENCE estimates. Thus, for these two cases, the results no longer strongly support
that the air cleaner’s effect on the SFD outcome would be greatest for individuals whom it
would also meaningfully reduce PM.

5. Discussion

We used a principal stratification approach to analyze data from a randomized
environmental intervention study of children with asthma. We find that amongst children for
whom the air cleaner would reduce indoor particulate matter concentrations, the intervention
would result in a meaningful improvement of asthma symptoms. We estimate larger health
effects for sub-populations of individuals who would have a meaningful decrease in their
PM potential outcomes under treatment than for sub-populations that would not which
supports the hypothesis that air cleaners improve health by reducing indoor air pollution
concentrations. Compared to other environmental intervention study analyses, we estimate a
larger effect on SFDs for the air cleaner when we focus on the sub-populations of
individuals who would also have a meaningful decrease in indoor PM under treatment. In
particular, we estimate the change in SFDs to be 1.95 SFDs more when assigned to the air
cleaner compared to control for the sub-population of individuals that would have this
meaningful decrease in PM. This estimate is found by defining a meaningful decrease in PM
to be a PM potential outcome that would be at least 10 ug/m? less when assigned to air
cleaner compared to control and letting o= 0.1.

This estimate is larger than the health effects estimate found by the ITT analysis performed
for the same study in Butz et al. [11] that estimates the change in SFD to be 1.12 SFDs more
for the combined air cleaner group compared to the control group. This is also larger than
the estimated improvement of 0.82 more SFDs per two weeks for asthmatic children in a
treatment group receiving an environmental intervention compared to the control group for
the study in Morgan et al. [10]. The health effect estimate of a mean difference of 1.95 SFDs
between treatment and control over a two week period is similar to the treatment effect
estimate found in a study using anti-inflammatory therapies [40]. In this study, they found a
mean difference of 2 SFDs per month when comparing a treatment group of asthmatic
children receiving an inhaled corticosteroid to a control group given a placebo therapy [40].

Our analysis focuses on a subset of the individuals in the randomized trial that had
observations for PM and SFD at both baseline and follow-up and combines two treatment
groups from the original study. Thus, there is concern that some covariates may no longer be
balanced between the two treatment levels and there is unobserved confounding. There is no
evidence to suggest the observations were missing in a systematic way or that combining air
cleaner groups will lead to confounding. However, extensions to our analyses are to consider
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propensity score matching to balance covariates and imputation methods for the missing
data.

By fixing pin our analysis, we are able to see how the causal effect estimates differ
depending on p. An alternate approach would be to allow p to be a free parameter. However,
this makes the relationship between the causal effects and p less explicit. Additionally, the
fact that for many iterations of the MCMC, we did not estimate any individual to have X; (1)
- X; (0) < I for /= -25 and —30 when p = 0.8 (See Appendix A) illustrates that the values of
Zfor which it is reasonable to estimate ERE, differs depending on p.

As a possible alternative approach, we ran the PS analysis on the PREACH data with pa
free parameter by assuming an inverse-Wishart prior for the covariance matrix in the PM
model in (3). Using the PM model without p fixed, we were unable to get the MCMC
algorithm to converge. Furthermore, the use of an inverse-Wishart distribution does not
allow us to model the correlation and standard deviation components separately. Different
results may be obtained if one models the correlation and standard deviation components
separately as in Barnard et al. [41]. However, in general, our ability to estimate the
correlation and standard deviation components is limited due to the relatively small sample
size. As in Schwartz et al. [20], we also ran the PS analysis using a more flexible Dirichlet
process mixture (DPM) model for the potential outcomes for indoor PM. For this approach,
pis a free parameter. The DPM model also relaxes the normality assumption on the PM
potential outcomes and provides a more flexible model for the potential outcomes. However,
we were similarly unable to get the MCMC algorithm to converge, likely because of the
relatively small sample sizes in each of the treatment groups. An extension to our analysis
would be to consider non-normal data models for both the SFD and PM potential outcomes.
Another extension to our analysis would be to consider two or more environmental factors
in the potential outcomes framework. However, we again find the relatively small sample
size makes it difficult to fit more complex models and leave these for future analyses.

