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PRIMUS: Rapid Reconstruction of Pedigrees
from Genome-wide Estimates of Identity by Descent

Jeffrey Staples,1 Dandi Qiao,2,3 Michael H. Cho,2,4 Edwin K. Silverman,2,4 University of Washington
Center for Mendelian Genomics,1 Deborah A. Nickerson,1,* and Jennifer E. Below5,*

Understanding and correctly utilizing relatedness among samples is essential for genetic analysis; however, managing sample records

and pedigrees can often be error prone and incomplete. Data sets ascertained by random sampling often harbor cryptic relatedness

that can be leveraged in genetic analyses for maximizing power. We have developed a method that uses genome-wide estimates

of pairwise identity by descent to identify families and quickly reconstruct and score all possible pedigrees that fit the genetic data by

using up to third-degree relatives, and we have included it in the software package PRIMUS (Pedigree Reconstruction and Identification

of theMaximally Unrelated Set). Here, we validate its performance on simulated, clinical, and HapMap pedigrees. Among these samples,

we demonstrate that PRIMUS can verify reported pedigree structures and identify cryptic relationships. Finally, we show that PRIMUS

reconstructed pedigrees, all of which were previously unknown, for 203 families from a cohort collected in Starr County, TX (1,890

samples).
Introduction

Following the transmission of variants through a genealogy

is at the foundation of modern genetics. Today, investiga-

tors continue to use pedigrees to determine the heritability

and genetic models for traits and disorders, and knowing

the exact pedigree structure allows them to correctly iden-

tify the genetic mode of disease inheritance and utilize

powerful genetic-analysis tools that require, or benefit

from, the true pedigree structure. Such tools include link-

age,1 family-based association,2 pedigree-aware imputa-

tion, pedigree-aware phasing, Mendelian error checking,

heritability, and pVAAST (Pedigree Variant Annotation,

Analysis, and Search Tool).3 In many instances, knowing

the pedigree that is consistent with the generated genetic

data is crucial to solving the disease.4–7 Additionally, the

collection of samples from a limited geographical region

for a genetic analysis might introduce biases toward unin-

tentionally obtaining samples of unknown relatedness

for which a previously unknown pedigree could be recon-

structed and used. As a result, large case-control consortia

can harbor cryptic relatedness,8 which can bias the analysis

unless the cryptic relatedness is removed or investigators

use a method that models a kinship matrix.9 However, a

substantial increase in power can be obtained if the true

pedigree structures are known.9

Given the benefits of family-based studies in genetic

research, an enormous amount of effort is spent collecting

and maintaining accurate sample records and correspond-

ing pedigrees. However, despite the best efforts of investi-

gators, pedigree and sample errors are still quite common

and require careful examination so that reductions in

power to detect linkage can be avoided.10 The rate of non-
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paternities in studies has been reported to be between 0.8%

and 30% (median ¼ 3.7%; n ¼ 17),11 and other reports

have shown more conservative estimates at around 1%–

1.5%.12,13 Even at the conservative rate of 1%, a pedigree

with six children has a 6% chance of being incorrect as a

result of a nonpaternity error, and the pedigree error rate

will be much higher after other common errors, such as

sample swaps, duplicate samples, contamination, and

other relationship discrepancies, are accounted for. The

standard practice for checking and correcting pedigrees

and relationships within genetic data sets is to use pairwise

prediction programs,14–18 such as RELPAIR19 and PREST

(Pedigree Relationship Statistical Test),20 to verify that

the level of relatedness between every pair of individuals

falls close to the expected level of relatedness from the

reported pedigree.21–28

Although using pairwise estimates to check relationships

in pedigrees is sometimes sufficient, there are four major

drawbacks that we illustrate in this manuscript. First, pair-

wise checkingwill not catchpedigree errors if there aremul-

tiple pedigree structures that fit the genetic data and if the

reported pedigree structure is among the incorrect possibil-

ities. Second, pairwise relationship checking does not pro-

vide, or even suggest, the correct pedigree in the case of

inconsistency between the data and the reported pedigree.

Instead, these methods flag inconsistent relationships for

the investigator to reviewbyhand. Third, pairwise inconsis-

tencies between genotyped samples are often resolved by

the removal of the inconsistent sample(s), which can result

in the unnecessary loss of samples or in accepting an

incorrect pedigree as true. Fourth and finally, manually

reconstructing an unknown pedigree with pairwise rela-

tionship comparisons requires arduous, error-prone labor.
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Table 1. Expected Mean IBD Proportions for the Outbred Familial
Relationship Categories

Familial Relationship IBD0 IBD1 IBD2

Parental 0 1 0

Full-sibling 0.25 0.5 0.25

Half-sibling, avuncular, and grandparental 0.5 0.5 0

First-cousin, great-grandparental, great-
avuncular, and half-avuncular

0.75 0.25 0

Distantly related varies varies 0

Unrelated (includes relationships beyond
the third degree)

1 0 0

IBD0, IBD1, and IBD2 are the genome proportions shared on 0, 1, and 2
chromosomes, respectively, between two individuals. Many relationships share
the same expected mean IBD proportions; however, for full-sibling, second-
degree, and third-degree relationships, a variance around the expected
mean is due to the random nature of recombination events. Genotyping and
other technical errors can contribute to this variance.
Previous attempts have been made to address this issue.

For example, Pemberton et al.29 manually reconstructed

cryptic HapMap3 pedigrees, but the authors encountered

inconsistencies they could not resolve by hand.

A possible solution to the drawbacks of checking pedi-

grees by pairwise comparisons is to use the genetic data

to reconstruct the corresponding pedigree structure.

