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Cross-Tissue and Tissue-Specific eQTLs:
Partitioning the Heritability of a Complex Trait

Jason M. Torres,1 Eric R. Gamazon,2 Esteban J. Parra,3 Jennifer E. Below,4 Adan Valladares-Salgado,5

Niels Wacher,5 Miguel Cruz,5 Craig L. Hanis,4 and Nancy J. Cox2,*

Top signals from genome-wide association studies (GWASs) of type 2 diabetes (T2D) are enriched with expression quantitative trait loci

(eQTLs) identified in skeletal muscle and adipose tissue. We therefore hypothesized that such eQTLs might account for a dispropor-

tionate share of the heritability estimated from all SNPs interrogated through GWASs. To test this hypothesis, we applied linear mixed

models to the Wellcome Trust Case Control Consortium (WTCCC) T2D data set and to data sets representing Mexican Americans from

Starr County, TX, and Mexicans from Mexico City. We estimated the proportion of phenotypic variance attributable to the additive

effect of all variants interrogated in these GWASs, as well as a much smaller set of variants identified as eQTLs in human adipose tissue,

skeletal muscle, and lymphoblastoid cell lines. The narrow-sense heritability explained by all interrogated SNPs in each of these data sets

was substantially greater than the heritability accounted for by genome-wide-significant SNPs (~10%); GWAS SNPs explained over 50%

of phenotypic variance in the WTCCC, Starr County, and Mexico City data sets. The estimate of heritability attributable to cross-tissue

eQTLs was greater in theWTCCC data set and among lean Hispanics, whereas adipose eQTLs significantly explained heritability among

Hispanics with a body mass index R 30. These results support an important role for regulatory variants in the genetic component of

T2D susceptibility, particularly for eQTLs that elicit effects across insulin-responsive peripheral tissues.
Introduction

Numerous family-based studies of disease heritability have

indicated that type 2 diabetes (T2D [MIM 125853]) is

strongly heritable.1–5 These results have motivated many

large-scale linkage, candidate-gene, and genome-wide as-

sociation studies (GWASs), which together have identified

over 70 variants that significantly associate with T2D or

glucose traits and replicate across studies.6–16 However,

this set of variants collectively explains only a fraction of

the narrow-sense heritability previously estimated from

family studies (31%–69%)5 and thereby constitutes a

problem of ‘‘missing heritability.’’16–19 Several hypotheses,

including the possibility that genetic susceptibility to T2D

is driven by rare variants that are poorly interrogated

through GWASs,20–24 have since been put forward to

explain the missing heritability of T2D. Consequently,

a number of large-scale exome and whole-genome se-

quencing efforts to identify such rare variants underlying

T2D risk within specific populations are ongoing.25,26

Alternatively, the majority of ‘‘missing’’ heritability

might insteadbe ‘‘hidden’’ andexplainedby the cumulative

effect ofmanyvariantswith small effect sizes.27–30 Recently,

investigators have tested this hypothesis by applying linear

mixed models (LMMs), which treat individual SNP effects

as random effects and allow for the estimation of total

additive genetic variance.31–34 The application of these

models has provided evidence that GWAS-interrogated

variants explain sizable portions of the missing heritability
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for several complex traits, such as height, fasting glucose,

and Tourette syndrome (MIM 137580).31,33,35,36 Indeed,

recent studies have suggested that much of the missing

heritability of T2D can be accounted for by the cumulative

effect of common variants effectively interrogated through

GWASs and therefore support a highly polygenic architec-

ture for T2D susceptibility.37,38 This presents a major chal-

lenge in identifying disease-related genes given that the

vastmajority of interrogated SNPs are innoncoding regions

and only weakly influence disease risk.16,18,22 Although

T2D heritability might be attributable to the combined

action of many variants, we hypothesize that the variants

driving susceptibility are concentrated in pathways that

influence molecular processes within metabolically impor-

tant tissues.

Previous studies have shown that expression quanti-

tative trait loci (eQTLs) are highly enriched within sets of

disease-associated variants.39–42 Moreover, the extent of

enrichment is greater for eQTLs mapped in tissues relevant

to the disease.39 Importantly, eQTLs mapped in human

adipose and skeletal-muscle tissue are enriched among

sets of T2D-associated SNPs, whereas eQTLs mapped in

human lymphoblastoid cell lines (LCLs) exhibit no such

enrichment.39,43,44 It is thus reasonable to hypothesize

that at least some of the overall heritability of T2D might

be attributable to variants that regulate gene expression

in insulin-responsive peripheral tissues (IRPTs).

In this study, we applied LMMs to the Wellcome Trust

Case Control Consortium (WTCCC) GWAS data set for
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T2D and to data sets including Mexican Americans from

Starr County, TX, andMexicans fromMexico City to inves-

tigate the T2D variance explained by the combined effect

of common variants with individually small effects across

data sets including populations with distinct ancestries.

Furthermore, we leveraged information on eQTLs mapped

in human adipose tissue, skeletal muscle, and LCLs to

elucidate the heritability contribution from regulatory var-

iants mapped in IRPTs.

Here, we report that for each GWAS data set, the additive

effect of the total set of interrogated SNPs accounts

for more heritability than estimates previously reported

for GWAS-significant variants. SNP subsets composed of

eQTLs mapped in skeletal muscle and subcutaneous adi-

pose tissues and of eQTL subsets identified in multiple

tissues explain higher phenotypic variance than expected

given the proportion of SNPs included in the analysis.

These results suggest that T2D has a highly polygenic

architecture that is disproportionately driven by regulatory

variants, including those active in IRPTs.
Material and Methods

Ethics Statement
All study participants who donated adipose and muscle biopsies

provided written informed consent under protocols originally

approved by the institutional review board at the University of

Arkansas for Medical Sciences. Informed consent was obtained

fromeachparticipant fromMexicoCity, and researchwas approved

by the ethical research boards of the Medical Center ‘‘Siglo XXI’’

and the University of Toronto. Informed consent was obtained

from each participant from the Starr County Health Study, and

research was approved by the institutional review boards of the

University of Texas Health Science Center at Houston.

GWASs and eQTL Data Sets
We analyzed genotype data from the WTCCC GWAS of T2D in

1,924 case and 2,938 control subjects.11 The data set included

469,557 SNPs genotyped on the Affymetrix GeneChip 500K

Mapping Array Set and was called with the CHIAMO algorithm.