We found that the ERE, ENRE and ENCE estimates are sensitive to the removal of outliers.
They are particularly sensitive to the removal of observations that appear to be outliers when
looking at the distribution of the change in SFDs. In the remove SFD outliers analysis, we
removed observations from the control group that had relatively large decreases in SFD and
removed observations from the treatment group that have relative large increases in SFD
giving a smaller mean difference in the SFD outcome for treatment group and the control
group (0.85 days) when compared to the original analysis (1.97 days). The mean difference
in the SFD outcome when comparing the treatment group to the control group is also smaller
for the remove SFD and PM outliers analysis (0.76 days) compared to the original analysis
(1.97 days). This may be due to heterogeneity in individuals’ responses to PM reduction. In
the remove SFD outliers analysis and the remove SFD and PM outliers analysis, we may be
removing individuals that benefit the most from a reduction in PM. It is also important to
note that removing outliers reduces the number of observations and increases the uncertainty
the parameter estimates. It would be of interest to replicate this analysis for a randomized
trial with more observations. In future work, it would also be of interest to perform a
simulation study to explore the small sample performance of principal stratification in the
context of environmental intervention studies.
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Our results are robust to the choice of Zused for the cutoff to define a meaningful reduction
in PM (Appendix A). Regardless of the value for £ we still have larger ERE estimates than
their corresponding ENRE estimates. Our results are also rather robust to the choice of p, the
correlation between an individual’s PM potential outcomes under treatment and control
cases. For all values of p, except p = 0.8, the PS analysis without removing outliers estimates
the ERE to be relatively large (at least 1.5 days) and much larger than the corresponding
ENRE estimates (at most 0.79 days). The choice of p = 0.8 is rather extreme and suggests a
very large correlation between an individual’s PM potential outcomes under both treatment
and control conditions. Thus, it implies that there is not a large difference in the potential
outcomes for PM between the two treatment levels which is an unreasonable assumption for
the PREACH study, since the treatment is believed to affect the PM concentrations.

We elected to use a PS approach to examine the relationship between air cleaners, indoor
PM, and asthma symptoms as opposed to using other causal inference tools such as MSM,
which would allow for the estimation of indirect effects [25-27]. In particular, a MSM
would allow us to estimate the indirect effect of indoor PM on asthma symptoms whereas a
PS approach allows us to estimate average causal effects. These average causal effects are
not the same as indirect effects unless additional assumptions are made about the
relationships between air cleaners, indoor PM, and asthma symptoms [42, 43]. For this
reason, there is some concern as to whether a PS analysis is the best approach when your
interest is in the effect of the post-treatment variable on the response variable [42, 43].
However, using a causal approach that estimates indirect effects, such as MSMs, requires us
to consider indoor PM as a treatment variable itself and assume that there is a process by
which we can manipulate the concentrations of indoor PM such that we can achieve a given
concentration of indoor PM. Given that the mechanisms that drive indoor PM concentrations
are not well understood, we choose not to make this assumption for our analysis and use a
PS approach. Furthermore, this assumption may be undesirable in other environmental
studies given that the mechanisms that drive many environmental factors are often not well
understood. We also note that our PS approach assumes no interaction between baseline PM
and treatment. This assumption may be unreasonable for environmental intervention studies
with extremely large baseline PM values for some individuals. For these individuals, the
reduction in PM caused by the treatment may be negligible compared to the baseline PM
resulting in little, if any, improvement in health. Thus, the treatment effect would depend on
baseline PM. Also, the correlation between the PM potential outcomes under the control
condition and under the treatment condition will be high for individuals with extremely large
baseline PM. However, for the levels of baseline PM observed in the PREACH study, we
believe the no interaction assumption is reasonable.