Ideally, pedigree reconstruction would not only identify

any inconsistencies in a pedigree but also automatically

provide the correct pedigree. Pedigree-reconstruction

methods exist, but the reason they are not the standard

for checking pedigrees in genetics studies is that existing

methods have limited uses. Current approaches are limited

in the number of genetic variants that can be used,30–32 are

heavily biased in the presence of linkage disequilibrium

between markers,33 cannot reconstruct half-sibling rela-

tionships,34,35 or cannot reconstruct a pedigree if it is con-

nected by individuals for whom no genotype data are

available.30–33 Even the most recent methods—COP (Con-

structing Outbred Pedigrees) and CIP (Constructing Inbred

Pedigrees),35 IPED (Inheritance Path-based Pedigree Recon-

struction)34 and IPED2, and PREPARE (Partitioning of Rel-

atives)36—assume that all genotyped individuals are in the

same generation, requiring a priori knowledge of the rela-

tive generations of the samples or the pedigree structure.

Using the age of individuals is not adequate; for example,

it is not uncommon to have an uncle or aunt younger

than a niece or nephew. The most recent methods are

good at reconstructing a small niche of pedigrees struc-

tures, but few pedigree structures typical of human genetic

studies fall into this niche. Indeed, these are not capable of

reconstructing many basic and common pedigree struc-

tures (e.g., trios).

We have developed a pedigree-reconstruction method

without many of the limitations of previous pedigree-

reconstruction programs and have incorporated it into

a software package known as Pedigree Reconstruction and

Identification of the Maximally Unrelated Set (PRIMUS).37
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Ourmethod utilizes the power of SNP arrays or next-gener-

ation sequence data to evaluate genome-wide identity-by-

descent (IBD) estimates generated by programs such as

PLINK14 or KING (Kinship-Based Inference for Genome-

wide Association Studies).16 Our method assigns relation-

ships by using the expected mean and variance for each

relationship class and leverages all pairwise relationships

within a family (as well as genetically determined sex) to

reconstruct the possible pedigree structures in a manner

consistent with the observed pairwise sharing. We de-

signed PRIMUS to improve on previous methods in several

ways—PRIMUS (1) automatically reconstructs multigener-

ational pedigrees with genotyped samples in any genera-

tion, (2) reconstructs pedigrees by using all individuals

connected to a pedigree at a level of third-degree relatives

or closer, (3) requires no prior knowledge of the pedigree

structure, (4) allows for missing (i.e., nongenotyped)

individuals in the pedigree, (5) appropriately incorporates

half siblings, (6) allows for, but does not require, additional

information such as sex and age of samples to improve

reconstruction, and (7) inputs and outputs common file

formats to improve usability.

In this report, we validate the performance of PRIMUS

on thousands of simulated pedigrees. We also demonstrate

its ability to reconstruct clinical pedigrees and HapMap3

pedigrees and to find previously unknown relationships

in a large population-based study from Starr County, TX,

illustrating that PRIMUS can (1) reconstruct, validate,

and correct reported pedigrees, (2) incorporate cryptic

relatedness into known pedigrees, and (3) find and recon-

struct previously unknown pedigrees that can exist within

large genetic data sets.
Material and Methods

Simulated Pedigrees
We generated simulated pedigrees for the training and initial

testing of PRIMUS by using a broad range of known pedigrees

that contained different structures, sizes, genotypes, and combina-

tions of missing data among the individuals. In all, thousands of

pedigrees were generated for three classes of pedigree structures:

1. Size-12 pedigree: a 12-person pedigree that contains all rela-

tionships from Table 1 (Figure S1, available online).

2. Uniform pedigree: a variable-sized pedigree with no half-sib-

ling relationships and in which each pair of parents is ex-

pected to have three children. However, so that the desired

pedigree sizes can be obtained, there could be a single pair of

parents with as few as one child or as many as four children

(Figure S2).

3. Half-sibling pedigree: identical to the uniform pedigree

except that there is a 30% chance that one person from

each pair of parents has two children with another individ-

ual (Figure S2).

For both theuniformand thehalf-siblingpedigrees,we simulated

complete pedigrees of sizes ranging from 5 to 400 individuals. For

each pedigree, we created different genotypes for 100 versions of
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the pedigree structures by using the method applied byMorrison38

(seeWebResources):we randomly selected founderhaplotypeswith

~1,000,000 SNPs from among the unrelated HapMap3 CEU (Utah

residents with ancestry from northern and western Europe from

the CEPH collection) samples, and we simulated recombination as

a homogeneous Poisson process by disregarding the centromere

and using the approximation 1 Mb ¼ 1 cM. We compared the true

IBD proportions to those calculated by PLINK for IBD estimates

generated from 6,000 and 1,000,000 SNPs (Figure S3). The correla-

tion between the estimates and the true values was r2 ¼ 0.999

with pedigrees of size 10 and r2 ¼ 0.974 with pedigrees of size 400.

IBDestimates generated fromas few as 6,000 SNPswere still remark-

ably accurate (Table S1), and they improved as the number of SNPs

increased. We also tested the accuracy of IBD estimates calculated

with the overlap of the approximately 1,000,000 HapMap3 SNP

set and commonly used SNP panels and found high accuracy levels

(Table S1). Unless otherwise stated, the complete ~1,000,000-SNP

sets were used for the simulations.

We also simulated data missingness in each of the uniform and

half-sibling pedigrees. To accomplish this, we created ten addi-

tional versions of each pedigree by iteratively masking genetic

data for a single sample until we had masked up to ten missing

individuals. Data were eligible for masking if the individual had

children and if his or her masking did not create a gap larger

than a third-degree relationship. Eligible samples were masked at

random, creating unique combinations of missing sample data

for each pedigree.

IBD Estimates
PRIMUS takes input from any program that provides estimates of

the proportions of the genome shared identically by descent on

zero, one, and two chromosomes (IBD0, IBD1, IBD2, respectively).