SNPs showing significant departures from Hardy-Weinberg equi-

librium (HWE) could inflate estimates of narrow-sense heritabili-

ty.34 We therefore excluded 33,618 markers with p values < 5%

from a HWE exact test. An additional set of 63,236 SNPs with a

minor allele frequency (MAF) < 1% were excluded, resulting in a

pruned set of 370,139 SNPs that were carried forward in our esti-

mation of phenotypic variances explained by GWAS-interrogated

SNPs. Moreover, we ensured that SNPs with genotype missingness

> 1% were not included in our analyses, and therefore only SNPs

with <20 missing genotypes were included.

We also analyzed twoGWAS data sets of Hispanic populations of

Mexicandescent in this study. Thefirst data setwas previously used

in a GWAS43 of T2D in a Mexican American population from Starr

County, TX (SCT data set), and consisted of 837 case and 781 con-

trol subjects (Table S1, available online). As previously described,43

individuals were genotyped on the Affymetrix Genome-Wide

SNP Array 6.0, and the set of typed SNPs was imputed to a

HapMap2 reference panel, resulting in a set of ~1.8 million SNPs

after quality-control measures. A total set of 1,733,064 SNPs re-
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mained after we removed SNPs with HWE-departure p values <

5% and SNPs with MAF < 1%.

The secondHispanic GWAS data set came from aMexican popu-

lation fromMexico City (MCM data set) and consisted of 967 case

and 343 control subjects (Table S1). Individuals were genotyped

on the Affymetrix Genome-Wide SNP Array 5.0, and the set of

typed SNPs was imputed to both a phased HapMap2 and an

unphased HapMap3 reference panel as previously described.45

We applied the same quality-control measures we used for the

WTCCCand SCT data sets to theMCMdata set, and the remaining

set of 2,431,591 SNPs was carried forward for heritability analyses

(Table S2). In order to increase the sample size for estimation of

heritability among populations of Mexican descent, we merged

the imputed SCT and MCM data sets together by chromosome

and applied the same MAF and HWE-departure p value thresholds

as in the individual GWAS data sets. This resulted in a data set

including 1,652,821 SNP genotypes (Table S2) for a total of 2,928

subjects (1,804 case and 1,124 control individuals). We applied

a stringent genotype-missingness threshold of 1% in the merged

Hispanic data set (and thus SNPs with >20 missing genotypes

were not included in our analyses).

A set of eQTLs mapped in 90 HapMap CEU (Utah residents

with ancestry from northern and western Europe from the CEPH

collection) lymphoblastoid cell lines (LCLs) were acquired from

the SNP and CNVAnnotation (SCAN) database, an online reposi-

tory that provides physical and functional annotations for SNPs,

copy-number variants, and genes.46 As previously described,46

we mapped eQTLs in LCL samples by applying a family-based

quantitative transmission-disequilibrium test (QTDT) to a set of

more than two million SNPs with MAF > 5% in order to evaluate

associations with the reliable expression of >13,000 gene tran-

scripts measured with the Affymetrix GeneChip Human Exon

1.0 ST Array. For this study, we included all SNPs with QTDT

p values < 1.0 3 10�4 in the SCAN database.

Extraction and eQTL mapping of primary human adipose and

skeletal-muscle tissue are described in Elbein et al.44 In brief, sam-

ples of subcutaneous adipose tissue (extracted via needle biopsy

or incision) and skeletal muscle from the vastus lateralis were

extracted by Bergstrom needle biopsy from 62 individuals with

ages ranging from 20 to 55 years and body mass index (BMI)

ranging from 19 to 42 kg/m2. Of these 62 individuals, 40 were of

European American ancestry and 22 were of African American

ancestry. Genotyping was performed with the Illumina 1M

platform, and RNA-expression profiling was performed with the

Agilent Human Whole Genome 4 3 44 array.44 The set of typed

SNPs was imputed to a HapMap2 reference panel. For each tissue,

we mapped eQTLs by testing each SNP for the additive effect of

allele dosage on covariate-adjusted normalized probe-level expres-

sion intensity under a linear model that included the combined

set of samples from both European and African American cohorts:

P ¼ mþ Rþ e;

where P is the normalized probe-level expression value, m is the

expected value of the probe expression intensity, R is the covariate

for genetic ancestry (i.e., principal component [PC] 1), and e is

the residual error term. For the eQTL-based analyses, we included

SNPs with gene-expression association p values < 1.0 3 10�4.

Estimation of Phenotypic Variance Explained

by GWAS SNPs
For each GWAS data set, a genetic-relatedness matrix (GRM) was

calculated from the full set of autosomal SNPs (i.e., not pruned
er 6, 2014



for LD) with the program Genome-wide Complex Trait Analysis

(GCTA), developed by Yang et al.47 We included only SNPs with

MAF > 1% in our analyses because we were interested in evalu-

ating the heritability attributable to common SNPs. We applied a

relatedness threshold (bp) to prune pairs of individuals sharing

many genes identically by descent. This ensured that effects

from nongenetic factors, such as a common environment shared

between close relatives, did not upwardly bias estimates of chip

heritability (i.e., the proportion of phenotypic variance explained

by the additive effect of GWAS-interrogated SNPs).34 The inclusion

of close relatives (i.e., monozygotic twins and first-degree relatives)

would dominate heritability estimates and yield results similar to

those of an additive genetic model even in the absence of a shared

environment.32 When a pair of individuals share more than the

specified genetic relatedness, GCTA employs a parsimonious algo-

rithm that selectively removes an individual so as to maximize the

number of individuals retained in the GRM.47 No pair of subjects

in theWTCCC data set shared genetic relatedness in excess of 5%,

whereas a considerable number of subjects in the Hispanic data

sets surpassed this threshold. The primary analyses presented

here utilized all the samples in the Hispanic data set. However,

the results from our heritability analyses of this data set are robust

across relatedness thresholds (see below).

PC analyses (PCAs)48 were performed for each data set with the

PCA method implemented in GCTA. Mexican American and

Mexican individuals showing poor clustering in PC cluster plots

were identified, and a GRM was recalculated without these indi-

viduals for each of the individual Hispanic data sets and the

merged Hispanic data set (Figure S1).