In this paper, we demonstrate the effectiveness of using a potential outcomes approach and
PS in the analysis environmental intervention studies. However, when applying causal
inference techniques to environmental intervention studies, it is important to consider all the
assumptions made in the analysis. The PS approach requires an unverifiable ignorability
assumption and assumes that, conditional on the covariates in the potential outcomes model,
no other covariates confound the treatment and environmental factor relationship or the
treatment and health outcome relationship. This assumption may be reasonable for
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randomized trials, especially for double-blind randomized trials as in Lanphear et al. [13],
but becomes more of a concern in observational studies and in randomized trials when there
is missing data, different levels of adherence among treatment groups, or poor compliance.
To make this assumption more reasonable, it is helpful to have measures of the factors that
one believes may confound these relationships in the data and condition on them in the
analysis. It is also particularly important to consider whether it is valid to assume that the
treatment assignment of one individual, such as receiving an air cleaner or not, will not
effect the potential outcomes of other individuals in the study. Environmental interventions
at the individual level are not likely to violate this assumption but interventions at the
national level, such as setting national air pollution standards, are likely to violate this
assumption. We also recommend considering whether it is best to use a discrete variable to
model the environmental factor or to use a continuous variable as in Zigler et al. [9] and our
analysis. If one assumes a discrete variable for an environmental factor, a simpler model,
similar to the model used in Gallop et al. [22], might be appropriate but it does require
defining a threshold for the level of the environmental factor that indicates it is meaningfully
affected by treatment. If it is unclear what to choose for the threshold, a continuous variable
may be preferred. However, regardless of whether the post-treatment environmental factor is
treated as discrete or continuous, the causal effect estimates in the PS framework can be
used to determine the extent to which the effects of the treatment on the environmental
intervention coincides with the effects of the treatment on the environmental factor.
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Appendix A

As discussed in Section 3.5, it is not apparent how to specify the value for #when estimating
the ERE, ENRE and ENCE. Thus, we find estimates for ERE, ENRE and ENCE specifying
several different values for Zand 5 different values for p. We summarized these estimates
for the ERE, ENRE and ENCE in Figures 6, 7 and 8, respectively. For p = 0.8, we were
unable to estimate ERE for /= -30, —25, and —20 because, for many iterations of the
algorithm, no individual was estimated to have X; (1) — X (0) < I. Figure 6 illustrates that as
Zapproaches 0, the ERE estimates decrease. This may be due to the fact that as the cutoff £
approaches 0, the individuals included in the principal strata may only have a small
differences in their PM potential outcomes between treatment and control conditions. Thus,
we may be including individuals for whom there would not be a meaningful reduction in PM
under treatment in the principal strata, which may cause us to underestimate the causal effect

Stat Med. Author manuscript; available in PMC 2015 December 10.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Hackstadt et al.

Page 16

for sub-population of individuals that would have a meaningful reduction in PM under
treatment. Yet, for most of the values for Zand p, the ERE estimates are relatively large and
all the ERE estimates are greater than one. It is important to note that as Zchanges, the
percent of trial participants who are estimated to fall into the sub-population of individuals
that would experience a meaningful reduction in PM changes. With fewer trial participants
in the principal strata, there is more uncertainty in the ERE estimates, resulting in wider
credible intervals. There are far fewer trial participants estimated to be the sub-population of
individuals who would experience a meaningful reduction in PM when £= -30 (39% of trial
participants) then when £= 0 (71% of trial participants). Thus, one needs to be careful when
making inference on the sub-groups in the principal stratification analysis [44]. Additionally,
one needs to exercise care when comparing effects estimated in different sub-groups, as
these groups may differ from each other on unmeasured covariates.

Figure 7 summarizes the ENRE estimates for 7 different values of Zand all the values of p
used in our analysis. For p = 0.8, we were unable to estimate the ENRE for ¢= 0, and -5
because, for many iterations of the algorithm, no individual was estimated to have X; (1) -
Xi (0) = £ Figure 7 shows that as #decreases and moves farther away from 0, the ENRE
estimate increases. In this case, as Zdecreases, we are more likely to include people in the
principal strata that actually would have a meaningful reduction in PM. Thus, our estimate
for ENRE may be inadvertently inflated. For all values of p except p = 0.8, the ENRE
estimates are relatively small, which suggests that there would be little, if any, improvement
in asthma symptoms for individuals who would not experience a meaningful reduction in
indoor PM under treatment. For all values of Zand p except when p = 0.8, the ENRE
estimates are much smaller than the corresponding ERE estimates. The relatively larger ERE
estimates compared to the relatively smaller ENRE estimates suggest the air cleaner would
have the strongest effect on health for individuals where it would also meaningfully reduce
PM concentrations.