We note that calculating accurate relationships and estimating

pairwise IBD is a nontrivial problem and one that has been tackled

by a number of methodologies.14,16,39–41 IBD proportions pre-

sented here were calculated with the method-of-moments estima-

tion implemented in PLINK.14 Although it is not required for

simulated pedigrees, some pedigrees might require careful analysis

of admixture in the samples. In these cases, we applied the

approaches recommended by Morrison38 to remove ancestry-

informative SNPs that could otherwise bias IBD estimates. The

code used for calculating IBD estimates is available for download

with the PRIMUS package (Web Resources).

Family-Network Identification
PRIMUSfirstgroups the samples into familynetworks (or groups)on

the basis of the estimated pairwise coefficient of relatedness (two

times the kinship coefficient).37 An individual is only added to a

family network if the sample is related to at least one other person

in thenetwork givenauser-definedminimumcoefficient of related-

ness. For example, 0.1875, the midpoint between the mean ex-

pected IBD proportion for second- and third-degree relatives, is a

threshold that will capture connections between most second-

degree relatives or closer. The pedigree reconstruction is then per-

formed independently on each family network within the data set.

Familial-Relationship Prediction Using a

Kernel-Density-Estimation Function
PRIMUS uses six relationship categories to reconstruct pedigrees

on the basis of the expected mean IBD0, IBD1, and IBD2 estimates

shown in Table 1; however, distantly related and unrelated sam-
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ples are handled as the same class during reconstruction. Both

biological factors (i.e., recombination events, population substruc-

ture, historic inbreeding) and technical factors (i.e., density and

distribution of the genotyped markers) contribute to variation

around these means.

Given the IBD0, IBD1, and IBD2 estimates for a pair of individ-

uals, PRIMUS predicts the corresponding relationship category

by using a trained kernel density estimation (KDE; see Web

Resources) for each of six familial relationship categories. We

used the scipy.stats.gaussian_kde function (see SciPy in the Web

Resources) with two training features: genome-wide estimates of

IBD0 and IBD1. The training IBD0 and IBD1 estimates were

selected from the IBD estimates generated with 6,000 SNPs for

the 1,000 size-12 simulated pedigrees. We chose to use the lower

number of SNPs so that the KDE could better handle the technical

noise that comes with estimating IBD. We selected parent-

offspring (PO), full-sibling (FS), second-degree, third-degree,

distantly related, and unrelated relationships from each of the

1,000 simulated pedigrees and used them to train the respective

KDEs. We used these simulated IBD proportions to train a KDE

function for each of the six familial relationship categories.

Because bandwidth selection influences the trained KDE, we

tested each KDE with different values for the coefficient factor

used in calculating the kernel covariance matrices (Figure S4).

These empirical tests allowed us to select the coefficient that best

optimized reconstruction performance for the KDE of each rela-

tionship category. For the overlapping KDE distributions, we

selected the smallest bandwidth that had no false-negative predic-

tions of our test data set at a likelihood cutoff of 0.01 or lower. We

selected the largest bandwidths possible for PO and FS relation-

ships without overlap of the density distributions with other

relationship categories. This minimizes the false-positive calls for

these predictions. Figure S5 shows a density plot for the KDE of

each relationship category, which is consistent with previous

reports of genome-wide IBD proportions.42

PRIMUS uses the trained kernels to predict the familial relation-

ship category for each pairwise relationship. For a set of IBD0,

IBD1, and IBD2 proportions, PRIMUS queries each kernel for the

density at the IBD0 and IBD1 values and stores the density for

each familial category in a vector. Then PRIMUS normalizes the

vector by dividing each density by the sum of all densities, produc-

ing a vector of the likelihoods corresponding to each familial

category. This relationship-likelihood vector is used during both

reconstruction and ranking of possible pedigrees.

Pedigree-Reconstruction Algorithm
For each family network, PRIMUS uses the relationship-likelihood

vectors of all pairwise relationships to reconstruct all possible ped-

igrees, which is subject to the restrictions that (1) only relatives up

to the third degree are considered and (2) the likelihood of each

relationship class considered must exceed a minimum likelihood

threshold (initial default of 0.3). We chose 0.3 as a good initial

likelihood threshold on the basis of the relationship predictions

of the uniform size-400 pedigrees (see Figure S4 for details).

Reconstruction is an iterative process of identifying a pairwise

relationship that is within the family network but that has not

yet been incorporated into the pedigree, fitting that relationship

into the pedigree, and testing that all of the relationships gener-

ated by adding the individual are compatible with the relation-

ship-likelihood vectors and sex data for all of the samples. If the

addition of a relationship is incompatible with the relationship-

likelihood vectors or if two individuals of the same sex have
Journal of Human Genetics 95, 553–564, November 6, 2014 555



offspring, the pedigree is rejected and removed from the set of

possible pedigrees. The reconstruction continues until all pairwise

relationships from the family network are represented in each

possible pedigree or until there are no possible pedigrees left for

reconstruction.

PRIMUS reconstructs in three phases. Phase 1 uses PO and FS

relationships. These two types of relationships are the most

accurately predicted because PO relationships have no biological

variance around the expected proportion of sharing, and FS rela-

tionships are the only nonconsanguineous relationships with

IBD2 greater than 0. Phase 1 creates a backbone on which the

more distant relationships are built. It adds a PO relationship be-

tween individuals A and B to the pedigree by creating a version

of the pedigree in which A is the parent of B and another version

in which B is the parent of A. Missing individuals are added as

necessary so that each individual in the family network has zero

or two parents. In phase 2, PRIMUS reconstructs second-degree

(half-sibling, avuncular, and grandparental) relationships. The al-

gorithm tests all possible rearrangements for each second-degree

relationship within the pedigree and adds missing individuals to

connect portions of the pedigree as necessary. Phase 3 is identical

to phase 2, except that it considers third-degree (first-cousin, half-

avuncular, great-avuncular, and great-grandparental) relation-

ships. Because PRIMUS always checks every possible way that a

sample can be added to the pedigree and eliminates pedigrees

that do not fit, it is effectively exploring the entire search space

of possible pedigrees. At present, PRIMUS does not reconstruct

complex relationships (e.g., half sibling plus first cousin or double

first cousins), consanguineous relationships, or relationshipsmore

distant than third-degree relatives. If one of these relationships is

present in the data set, PRIMUSwill match it to one of the relation-

ship categories in Table 1 and fit the relationship into the pedigree

accordingly.
Automatically Adjusting the Likelihood Threshold
If PRIMUS reaches the end of reconstruction and has zero possible