The proportion of narrow-sense heritability explained by the

additive effect of GWAS SNPs (i.e., chip heritability) was estimated

with the restricted maximum-likelihood estimation (REML)

method implemented in GCTA. The actual binary phenotype of

T2D status was transformed to an underlying liability model in

which the disease threshold was dependent upon the prevalence

of T2D in each population.47 A prevalence of 8% was specified

for the REML estimation of additive genetic variance in the

WTCCC data set. Population disease-prevalence values of 20%

and 10% were specified for the analyses of the SCT and MCM

data sets, respectively (Table S2). A population prevalence of

16% was specified for heritability estimation in the merged His-

panic data set and was calculated as a weighted average of the

T2D prevalence from the two samples.
Covariate Selection
LMM models including fixed effects from potential covariates for

T2D (i.e., age, BMI, sex, and PCs) were evaluated for each data

set with available information (Table S3). Sex and the first five

PCs were included as covariates in the analysis of the WTCCC

data set. Sex, age (at diagnosis for case subjects and at enrollment

for control subjects), and BMI were included as covariates in the

analyses of the Hispanic data sets. Moreover, differences in global

ancestry can potentially confound genetic association studies in

admixed populations.49 To control for these effects, we included

the first ten PCs as covariates in our estimation of heritability in

the SCT, MCM, and merged Hispanic data sets.
Estimation of Phenotypic Variance Explained by SNPs

that Colocalize with Known T2D-Associated Variants
A set of 141 unique SNPs significantly associated with T2D was

obtained from the National Human Genome Research Institute
The American
(NHGRI) online catalogof publishedGWASassociations. Reference

sets of SNPs composed of the 141 NHGRI SNPs and all HapMap2

SNPs within 1 kb, 10 kb, 100 kb, 500 kb, and 1 Mb of each of the

NHGRI SNPs were constructed. For each GWAS data set, multiple

joint analyses of narrow-sense heritability involving each NHGRI

SNP set were performed. The total set of GWAS SNPs was parti-

tioned into two unique SNP subsets whereby the first subset was

composed of SNPs represented in a NHGRI subset (e.g., 1 kb) and

the second subset was composed of the complement set of all

SNPs not present in the first subset. A GRM was calculated for

each subset with the –make-grm function implemented in GCTA,

and the two GRMs were then incorporated into a joint analysis of

the heritability attributable to both the NHGRI SNPs and the com-

plement set of non-NHGRI SNPs. The additive genetic variance

attributed to each subset was jointly estimated with the multiple

GRM(–mgrm) andREML (–reml) functions implemented inGCTA.
Estimation of Phenotypic Variance Explained

by eQTL SNP Subsets
We estimated the variance explained by eQTL sets by using the

following mixed-effects model:

Y ¼ Xbþ
X
T

gT þ Cþ e

varðYÞ ¼
X
T

ATs
2
T þ ACs

2
C þ Is2

e ;

where Y is a vector of phenotypes and b is a vector of fixed effects

(e.g., PCs, BMI, etc.). Here, AT is the GRM estimated from the eQTL

set T, and gT denotes the genetic effect attributable to the eQTL set

T with variance of gT equal to ATs
2
T . C is the genetic effect of the

complement set of SNPs. The phenotype is modeled as the sum

of these genetic effects and the relevant covariates (fixed effects)

and a residual. Variances were estimated with REML. The heritabil-

ity attributable to the eQTL set T was then calculated as the frac-

tion of the phenotypic variance s2Y :

h2
T ¼ s2

T

�
s2
Y :

In our analysis, we estimated the heritability explained by

various eQTL sets (derived from several tissues) by partitioning,

in multiple analyses, the genome into disjoint sets (composed of

classes of eQTLs and the complement SNP set). We did not prune

SNP subsets for LD because this could result in spurious ‘‘enrich-

ment’’ of heritability (see Results).
Description of eQTL Subsets Evaluated

in Heritability Analyses
For convenience, we provide a brief description of eQTL subsets we

evaluated in our partition analyses of T2D heritability (Figure 1):

eQTLs mapped in LCL samples from HapMap2 CEU individuals,

but not included in either the adipose or the skeletal-muscle

eQTL sets (L); eQTLs included in the adipose eQTL reference set,

but not in any other eQTL reference set (A); eQTLs in the skel-

etal-muscle eQTL reference set, but not in any other eQTL refer-

ence set (M); eQTLs included in both the LCL and the adipose

eQTL reference sets, but not in the skeletal-muscle eQTL reference

set (AL); eQTLs present in both the LCL and the skeletal-muscle

eQTL reference sets, but not in the adipose eQTL reference set

(ML); eQTLs represented in both the adipose and the skeletal-

muscle eQTL reference sets, but not in the LCL eQTL reference

set (AM); the intersection of eQTLs represented in the LCL,
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Figure 1. Study Overview
(A) Delineation of the eQTL subsets evaluated in the decomposition of T2D heritability.
(B) Diagram showing the constitution of each of the major partitions evaluated in this study.
(C) Schematic of the heritability analyses performed on the WTCCC, SCT, and MCM data sets.
adipose, and skeletal-muscle reference sets (AML); and the set

of eQTLs mapped in IRPTs, defined as the union of eQTL sets A

W M W AM.

Baseline-Subset Analysis

For this analysis, the total set of SNPs was partitioned into eight

SNP subsets representing all possible disjoint eQTL sets (Figures

1A and 1B): L, A, M, AL, ML, AM, AML, and the complement set

of SNPs not included in the eQTL subsets.

Analysis of IRPT versus LCL eQTLs

We sought to compare the heritability for regulatory variants iden-

tified in IRPTs as a group (A W M W AM) to that from eQTLs map-

ped in LCLs, a representative noninsulin responsive cell type.

Moreover, we were interested in comparing these estimates to

the heritability from eQTLs mapped across tissues (AML) in this

analysis. The total set of SNPs in each GWAS data set was parti-

tioned into nonoverlapping subsets: L, IRPT, AML, and the com-

plement set of SNPs not included in these eQTL subsets.

Expanded Analysis of IRPT versus LCL eQTLs

This analysis was similar to the analysis of IRPT versus LCL eQTLs

(IRPT-LCL analysis) with the distinction that the IRPT set was

ungrouped into the A, M, and AM subsets. Alternatively, this

analysis was similar to the baseline-subset analysis with the

modification that the AL and ML subsets were included in the

complement SNP subset. This analysis, unlike the IRPT-LCL anal-

ysis, allowed for a comparison of tissue-specific eQTLs while

involving fewer subsets than the baseline-subset analysis.