Figure 8 summarizes the ENCE estimates for 5 different values of Z(¢= 10, 15, 20, 25, and
30) and all the values of p used in our analysis. For £= 5, we were unable to estimate the
ENCE because, for many iterations of the algorithm, no individual was estimated to have |X;
(1) = X; (0)] < |4. Except when p = 0.8, these average causal effect estimates of the air
cleaner on SFDs for the subpopulation of individuals whose PM would not meaningfully
change under treatment are relatively small and similar in magnitude to the ENRE estimates.
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Figure 1.
Left plot gives boxplots of the change in symptom free days (SFD) for asthmatic children

from baseline to 6 month follow-up by treatment group. Right plot gives boxplots of the
change in indoor PM 5 concentrations (in pg/m3) from baseline to 6 month follow-up by
treatment group.
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Figure 2.
Plot of the estimated difference in the SFD potential outcomes between treatment and

control case, Y; (1) - Y; (0), versus the estimated difference in the PM potential outcomes
between treatment and control case, X; (1) — X (0), for each individual i in trial. The solid
vertical line denotes where X; (0) = X; (1). The left dashed line marks where X; (1) — X (0) =
—10 and the right dashed line marks where X; (1) — X; (0) = 10. The solid horizontal line
marks where Y; (1) — Y;(0) = 0.
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Figure 3.
Plots of the estimated difference in the SFD potential outcomes between the treatment and

control cases, Yj (1) — Y; (0), versus the estimated difference in the PM potential outcomes
between the treatment and control cases, X; (1) — X; (0), for each individual i in trial when p
= 0.5 (left plot) and p = 0.8 (right plot). In each plot, the solid vertical line denotes where X;
(0) = X; (1). The left dashed line marks where X; (1) — X; (0) = —10 and the right dashed line
marks where X; (1) — X; (0) = 10. The solid horizontal line marks where Y; (1) - Y; (0) = 0.
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Causal Effect
ERE

# ENRE
ENCE

Plots of the causal effect estimates for different values of p in the PM potential outcomes
model in (3). The points give estimates for the expected reduced effect (ERE), the expected
not reduced effect (ENRE), and the expected no change effect (ENCE) discussed in Section

3.5. The vertical lines are the corresponding 95% credible intervals.
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Sensitivity to the Removal of Outliers
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Figureb5.
Plot of the estimated causal effects (points) along with 95% credible intervals (lines) for the

sensitivity analysis performed in Section 4.3 with p= 0.1 and ¢= —10. The expected
reduced effect (ERE), expected not reduced effect (ENRE), and expected no change effect
(ENCE) estimates were calculated from PS analyses performed on data without removing
any outliers (original), after removing observations that were outliers in the change in PM
distribution (PM), after removing observations that were outliers in the change in SFD
distribution (SFD), and after removing observations that were outliers in the change in PM
distribution or the change in SFD distribution (SFD and PM).
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Sensitivity of the ERE to the Cutoff for the
Difference in the PM Potential Outcomes
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Figure®6.

Page 25

Plot of the estimated expected reduced effect (ERE) along with 95% credible intervals for 5
different values of p (0.1, 0, 0.1, 0.5, and 0.8) and 7 different values for the cutoff for the
difference in the PM potential outcomes (4. For p = 0.8, we were unable to estimate the
ERE for ¢= -30, —25, and —-20 because, for many iterations of the algorithm, no individual

was estimated to have X (1) — X; (0) < | for these values of ¢
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Sensitivity of the ENRE to the Cutoff for the
Difference in the PM Potential Outcomes
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Figure7.
Plot of the estimated expected not reduced effect (ENRE) along with 95% credible intervals

for 5 different values of p (-0.1, 0, 0.1, 0.5, and 0.8) and 7 different values for the cutoff for
the difference in the PM potential outcomes (4. For p = 0.8, we were unable to estimate
ENRE for /= -5 and 0 because, for many iterations of the algorithm, no individual was
estimated to have X; (1) — X; (0) = I for these values of £
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Sensitivity of the ENCE to the Cutoff for the Abs.
Value of the Diff. in the PM Potential Outcomes
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Figure8.
Plot of the estimated expected no change causal effect (ENCE) along with 95% credible

intervals for 5 different values of p (0.1, 0, 0.1, 0.5, and 0.8) and 5 different values for the
cutoff for the absolute value of the difference in the PM potential outcomes (4.
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