pedigrees remaining, then it will automatically lower the likeli-

hood threshold from the default of 0.3 to 0.2 and will rerun, allow-

ing PRIMUS to consider additional possible pairwise relationships

with likelihoods between 0.2 and 0.3. PRIMUS will continue to

gradually drop the likelihood threshold until it produces a possible

pedigree or it reaches a threshold below 0.01. If no possible pedi-

grees result from reconstruction after the threshold is lowered

below 0.01, then PRIMUS stops reconstruction. For further details,

see Figure S4.
Pedigree Scoring
For many families, there is only one possible pedigree that fits the

data and the true pedigree. However, as a result of the unknown

directionality of some relationships and missing data for individ-

uals, PRIMUS can reconstruct more than one possible pedigree—

including the true pedigree—that fits the genetic data. We attempt

to increase the chances that the true pedigree is near the top of the

list by ranking the possible pedigrees according to the relation-

ship-likelihood vectors to obtain a pedigree score.

PRIMUS will rank the pedigrees according to a pedigree score it

calculates by summing the log of the likelihood value of each rela-

tionship in the pedigree. For example, if a pedigree has only two

individuals, and they have a 0.6 likelihood of being second-degree

relatives and a 0.4 likelihood of being third-degree relatives, then

all pedigrees in which they are second-degree relatives will be
556 The American Journal of Human Genetics 95, 553–564, Novemb
ranked higher than pedigrees in which they are third-degree rela-

tives. Additionally, if the ages of individuals are provided, then

PRIMUS will flag and rank all pedigrees in which the ages are

inconsistent (e.g., a child is older than a parent).
PRIMUS Results and Output
PRIMUS uses Cranefoot43 (Web Resources) to provide an image of

each pedigree and provides the corresponding PLINK-formatted

FAM file. Summary results, as well as a list of the possible relation-

ships for each pair of related individuals (similar to Table S5),

are provided for each family network and the entire data set. See

the PRIMUS documentation for a complete list and description

of output files and formats (Web Resources).
Pedigree-Checking Program
PRIMUS also has the ability to check that a reported pedigree is

among the produced reconstructed pedigrees. The user provides

the reported pedigree in the form of a PLINK FAM or PED file,

and PRIMUS compares it to each of the reconstructed pedigrees

to see whether there is a match. In the case that the reconstruction

includes additional samples that are not part of the reported

pedigree, PRIMUS will find the match and report that there are

additional genotyped samples included in the pedigree.
Reconstructing Authentic Pedigrees
We tested the ability of PRIMUS to reconstruct several different

pedigrees by using real genetic data. IBD estimates were obtained

from genotypes generated with a HumanCytoSNP-12 BeadChip

for all available pedigrees obtained by the University of Washing-

ton Center for Mendelian Genomics (UW CMG), with the excep-

tion of 49 pedigrees for which only exome sequencing data were

generated (see the Boston Early-Onset Chronic Obstructive

Pulmonary Disease [EOCOPD] Study samples in the Web Re-

sources). UW CMG studies were approved by the institutional

review boards of the University of Washington, and informed

consent was obtained from participants or their parents. The

Boston EOCOPD Study participants provided written informed

consent, and the Partners HealthCare Human Research Commit-

tee approved the study.

IBD estimates for HapMap3 were generated with HapMap3

release 2 data (Web Resources). We used PLINK to calculate all

IBD estimates by using SNPs with a minor allele frequency > 1%

and a call rate > 90%. We used PRIMUS to identify the maximum

unrelated set for each HapMap3 population and used the allele fre-

quencies from the unrelated samples for the IBD analysis of their

own respective populations.

The Starr County Health Studies’ Genetics of Diabetes Study is

composed of 1,890 affected individuals and representative control

samples from a systematic survey conducted in Starr County from

2002 to 2006.44 However, the types of relationships and potential

families in the study are unknown. IBD estimates for the Starr

County samples were generated from genotypes called from the

Affymetrix Genome-Wide SNP Array 6.0.44 We used PLINK to

calculate all IBD estimates by using SNPs with a minor allele fre-

quency> 1% and a call rate > 90%.We used PRIMUS37 to identify

the maximum unrelated set for the Starr County data and used

the allele frequencies from the unrelated samples for the IBD esti-

mations. The Starr County Health Studies’ participants provided

written informed consent, and the institutional review boards

of the University of Texas Health Science Center at Houston

approved the study.
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Figure 1. A Summary of the PRIMUS
Reconstructions for 1,000 Simulated
Pedigrees
All simulated uniform size-20 (A) and uni-
form size-40 (B) pedigrees with up to 20%
missing samples were reconstructed with
PRIMUS. We ran 100 simulations for each
size and percentage of missing samples.
For each simulation, we determined where
the true pedigree fell among the ranked
reconstruction results. Each bar displays
the proportion of the 100 simulations cor-
responding to the five reconstruction out-
comes defined as follows: ‘‘highest scoring’’
means that the true pedigree was the
highest-scoring pedigree; ‘‘among highest
scoring’’ means that PRIMUS output con-
tained more than one possible pedigree
and that the true pedigree was tied with
one or more other pedigrees for the high-
est-scoring pedigree; ‘‘among scored’’ indi-
cates that the true pedigree was not the
highest-scoring pedigree but was among
the pedigrees generated by PRIMUS; ‘‘par-
tial reconstruction’’ means that the com-
plete reconstruction resulted in too many

possible pedigrees, ran out of memory, or took longer than 36 hr to run, and as a result only a partial reconstruction using first-degree
relationships was generated; and ‘‘missing’’ indicates that PRIMUS reconstructed one or more possible pedigrees but that the true
pedigree was not among them.
Exome Sequencing Data and Corresponding Pedigrees
The Boston EOCOPD Study45 (see Web Resources) is an extended

pedigree study of genetic susceptibility to EOCOPD. All available

first-degree relatives (siblings, parents, and children), older sec-

ond-degree relatives (half siblings, aunts, uncles, and grandpar-

ents), and other relatives diagnosed with EOCOPD were invited

to participate in the study. For this project, 351 subjects from 49

pedigrees were sequenced at the UW CMG.