Index-Subset Analysis

In order to further investigate relationships between eQTL subsets

that significantly explain heritability, we performed a series of

three-way partition analyses whereby we jointly estimated herita-

bility for two ‘‘index’’ subsets along with the complement set of

SNPs not included in either of the index subsets. For example,

in the WTCCC analyses (see below), we observed that the mus-

cle-specific and cross-tissue eQTL subsets explained dispropor-

tionate phenotypic variances relative to SNP-set proportions

(Figure 3). We subsequently performed an index-subset analysis

by grouping all cross-tissue eQTLs subsets (AL W ML W AM W
AML) and comparing this subset with the muscle-specific (M)

and complement SNP subsets.
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Estimation of Phenotypic Variance Explained

by cis- and trans-eQTLs
In order to further delineate the eQTL subsets that explained the

most phenotypic variance relative to SNP-set proportion in the

WTCCC data set (i.e., cross-tissue and muscle-specific eQTLs; see

Results), we partitioned according to cis and trans classification.

eQTLs ineach referencedata setweredesignatedas either cisor trans

according to proximity to either the gene start site or the gene end

site of the target transcripts. eQTLswithin 4Mbof a start or end site

for a target gene were classified as cis-eQTLs, whereas eQTLs associ-

ated with genes beyond this threshold were designated as trans-

eQTLs. SNPs associated with gene expression in multiple genes

were classified as cis if at least one significant association was a cis

association. Otherwise, a SNP was designated as a trans-eQTL.

Cross-tissue eQTLs were classified as cis-eQTLs if at least one

association was a cis association. The total set of SNPs in the

WTCCC data set was partitioned into three unique SNP subsets:

cross-tissue cis-eQTLs, cross-tissue trans-eQTLs, and the remaining

set of all SNPs not represented in the other two subsets. As in the

eQTL-subset analyses described above, we calculated a GRM for

each subset from the corresponding SNP genotypes and used the

three GRMs to jointly estimate the heritability attributable to

each subset by using REML.We performed a similar partition anal-

ysis in the WTCCC data set for skeletal-muscle-specific eQTLs.
BMI-Stratified Analysis of the Merged Hispanic

Data Set
In order to evaluate T2D-heritability profiles among subjects of

Mexican descent in the context of obesity, we stratified themerged

Hispanic data set according to BMI whereby subjects with BMI <

30 were included in a ‘‘lean’’ group (997 case and 640 control sub-

jects) and subjects with BMI R 30 were included in a ‘‘nonlean’’

group (779 case and 475 control subjects). We performed two

separate heritability analyses for each BMI-stratified group: (1)

index-subset analysis (see above) with muscle-specific eQTLs (M)

and cross-tissue eQTLs (AL W ML W AM W AML) as the index

subsets; and (2) index-subset analysis with adipose-specific eQTLs

(A) and cross-tissue eQTLs as the index subsets. The first ten PCs
er 6, 2014



were included as covariates, and the analyses were performed both

with and without the inclusion of BMI as a covariate.
Permutation Analysis
In order to identify significant differences in the proportions of

phenotypic variance explained by eQTL subsets, we performed a

series of permutation-based analyses. For each joint heritability

analysis, we investigated statistical differences in heritability esti-

mates between subsets by defining a test statistic:

T ¼
bh2

x � bh2

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

x þ SE2
y

q ;

where bh2

x and bh2

y are the estimates of heritability attributable to

SNP subsets x and y, respectively, and SEx and SEy are the SEs

for SNP subsets x and y, respectively. We then permuted jointly

the phenotype assignment and corresponding covariate values

of each individual in the GWAS data set while maintaining the

genotype structure. We used the permuted phenotypes to recalcu-

late REML estimates of heritability with SE and obtained a test sta-

tistic.We repeated this processmultiples times in order to generate

a distribution of test statistics and obtained an empirical p value

from the number of instances a permutation test statistic equaled

or exceeded the observed test statistic from the nonpermuted

analysis. For each joint heritability analysis in the WTCCC and

Hispanic data sets, we performed a minimum of 200 phenotype

permutations with REML.

In order to evaluate significant differences in heritability esti-

mates between corresponding eQTL subsets in the lean and non-

lean Hispanic cohorts, we defined the following test statistic:

T ¼
bh2

x;nonlean � bh2

x;leanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

x;nonlean þ SE2
x;lean

q ;

where bh2

x;nonlean and bh2

x;lean are the estimates of heritability attribut-

able to SNP subset x in the nonlean and lean cohorts, respectively,

and SEx;nonlean and SEx;lean are the SEs for SNP subset x in the

nonlean and lean cohorts, respectively. An empirical p value was

similarly obtained from a distribution of permuted test statistics.

For each intercohort comparison of eQTL heritability made

between the nonlean and lean Hispanic groups, we performed

1,000 permutations.
Adjustment for Imperfect LD at Causal Variants
In order to evaluate the effect of imperfect LD between GWAS-

interrogated SNPs and underlying causal variants on the observed

relationships between eQTL subsets in our joint partition analyses,

we applied a MAF-stratified correction to GRMs as described in

Yang et al.31 The genomic relationship between individuals j and

k at causal variants (Gjk) is approximated by the relatedness calcu-

lated from GWAS-interrogated SNPs (Ajk). Yang et al. determined

empirically that when the MAF at causal variants is%q, the regres-

sion coefficient from the regression of Gjk on Ajk is

b ¼ 1� ðc þ 1=NÞ�
varAjk

� ;

where c depends on the MAF distribution of the causal SNPs and

1/N represents the sampling error from estimating the genetic

relationship fromN SNPs.We adjusted theGRM for each eQTL sub-

set in the IRPT-LCL partition analysis with the –grm-adj function
The American
in GCTA by varying the c parameter (c ¼ 6.2 3 10�6, 3.4 3 10�6,

1.8 3 10�6, 7.8 3 10�7, and 9.2 3 10�9 for q ¼ 0.1, 0.2, 0.3, 0.4,

and 0.5, respectively) and estimated variances with REML.