Exome sequencing was performed with NimbleGen v.2 in-

solution hybrid capture and Illumina HiSeq 2000 sequencing,46

sequences were aligned to the human reference genome (UCSC

Genome Browser hg19),47 and single-nucleotide and insertion-

deletion variants were called with the Genome Analysis Tool-

kit.48 We used VCFtools49 to select only PASS SNPs with a

minimum and maximum depth of 83 and 3003, respectively,

and converted them to PLINK14-formatted PED and MAP files.

We then calculated IBD estimates in PLINK by using the 56,516

SNPs with a minor allele frequency > 1% and a call rate > 90%.

We used a coefficient-of-relatedness cutoff of 0.1 to calculate

SNP allele frequencies for the IBD analysis from 81 of the 351

exome-sequenced samples that made up the maximum unrelated

set as calculated by PRIMUS.37
Results

Reconstructing Simulated Pedigrees

To test and evaluate the performance of PRIMUS on a

broad range of known pedigrees, we simulated uniform

and half-sibling pedigree structures of varying sizes,

different numbers of markers, and varying combinations

of masked data for individuals in the pedigrees (see Mate-

rial andMethods for details). Figure 1 shows the simulation

results for reconstruction of size-20 and size-40 uniform
The American
pedigrees with %20% missing samples. PRIMUS recon-

structed the true pedigree as the only pedigree or the high-

est-scoring pedigree in 89% of the simulations. For another

5.6% of these simulations, the true pedigree was tied with

one other pedigree for the highest-scoring pedigree. Only

2.5% of these simulations failed to run to completion

as a result of too many possible pedigrees (>100,000),

too long of a runtime (>36 hr), or using toomuchmemory

(e.g., exceeding 12 Gb). PRIMUS then reran these incom-

plete reconstructions with a relatedness cutoff of 0.375 to

generate partial reconstructions for each. A partially recon-

structed pedigree typically consists of two to six pieces of

the larger pedigree in which the individuals are connected

by first-degree relationships. It would require connecting

these pieces with second- and third-degree relationships

to achieve a complete reconstruction of the true pedigree.

Across all of the uniform and half-sibling simulated

pedigrees of size 5–50 (~10,000 pedigrees), PRIMUS recon-

structed the true pedigree as the highest-scoring or tied-for-

highest-scoring pedigree in 88.7% of the simulations

(Table S2; Figure S6). Only 6.3% of all simulations led to

partial reconstructions, and PRIMUS completed, but did

not reconstruct, the true pedigree in only 0.5% of the

simulations. We found that if PRIMUS outputs a single

possible pedigree, then that pedigree is the true pedigree

in 99.83% of the simulations.

Two trends were seen within the simulation results with

respect to the size of the pedigree being reconstructed and

the proportion of individuals without genetic data. First,

PRIMUS identified the true pedigree as the most likely

pedigree in 94.9% of the simulations of pedigrees up to

size 20 and up to 20% missing sample data and identified
Journal of Human Genetics 95, 553–564, November 6, 2014 557



Figure 2. A UW CMG Pedigree Correctly Reconstructed by
PRIMUS in 9 s
PRIMUS used chip-based genotype data to verify this clinically
ascertained pedigree, which included the presence of five individ-
uals for whom no genetic data were available (individuals marked
with diagonal lines) and a cycle that occurred because individual
III-3 had children with both III-2 and III-4.

Figure 3. Two Reported EOCOPD Study Pedigrees Verified by
PRIMUS
(A) This pedigree was the only pedigree generated from PRIMUS.
(B) This pedigree was tied with five other pedigrees for the highest-
scoring pedigree.
the highest-scoring or tied-for-highest-scoring pedigree in

99.4% of the simulations. As the proportion of individuals

without genetic data increased to 50%, the true pedigree

was more often tied for the highest-scoring pedigree rather

than being the highest-scoring pedigree, as expected.

Frequently, additional information, such as age, will help

rule out many of the tied pedigrees to identify the true

pedigree structure.

Second, even with size-50 pedigrees and 20% missing

samples, more often than not PRIMUS identified the cor-

rect pedigree as the single most likely pedigree. These re-

sults can be further improved with greater computational

capabilities; PRIMUS tends to produce partial reconstruc-

tions as the size of the pedigree increases. For example,

compared to size-20 pedigrees with 50% missing samples,

size-50 pedigrees with 20% missing samples require more

run time (>36 hr) and memory (>12 Gb) to traverse the

entire space of possible pedigrees.

Very few simulations completed reconstruction yet failed

to find the true pedigree among the possible pedigrees

(~0.5%), and their occurrence was not linked to pedigree

size or the number of missing samples. This occurs when

the initial likelihood threshold is set higher than the likeli-

hood calculated by the KDE for one ormore of the relation-

ships in the true pedigree. Running PRIMUS with an initial

likelihood threshold of 0.01 would include the true pedi-

gree among the reconstructed pedigrees. As expected, we

found that PRIMUS runtime tends to increase exponen-

tially with pedigree size and the amount of missing sample

data (Figure S7). Pedigrees up to size 20 and 20% missing

samples reconstruct in a matter of seconds.

Confirming and Correcting Clinically Ascertained

Pedigrees

To demonstrate the ability of PRIMUS to verify the genetic

information for clinical pedigrees, we reconstructed and

confirmed or corrected more than 100 pedigrees submitted
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to the UWCMG. The genetic information used by PRIMUS

can be either chip-based (Figure 2) or sequence-based (Fig-

ures 3 and 4) technologies. Genome-wide IBD estimates for

the samples in the pedigree in Figure 2 were generated with

genotypes from the HumanCytoSNP BeadChip for each

nonmissing sample. PRIMUS used these IBD estimates for

all pairs of samples to reconstruct the possible pedigree.

Only one pedigree fit the data, and it matched the clini-

cally provided pedigree, supporting our hypothesis that it

is the correct pedigree. This reconstruction took 9 s on a

2.3 GHz Intel Core i7 processor. Importantly, PRIMUS

also introduced the five missing individuals necessary to

connect the final pedigree and correctly identified in the

pedigree a cycle that occurred because individual III-3

had children with the two cousins III-2 and III-4 (Figure 2).

Using variant data obtained from exome sequencing

generated by the UW CMG, PRIMUS validated 49 pedi-

grees consisting of 351 individuals ascertained through a

proband with severe EOCOPD. The pedigrees range from

size 4 with 50% missing samples to size 23 with 35%

missing samples. PRIMUS confirmed that 43 of the pedi-

grees matched the reported pedigrees collected in the

study. Among the remaining six pedigrees, PRIMUS found

and corrected five nonpaternity errors, one sample swap,

and one duplicate sample. These findings were consistent

with the corrections independently made by the Boston

EOCOPD Study investigators, who compared estimates of

IBDs obtained by PLINK with theoretical IBDs obtained

with the kinship2 package (Web Resources). Table S4 sum-

marizes the EOCOPD reconstruction and includes size, the

number of possible pedigrees, and where the true pedigree

ranked in the possible pedigrees.
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Figure 4. Two of the Six EOCOPD Study
Pedigrees Corrected by PRIMUS
The reported pedigrees are depicted above
(A and C), and the corrected pedigrees are
shown below (B and D). Reported pedigree
A has a nonpaternity error, so individuals
II-2 and II-3 are actually half siblings rather
than full siblings in the correct pedigree B.
Pedigree B was the top-ranked pedigree in
the PRIMUS output. Reported pedigree C
contains not only a nonpaternity error
that caused individual III-1 to be incor-
rectly reported as a full sibling of III-2 and
III-3 but also a sample swap that caused
individual II-3’s DNA to be swapped for
DNA of an individual from an entirely
different pedigree. Corrected pedigree
D was the only pedigree generated by
PRIMUS. The investigators have indepen-
dently confirmed the corrected pedigrees.
Figure 3 shows two reported EOCOPD Study pedigrees

that were verified by PRIMUS. The pedigree depicted in

Figure 3A was the only pedigree generated by PRIMUS,

and the pedigree in Figure 3B was among the highest-

scoring pedigrees. Figure 4 shows two of the reported

pedigrees (Figures 4A and 4C) that were corrected with

PRIMUS (Figures 4B and 4D). The pedigree in Figure 4A

had a nonpaternity error, so individuals A and B are actu-

ally half siblings rather than full siblings (Figure 4B). For

the reported pedigree in Figure 4C, PRIMUS not only cor-

rected a nonpaternity error, revealing that individual B is

a half sibling of individuals C and D, but also identified

a sample swap that caused individual A’s DNA to be re-

placed with DNA from another individual in the data set.

This corrected pedigree was the only pedigree generated

by PRIMUS for these samples.

Reconstructing and Incorporating Cryptic

Relatedness

To evaluate whether PRIMUS could incorporate cryptic

relationships into known pedigrees, we reconstructed ped-

igrees by using HapMap3 data.50 Although the HapMap

samples were collected to contain trios, duos, and unre-

lated individuals, cryptic relatedness among these sam-

ples is well established.6,19,29 For example, the ten-person

pedigree from individuals of Mexican Ancestry in

Los Angeles (MXL; Figure S8) has been manually recon-

structed with pairwise relationship predictions by several

groups.15,29,39

We used PRIMUS to automatically reconstruct all pedi-

grees within each HapMap3 population, and PRIMUS

reconstructed cryptic pedigrees in 9 of the 11 populations

(Table S5). PRIMUS confirmed the relationships reported

by the HapMap Consortium and the cryptic first- through

third-degree relationships reported by Pemberton et al.29

and Kyriazopoulou-Panagiotopoulou et al.15 (Table S5).

However, because PRIMUS uses all pairwise relationships
The American
up to third-degree relatives to reconstruct the entire pedi-

gree, it can consider each relationship in the context of

all others. This enabled our approach to correct onemisspe-

cified first-degree and two second-degree relationships

reported by Pemberton et al. In addition to making these

corrections, PRIMUS was able to increase the specificity of

13 second- and third-degree relationship predictions. For

example, Pemberton et al. reported thatMKK (Maasai in Ki-

nyawa, Kenya) individuals NA21312 and NA21370 had an

unknown relationships status, but PRIMUS identified them

as half siblings. For this pair of individuals, PRIMUS elimi-

nated all other second-degree relationships by using the

context of the other pairwise relationships in the pedigree.

PRIMUS also identified 85 previously unreported15,29 po-

tential third-degree relationships among the HapMap3

samples (Table S5). Although we cannot be certain that

these relationships are precise, our results provide strong

evidence that relationships do exist and are an improve-

ment over the common assumption that these samples

are unrelated. We have made all reconstructed HapMap3

pedigrees available for download on the PRIMUS website

(see Web Resources).