We also considered the effect of an uneven distribution of local

LD across the set of GWAS-interrogated SNPs; regions with high

LD are likely to disproportionately contribute to estimates of her-

itability. Speed et al. proposed estimating an adjusted GRM, A*,

which is comparable to the standard GRM calculated in GCTA

(A¼XX0 /m0), where columnXj of the standardized genotypema-

trix (X) for SNP j in SNP setm is replaced by weighted vector
ffiffiffiffiffi
wj

p
Xj

and m0 is replaced by
P

jwj.
50 We estimated weightings for the

entire set of GWAS SNPs with the –cut-weights, –calc-weights,

and –join-weights options implemented in the program LDAK

(Linkage-Disequilibrium Adjusted Kinships). We then calculated

adjusted GRMs for each SNP subset in the IRPT-LCL partition

analysis with the –cut-kins and –calc-kins functions and applied

the –partition-prefix and –partition-number (set to four) argu-

ments to enable genomic partitioning. Estimates of heritability

for each subset were calculated through REML implemented in

GCTA as described above.

Figures were created in R51 with base graphics and the ggplot2

package.52
Results

Estimation of T2D Heritability Explained

by GWAS SNPs

We applied an LMM method to estimate the phenotypic

T2D variance explained by the additive effect of GWAS-

interrogated SNPs (i.e., chip heritability) in three inde-

pendent data sets: the WTCCC, SCT, MCM data sets

(Figure 1A). For each of these populations, the narrow-

sense heritability explained by the complete set of GWAS-

interrogated SNPs was high and exceeded the range for

previously reported GWAS-significant SNPs (Figure 2A;

Table S2). The SE values of the heritability estimates were

inversely related to sample size and thus were larger for

the Hispanic data sets (Figure S3).

To further investigate the heritability contribution from

loci strongly implicated from GWASs, we referred to the

NHGRI online catalog of published GWAS variants and

jointly estimated the variance explained by subsets en-

riched with T2D-assocatied SNPs. For each GWAS data

set, the significance of heritability estimates corresponding

to the NHGRI subsets was high, and the explained pheno-

typic variance generally increased with the number of

SNPs included in each subset (Figures 2B–2D; Table S4).

However, in each data set, the heritability estimates attrib-

utable to subsets composed of T2D-associated SNPs were

much lower than the total estimate of chip heritability

(Figures 2A–2D; Tables S2 and S4).
Estimating T2D Heritability Explained by

Metabolic-Tissue eQTLs in the WTCCC Data Set

Our group has previously shown that eQTLs mapped

in human adipose and skeletal-muscle tissue are enriched

among the set of variants that show genome-wide-signifi-

cant association with T2D in populations of European
Journal of Human Genetics 95, 521–534, November 6, 2014 525
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Figure 2. Estimates of Narrow-Sense T2D Heritability Explained by GWAS-Interrogated SNPs
(A) The REML estimates of phenotypic variance explained by the additive effect of SNPs interrogated in GWASs (VA / VP) on T2D are
shown for the WTCCC, SCT, and MCM data sets.
(B–D) Heritability estimates for SNP subsets composed of T2D-associated variants from the NHGRI GWAS catalog and HapMap2 SNPs
within 1 kb, 10 kb, 100 kb, 500 kb, and 1Mb are shown for the WTCCC (B), SCT (C), and MCM (D) data sets. Total chip heritability
and SE for each GWAS are given by the solid and dashed black lines, respectively.
The color corresponds to the significance of each heritability estimate determined by the test statistic from the likelihood-ratio test (LRT).
and Mexican descent.43,44 We therefore hypothesized that

eQTLs mapped in metabolically important tissues might

also account for much of the heritability of T2D. In order

to evaluate this hypothesis, we partitioned the set of

GWAS-interrogated SNPs into subsets composed of eQTLs

and performed joint analyses of variance components

(Figures 1A–1C). We included eQTLs mapped in two IRPTs,

adipose tissue, and skeletal muscle, as well as eQTLs map-

ped in LCLs (Table S5).

We performed an IRPT-LCL analysis (see Material and

Methods) in order to compare the eQTL-derived heritabil-

ity in IRPTs (i.e., adipose tissue and skeletal muscle) with

that in LCLs, a representative noninsulin responsive cell

type. Of the four subsets evaluated in the IRPT-LCL parti-

tion, the IRPT, AML, and complement subsets significantly

explained phenotypic variance (Figure 3A; Table S6). More-

over, only the IRPT and AML subsets accounted for propor-

tions of explained heritability that exceeded their SNP-set

proportions; the AML set accounted for three times more

heritability than would be expected from the number of

represented SNPs (Figure 3B; Table S6). Interestingly, the

LCL subset yielded a low and nonsignificant estimate of

heritability despite the fact that it composed 27% of all

GWAS-interrogated SNPs in the WTCCC data set (Figures

3A and 3B; Table S6). We performed a permutation-based

analysis and observed that the variance explained by the

IRPT eQTLs was significantly greater than the variance

explained by the L subset (p < 0.01).

In order to resolve the tissue-specific contributions to the

GWAS heritability estimate, we performed an expanded

version of the IRPT-LCL analysis described above whereby

we ungrouped the IRPT subset into the constituent A, M,

and AM subsets. The subsets composed of muscle-specific

eQTLs (M), cross-tissue eQTLs (AML), and complement
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SNPs significantly explained phenotypic variance, whereas

the LCL (L) and adipose (A) subsets yielded low and

nonsignificant estimates of heritability (Figure 3C; Table

S7). Of these subsets, only the muscle-specific and cross-

tissue eQTL subsets accounted for proportions of heritabil-

ity that exceeded their SNP-set proportions (Figure 3C;

Table S7). Moreover, we found that the difference in herita-

bility estimates between the muscle-specific eQTL (M)

and adipose-specific eQTL (A) subsets was significant in

a permutation-based analysis (p ¼ 0.025). However, in a

separate analysis, we did not observe a significant differ-

ence between the variances explained by the M W ML

and A W AL eQTL subsets (p ¼ 0.72; Figure S8).

We performed a baseline-subset analysis to evaluate the

phenotypic variance explained by each possible eQTL

subset delineated in Figure 1B. We observed that each

subset composed of cross-tissue eQTLs (i.e., AL, ML, AM,

and AML) significantly explained proportions of chip

heritability that exceeded their SNP-set proportions

(Figure S3; Table S9).

We further investigated relationships between eQTL

subsets that disproportionately explained phenotypic vari-

ance by performing an index-subset analysis (see Material

and Methods) whereby we compared two index subsets

along with the complement set of SNPs. For this analysis,

we evaluated the muscle-specific eQTL subset (M) and a

cross-tissue eQTL subset composed of eQTLs mapped in

two or more tissues (AL W ML W AM W AML). Each of

the evaluated subsets significantly explained phenotypic

variance, but only the muscle-specific (M) and cross-tissue

eQTL subsets explained proportions of heritability that

exceeded their SNP-set proportions (Figures 3E and 3F;

Table S10). Moreover, the magnitude of this difference

for each of these subsets was greater than a factor of
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Figure 3. Heritability of T2D Explained by Metabolic-Tissue eQTLs in the WTCCC GWAS Data Set
The narrow-sense heritability estimates (VA / VP) attributable to nonoverlapping SNP subsets (top panels). The proportion of chip her-
itability explained by each subset is plotted with SNP-set proportion (bottom panels). Color is designated by the �log10 of the LRT p
value, and estimates are shown with SE.
(A and B) IRPT-LCL analysis.
(C and D) Expanded IRPT-LCL analysis.
(E and F) Index-subset analysis with muscle-specific (M) and cross-tissue (CT) eQTLs as index sets.
(G and H) cis-trans analysis of cross-tissue eQTLs.
2 (Figure 3F; Table S10). Interestingly, the complement set

of SNPs composed 80% of the GWAS-interrogated SNPs

yet only accounted for 52% of the explained heritability

(Figure 3F; Table S10).

Although the LCL-specific eQTL subset (L) did not signif-

icantly explain phenotypic variance in any of the above

analyses, we performed an additional joint analysis to

resolve the heritability contribution from LCL eQTLs. We

estimated the variance explained by the A W M W AM

and AL W ML W AML eQTL subsets and observed that

both subsets significantly explained phenotypic variance

and were enriched with heritability (Table S11). However,

a permutation-based analysis showed that the enrichment

for the A W M W AM subset was not significantly greater

than that for the AL W ML W AML subset (p ¼ 0.18).

This supports a role for cross-tissue eQTLs mapped in

LCLs and is consistent with the heritability enrichment

observed for the AML subset.

Finally, we considered that the higher heritability attrib-

utable to cross-tissue eQTLs in this study might be due to
The American
the possibility that an eQTLmapped in two or more tissues

can more robustly be classified as an eQTL. This could

then explain why cross-tissue eQTL subsets consistently

accounted for more heritability than the LCL eQTL sub-

sets. However, we do not believe this to be the case given

that a comparison of matched sets of highly significant

LCL and cross-tissue eQTLs showed that cross-tissue

eQTLs, but not LCL eQTLs, yielded significant estimates

of heritability (Table S12). Taken together, these results

indicate that subsets composed of muscle-specific eQTLs

and cross-tissue eQTLs explain disproportionate amounts

of heritability for T2D in the WTCCC data set.

Evaluating the Heritability Captured by cis- and

trans-eQTLs in the WTCCC Data Set

The cross-tissue eQTL subset explained the most heritabil-

ity in the WTCCC data set (see above); we therefore evalu-

ated the respective heritability contributions from cross-

tissue cis- and trans-eQTLs (see Material and Methods).

Although the subset of cross-tissue cis-eQTLs accounted
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(G and H) Index-subset analysis with adipose-specific (A) and cross-tissue (CT) eQTLs as index sets.
for a proportion of heritability that exceeded its SNP-set

proportion, the REML estimate of variance was low and

not significant at the 5% significance level (Figures 3G

and 3H; Table S13). In contrast, the set of cross-tissue

trans-eQTLs, although defined by a loose p value threshold

for association with gene expression in each tissue, signif-

icantly explained most of the heritability accounted for

by the total set of cross-tissue eQTLs (Figures 3G and 3H;

Table S13).We observed similar results when we performed

an analysis of the respective contributions of cis- and trans-

eQTLs represented in the set of eQTLs specific to skeletal

muscle (Figure S5; Table S14).

Estimating T2D Heritability Explained by Metabolic-

Tissue eQTLs in GWAS Data Sets Representing

Populations of Mexican Descent

Because heritability-partitioning analyses were unstable in

the two Hispanic data sets (Tables S15–S17), we combined

individuals from both data sets and merged both sets of

imputed SNP genotypes to increase the sample size to

nearly 3,000 subjects. The total set of GWAS-interrogated
528 The American Journal of Human Genetics 95, 521–534, Novemb
SNPs in the merged data set significantly explained 60%

of the phenotypic variance in the merged Hispanic data

set (Figure 2A; Table S2). We then performed an IRPT-LCL

heritability analysis (see Material and Methods) and found

that only the IRPT subset (A W M W AM) significantly ex-

plained phenotypic variance with an enrichment relative

to the SNP-set proportion (Figures 4A and 4B; Table S18).

We performed a permutation-based analysis to determine

whether the variance explained by the IRPT subset was

significantly greater than the variance explained by the

LCL-specific (L) subset. Similar to our results from the

corresponding WTCCC analysis, the IRPT eQTL subset

significantly explained more variance than the LCL subset

(p < 0.01).

Next, we performed an expanded IRPT-LCL analysis

(see Material and Methods) to further resolve the tissue-

specific contribution to heritability in themerged Hispanic

data set. Adipose-specific eQTLs and cross-tissue eQTLs

mapped in adipose and skeletal-muscle tissue significantly

explained phenotypic variance and accounted for most of

the estimated heritability (Figure 4C; Table S19). However,
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muscle-specific eQTLs did not significantly explain pheno-

typic variance in the merged Hispanic data set (Figures 4C

and 4D; Table S19), and a permutation-based analysis

showed that the enrichment of adipose-specific eQTLs

was significantly greater than that of muscle-specific

eQTLs (p < 0.01).

We performed a baseline-subset analysis (see Material

and Methods) and observed that the set of eQTLs mapped

in both adipose and skeletal-muscle tissue (AM), but not

LCLs, disproportionately explained the most chip herita-

bility relative to the SNP-set proportion (Figure S4; Table

S20). Moreover, we corroborated that adipose-specific (A)

and cross-tissue eQTLs, but not muscle-specific (M) eQTLs,

significantly and disproportionately explained phenotypic

variance in a set of index-subset analyses (Figures 4E–4H;

Tables S21 and S22).