Reconstruction of Previously Unknown Pedigrees

from Starr County

We used the Starr County Health Study to demonstrate

the ability of PRIMUS to reconstruct previously unknown

pedigrees from a large genetic data set. We calculated IBD

estimates among all 1,890 samples by using genotypes

obtained from the individuals (Affymetrix Genome-Wide

SNP Array 6.044). PRIMUS used these estimates to group

458 samples into 203 family networks of two or more sam-

ples. Using only these genetic data, PRIMUS reconstructed

a single possible pedigree for 120 of these families in less

than 4 min, and according to our simulation results,

we expect that ~99.83% of these are the true pedigrees.

When ages are provided to PRIMUS, it flags pedigrees
Journal of Human Genetics 95, 553–564, November 6, 2014 559



Figure 5. Relationship-Prediction Accuracies for Simulated
Pedigrees with RELPAIR or PRIMUS
For this comparison, we used half-sibling size-20 pedigrees with
0%–40% missing samples to test pairwise relationship-prediction
accuracy. For PRIMUS, we tested whether the relationships in
the highest-ranked pedigree matched the true simulated relation-
ships. For RELPAIR, we used the method employed by Pemberton
et al.29 to obtain the prediction and compared that to the true
simulated relationship. A second-degree relationship prediction
is correct if the predicted relationship type matches the true rela-
tionship type. A third-degree relationship prediction is correct if
the predicted relationship degree matches the true relationship
degree. A distantly and unrelated prediction is correct if the true
relationship is more than a third-degree relationship.
that are impossible given the ages of the samples (e.g.,

when a parent is younger than a child). Using the age in-

formation collected for the Starr County Heart Study data

set, PRIMUS ruled out these incorrect pedigrees and identi-

fied a single possible pedigree for an additional 73 families

for a total of 193 pedigrees ranging in size from two to five

individuals.

Comparing PRIMUS to Competing Methods

We compared the results of PRIMUS to those generated

by RELPAIR, a program commonly used to check relation-

ships in genetic data. Using the method employed by

Pemberton et al.,29 we compared the accuracy of the pair-

wise predictions of RELPAIR to the accuracy of the pairwise

relationships in the top-ranked reconstructed pedigree

produced by PRIMUS (Figure 5; Table S3). Both methods

had 100% accuracy when distinguishing between first-

degree relationships; however, PRIMUS outperformed

RELPAIR when second-degree relationships were consid-

ered. Although RELPAIR made the distinction between

the first- and second-degree relationships, it labeled all

third-degree relationships as cousins. PRIMUS distin-
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guished between the four third-degree relationships and

also gave directionality to the relationship (e.g., individual

II-5 is the great-grandfather of individual V-1 in Figure 2).

Therefore, to make a fair comparison between the ability

of PRIMUS and RELPAIR to predict third-degree relation-

ships, we compared only the degree of the relationship pre-

dicted by PRIMUS to the ‘‘cousin’’ prediction of RELPAIR.

PRIMUS outperformed RELPAIR when classifying third-

degree and unrelated relationships (Figure 5; Table S3).

We also compared PRIMUS to the latest pedigree-recon-

struction programs, PREPARE and IPED2 (see Web Re-

sources). Of the 9,717 simulated pedigrees of size 10–50,

only 43 pedigrees had all genotyped samples in a single

generation, and all of these pedigrees had at least one

half-sibling relationship. Therefore, PREPARE and IPED2

could only attempt to correctly reconstruct <0.5% of the

simulated pedigrees; PRIMUS correctly reconstructed

9,008 of the 9,717 (92.7%) simulated pedigrees. Figure S9

shows PRIMUS reconstructions for additional simple, com-

mon pedigree structures that PREPARE and IPED2 could

not completely reconstruct.

Additionally, neither PREPARE nor IPED2 could

completely reconstruct any of the real data presented in

this manuscript because all of these pedigrees have geno-

typed samples from multiple generations. PREPARE and

IPED2 provided a partial reconstruction by dropping

samples from higher generations and using only extant

individuals, as the PREPARE authors did with the MXL

pedigree (Figure 14 from Shem-Tov and Halperin;36

Figure S8). In order to reconstruct relationships, PREPARE

requires a priori information about which individuals

are in the same generation prior to reconstruction and

cannot connect these pairwise relationships into a single,

multigenerational pedigree. PRIMUS completely recon-

structed these pedigrees (e.g., Figure S8). PREPARE and

IPED2 provide limited utility to check reported pedigree

structures and to reconstruct previously unknown pedi-

grees de novo.
Discussion

PRIMUS is designed to reconstruct nonconsanguineous

pedigrees of arbitrary size and structure from pairwise esti-

mates of IBD for samples of up to third-degree relatives.

It can also reconstruct some consanguineous pedigrees

with children whose parents are third-degree relatives

(Figure S10). PRIMUS provides major advancements in re-

constructing, testing, and correcting pedigrees. Although

pairwise predictions provided by commonly applied pro-

grams such as RELPAIR and PREST can test whether two in-

dividuals are related at the expected degree of relatedness,

they are much weaker at distinguishing between relation-

ship types within the same degree of relatedness (e.g.,

avuncular versus grandparental) and cannot provide infor-

mation of the directionality of a relationship (i.e., individ-

ual A is the grandparent of B). As a result, they are not able
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to detect all pedigree inconsistencies or suggest corrections

to pedigrees. Additionally, using pairwise relationships to

check pedigrees can result in the unnecessary loss of data

(Figure S11) or in accepting an incorrect pedigree as true

(Figure S12).

PRIMUS improves on the pairwise predictions by using

all the pairwise relationships to reconstruct the pedigree.

The context of all the pairwise relationships in the family

improves the prediction accuracy of each relationship

pair. We have shown that the reconstructed pedigrees

obtained by PRIMUS were more accurate than those

obtained with RELPAIR (Figure 5; Table S3). In the case

of HapMap3, PRIMUS corrected and improved several of

the pairwise relationship predictions made by RELPAIR

and CARROT (Classification of Relationships with Rota-

tions)15 (Table S5).