We performed an additional index-subset analysis and

observed that the AW AL subset was significantly enriched

with heritability in relation to the M W ML subset (p <

0.01) (Table S23). Furthermore, subsets of cross-tissue

eQTLs mapped in LCLs did not contribute to heritability

in the Hispanic data set, given that the AL W ML W AML

subset did not significantly explain variance and yielded

a heritability estimate that was significantly lower than

that for the A W M W AM subset (p < 0.01) (Table S24).

Although the merged Hispanic data set was better pow-

ered to resolve heritability estimates between eQTL sub-

sets, the heritability estimate for the complement subset

in the IRPT-LCL and expanded IRPT-LCL analyses was

nonsignificant with high SE. However, in a two-way parti-

tion analysis of L and complement subsets, the comple-

ment subset (including eQTLs mapped in adipose tissue

and skeletal muscle) yielded a high and significant esti-

mate of heritability (Table S25). Taken together, these

results differ from the WTCCC results in that they support

a greater heritability contribution from subsets composed

of eQTLs mapped in human adipose tissue.

BMI-Stratified Analysis of Heritability Explained

by eQTL Subsets in the Hispanic Data Set

We observed that 44% of the subjects in the merged

Hispanic data set had a BMI R 30. Therefore, the fact

that more heritability was attributable to adipose-specific

eQTLs in this data set than in the WTCCC data set might

be explained by differences in the BMI distribution

(Figure S6). We explored this hypothesis by first stratifying

the merged Hispanic data set into a lean group composed

of subjects with a BMI < 30 and a nonlean group com-

posed of subjects with a BMI R 30. Although individuals

with BMI values less than 30 but greater than 25 can be

considered overweight, we included them in the lean

cohort to enable a more even comparison both in terms

of sample size and as a contrast to obese subjects.

We performed a set of index-subset analyses in each

group to compare the heritability contributions from adi-

pose- and muscle-specific eQTLs in relation to cross-tissue

eQTLs. The set of cross-tissue eQTLs consistently explained
The American
the most heritability within the lean group, whereas the

heritability estimates corresponding to the muscle-specific

(M) and adipose-specific (A) eQTL sets were not significant

and centered on 0 (Figures 5A–5D; Tables S26 and S27). In

contrast, cross-tissue eQTLs did not significantly explain

phenotypic variance in the nonlean group in an index-

subset analysis that included muscle-specific (M) eQTLs

as an index set (Figures 5E and 5F; Table S28). Moreover,

phenotypic variance was most significantly explained by

the complement set of SNPs in this analysis (Figures 5E

and 5F; Table S28). However, both the magnitude and

the significance of the heritability estimate attributable

to the complement set were considerably reduced when

we jointly estimated the heritability explained by adi-

pose-specific eQTLs (Figures 5G and 5H; Table S29).

Furthermore, adipose-specific eQTLs consistently ex-

plained the most phenotypic variance within the nonlean

group whether or not we included BMI as a covariate for

T2D in the REML estimation of genetic variance (Figures

5G and 5H; Tables S29 and S30). All results shown in

Figure 5 correspond to analyses in which we included

BMI as a covariate.

Next, we performed a permutation-based analysis to

evaluate the difference in enrichment by the adipose-spe-

cific eQTL subset between the two cohorts and found

that the heritability explained by the adipose-specific

eQTL subset in the nonlean cohort was significantly

greater than that in the lean cohort (p < 0.001). Moreover,

we performed a set of analysis to assess the difference in

the variances explained by the A W AM subset between

cohorts and similarly found a greater enrichment for

this subset in the nonlean cohort than in the lean cohort

(p ¼ 0.003; Table S31).

Joint Estimation of eQTL Heritability and Adjustment

for Incomplete LD with Causal Variants

Imperfect LD between causal variants and tagging SNPs can

affect the estimation of heritability. Thus, Yang et al. pro-

posed aGRMadjustment that corrects for greater prediction

error when theMAF distribution of causal variants deviates

from that of the GWAS-interrogated SNPs.31,53 In order to

determine how imperfect LD at causal loci might affect

our joint analyses of heritability, we investigated our results

from the IRPT-LCL analysis for both GWAS data sets by

adjusting across different values of q such that the assumed

MAF at causal SNPs was MAF % q (see Material and

Methods). Although the significance of the heritability

estimates decreased and the SE increased with decreasing

values of q, the relationships between the eQTL subsets

reported above were maintained (Figures S7 and S8).

Speed et al. proposed a weighted GRM approach that

involves the calculation of local LD throughout the set of

GWAS SNPs and that adjusts the GRM according to an

appropriate weighting for each SNP.50 In order to investi-

gate the effect of local LD correction on joint estimation

of eQTL heritability, we incorporated this weighted GRM

approach implemented in the program LDAK into our
Journal of Human Genetics 95, 521–534, November 6, 2014 529
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Figure 5. Partition of Metabolic-Tissue Heritability among Hispanics in Low- and High-BMI Subgroups
The narrow-sense heritability estimates (VA / VP) attributable to nonoverlapping SNP subsets are shownwith SE and color corresponding
to LRT (top panels). The proportion of chip heritability explained by each subset is plotted with SNP-set proportion and is color coded by
the �log10 of the LRT p value (bottom panels). Results from an index-subset analysis with muscle-specific (M) and cross-tissue (CT)
eQTLs as the index sets are shown for Hispanic subjects with a BMI < 30 (A and B) and subjects with a BMI R 30 (E and F). Results
from an index-subset analysis with adipose-specific (A) and cross-tissue (CT) eQTLs as the index sets are shown for Hispanic subjects
with a BMI < 30 (C and D) and subjects with a BMI R 30 (F and G).
IRPT-LCL analysis in both GWAS data sets (Material and

Methods). The relationships between eQTL subsets re-

ported from this analysis were maintained (i.e., eQTLs

mapped in IRPT disproportionately explained T2D herita-

bility, whereas eQTLs mapped in LCL did not) (Figures S9

and S10; Tables S32 and S33).