PRIMUS is also a major step forward in comparison to

existing pedigree-reconstruction programs given that the

existing methods require a small number of markers,

completely genotyped pedigrees, no half siblings, and/or

that all genotyped samples be in the same generation.

For these reasons, no other pedigree-reconstruction pro-

gram we tested is capable of reconstructing the variety of

pedigrees—which represent some of the most common

pedigrees found in human genetic studies—we illustrate

in this paper.

Importantly, pedigree reconstructionbyPRIMUSdepends

on the quality of the IBD estimates, which are influenced by

several factors, including the number of genetic markers,

population substructure,16 admixture,39 and reference mi-

nor allele frequencies.51 For best results, users should obtain

high-quality IBD estimates before reconstructing pedigrees

with PRIMUS. IBD estimates can be obtained by PRIMUS

or by another program (PLINK,14 KING,16 or REAP [Related-

ness Estimation in Admixed Populations]39) that uses the

appropriate allele frequencies for the ancestry of the samples

and accounts for potential admixture and population sub-

structure among the data.

We designed PRIMUS to reconstruct up to third-degree

relationships for several reasons. First, the distance be-

tween the expected mean genome-wide IBD proportions

for more distant relationships (e.g., fourth and fifth de-

grees) is small, and the variation around these means is

large. Therefore, the overlap between the distributions of

these distant relationships precludes highly accurate rela-

tionship assignments of any relationship beyond the third

degree. Second, as the relationship distance increases

beyond the third degree, the number of possible relation-

ships increases rapidly (Table S6), and pedigree reconstruc-

tion quickly becomes computationally challenging. For

more distant relationships, it is possible to apply programs

such as Beagle41 and ERSA (Estimation of Recent Shared

Ancestry)18 to connect the PRIMUS-obtained subpedigrees

that are distantly related to one another, and we are incor-

porating this feature in a future release of PRIMUS.

Additionally, programs such as RELPAIR19 could improve

the pairwise relationship prediction because they model
The American
recombination events to distinguish between second-de-

gree relationships. The improved relationship predictions

could then be used to improve the scoring of possible

pedigrees.

We have identified two limitations of PRIMUS and their

corresponding remedies. First, because of computational

restraints, PRIMUS was unable to complete the reconstruc-

tion of 6.3% of simulations with third-degree relatives or

closer. The vast majority of these pedigrees had R30 indi-

viduals with >20% missing sample data. Investigators

can still greatly benefit from partial reconstructions of

these pedigrees. Users can obtain a partial reconstruction,

as we did, by using a higher relatedness threshold to recon-

struct with just first- or second-degree relationships.

Second, for a very small proportion (~0.5%) of the simula-

tions, PRIMUS did not output the true pedigree among

the results because the initial likelihood threshold

was set too high. Yet, by lowering the initial likelihood

threshold used for predicting familial relationships,

PRIMUS was able to reconstruct each of these pedigree

structures. Therefore, for a very small percentage of pedi-

grees run on PRIMUS, it might be necessary to depart

from the default initial likelihood threshold to obtain a

reported pedigree.

PRIMUS provides an immediate benefit to the genetics

community in two ways: pedigree verification and pedi-

gree discovery. Because PRIMUS computationally verifies

reported pedigrees by using genotype data and identifies

and corrects inconsistencies, PRIMUS saves a significant

amount of time and effort that would otherwise be spent

on manual verification of pedigrees. This is especially

beneficial when large, complex pedigrees—similar to the

Boston EOCOPD Study pedigrees—are being studied.

For example, PRIMUS has identified and corrected non-

paternities, underrelated samples, samples swaps, dupli-

cate samples, and unexpected consanguinity in clinical

pedigrees (Figure 4; Figure S10). In many cases, such

corrections can result in a correction of the genetic

model and assumptions used for downstream analysis,

improving the chances of finding the genetic cause of

the disease.

Moreover, PRIMUS can reconstruct previously unknown

pedigrees by using only genetic data, as demonstrated

in the HapMap3 and Starr County data sets. Although,

PRIMUS cannot guarantee that these pedigrees are the

true pedigrees, the pedigrees can be treated as a hypothesis

to be confirmed with supporting independent evidence.

This application of PRIMUS is particularly useful in large-

scale genetic studies where substantial cryptic relatedness

might exist. In the case of the Starr County data, we can

now use powerful family-based analyses that leverage the

information contained in nearly 200 previously unknown

pedigrees.

Incomplete understanding of relatedness structures

(i.e., pedigrees) within genetic data can result in a vast

array of analytic problems, from dramatically biased effects

of rare variants to complete power loss in pedigree-based
Journal of Human Genetics 95, 553–564, November 6, 2014 561



methods. With the introduction of PRIMUS, we hope to

address many of the limitations of prior pedigree-recon-

struction frameworks and pairwise comparison algorithms

in a fast, tractable, and easy-to-use algorithm, enabling in-

vestigators to better assess the information present within

their data.
Supplemental Data

Supplemental Data include 12 figures and 6 tables and can be

found with this article online at http://dx.doi.org/10.1016/j.

ajhg.2014.10.005.
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The URLs for data presented herein are as follows:

Boston Early-Onset COPD Study, http://bostoncopd.org

CraneFoot, http://www.finndiane.fi/software/cranefoot/

International HapMap Project, http://hapmap.ncbi.nlm.nih.gov

IPED2, http://www.cs.ucla.edu/~danhe/Software/IPED2.html

kinship2, http://cran.r-project.org/package¼kinship2

PRIMUS, http://primus.gs.washington.edu

PRIMUS simulations, the link to the code used for generating sim-

ulations, and the reconstructed HapMap3 pedigrees, http://

sourceforge.net/projects/primus-beta/files/

SciPy, http://www.scipy.org
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