Evaluation of the Robustness of eQTL Relationships

Asmentioned above, we included the full set of individuals

in the merged Hispanic data set in our estimation of heri-

tability. We evaluated relatedness thresholds ranging

from 5% to 20% and found no meaningful change in the

total estimate of heritability, although there was, as ex-

pected, an increase in the SE with each corresponding

decrease in sample size (Table S34). Moreover, we observed

consistent relationships between heritability estimates in

eQTL partition analyses across relatedness thresholds
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(Figure S11). We also observed that the relationships be-

tween eQTL subsets in the IRPT-LCL partition analysis

were maintained across MAF thresholds in both the

WTCCC and the Hispanic data sets (Figures S12 and S13;

Tables S35 and S36).
Discussion

In this study, we found that the cumulative effect of

GWAS-interrogated SNPs explained a large proportion of

phenotypic variation for T2D (>50%) in the WTCCC

data set and in two independent data sets representing

Hispanic populations of Mexican descent (Figure 2A).

Moreover, the heritability attributable to the total set of

GWAS-interrogated SNPs for each GWAS data set was

greater than the heritability attributable to SNP subsets
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enriched with previously reported T2D-associated variants

(Figures 2A–2D). These results provide evidence that a

considerable proportion of heritability of T2D in these

data sets is driven by many SNPs that individually do not

attain genome-wide significance in GWASs and therefore

support a highly polygenic architecture for T2D.

We have also shown that SNP subsets composed of

eQTLs mapped in IRPTs explain disproportionate herita-

bility in these data sets. Our results showing differences

between the partitioning of heritability by adipose eQTLs

between the WTCCC and Hispanic data sets, and between

leaner and more obese subjects within the Hispanic data

set, might reflect disparate genetic architectures for T2D

in which inherited variants underlying disease susceptibil-

ity among lean individuals are distinct from those contrib-

uting to risk among obese subjects. Indeed, large-scale

GWASs on T2D stratified by BMI have identified numerous

loci that significantly associate with T2D among lean indi-

viduals, but not obese individuals.54

Previous studies have shown that when total sets of

GWAS-interrogated SNPs are partitioned by chromosome,

larger SNP subsets corresponding with longer chromo-

somes explain more phenotypic variance than smaller

subsets.36,55 However, we did not observe a similar relation-

ship between SNP-set proportion and proportion of

explained heritability for the eQTL subsets in our study.

As a class of variants, eQTLs share a set of characteristics

(e.g., allele-frequency distribution, proximity to genes).

Therefore, eQTLs mapped in LCL samples enable a more

meaningful comparison with adipose and skeletal-muscle

eQTLs than a random set of SNPs simply matched for

MAF. Notably, the LCL eQTL subset consistently composed

approximately 25% of the total SNPs across data sets yet

accounted for much less heritability and yielded nonsig-

nificant heritability estimates (Figures 3A–3D and 4A–4D).

We considered the possibility that observed differences in

heritability estimates might be attributable to differences

in the properties of SNP subsets independently of eQTL

associations. Notably, the permutation-based analyses we

conducted preserved both the MAF and the LD properties

of the SNPs. Therefore, in these permutation studies, the

relationships between heritability estimates attributable

to eQTL subsets were robust to any differences in the SNP

properties of eQTLs. These results suggest that heritability

can be highly ‘‘concentrated’’ by small subsets of variants

that influence gene expression in tissues relevant to T2D.

The fact that eQTLs mapped in Europeans and African

Americans ‘‘concentrated’’ heritability in Hispanics sug-

gests that at least a proportion of these variants are func-

tionally relevant in Hispanics and can be considered

cross-population eQTLs. Recently, Marten et al. reported

that eQTLs previously mapped in LCLs exhibited similar

effects across samples from seven different populations

represented in the Human Genome Diversity Panel.56

Although some eQTLs might be highly population spe-

cific, we could not ascertain such eQTLs in the Hispanic

data set because comprehensive eQTL mapping has not
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been reported for these samples or others of Mexican

descent. Thus, heritability estimates reported in this study

might be a lower bound for the heritability that might be

attributable to eQTLs mapped in these tissues in individ-

uals of Mexican ancestry.

It is important to note that a significant correlation be-

tween genome-wide ancestry and T2D has not been

observed in the Starr County population.43 In contrast, a

strong correlation between PC 1 and T2D has been previ-

ously reported in the MCM data set. However, the control

individuals in the MCM study had greater European

ancestry that was strongly confounded by socioeconomic

status (SES).43,45 Moreover, a relationship between SES

and T2D has not been observed in the Starr County study

because there is much less variability in SES among

subjects in the SCT data set than among subjects in the

MCM data set. Therefore, even though we observed a

significant effect from PC 1 in the merged Hispanic data

set (p < 2 3 10�16 from a regression of T2D on PC 1), we

cannot conclude that this was driven by differences in

genetic ancestry between case and control individuals.

In this study, we evaluated T2D variance explained by

eQTLs mapped in IRPTs. This approach differs from a

genetic-correlation analysis of T2D and gene expression

in that the former tests functional classes of inherited var-

iants and the latter constitutes a gene-based study. Our

study provides insight into the overall genetic architecture

of T2D susceptibility and prioritizes tissues for expression-

based analyses. Therefore, these study designs are comple-

mentary approaches that yield distinct information.

A straightforward interpretation of these results suggests

that eQTLs regulating gene expression in skeletal muscle

and adipose tissues are important drivers of T2D heritabil-

ity. Indeed, skeletal muscle is an important IRPT that plays

a predominant role in the postprandial insulin response.57

Moreover, increased secretion of free fatty acids from adi-

pocytes can promote T2D pathogenesis by promoting

hepatic gluconeogenesis, insulin resistance in peripheral

tissues, and impaired insulin secretion from pancreatic

b-cells.58–60 However, it is possible that many of the eQTLs

considered tissue specific in this studymight also influence

gene expression in other key metabolic tissues, such as the

liver or pancreatic islet. Similarly, some of the heritability

attributed to trans-eQTLs might be secondary to cis-regula-

tory effects in tissues that could not be included in this

analysis. Therefore, the eQTL contribution to T2D herita-

bility observed in this study could be attributable to bio-

logic effects in tissues not evaluated here. In order to better

resolve variation driving disease susceptibility within and

across populations, it will be important to extend studies

of T2D heritability and include regulatory variantsmapped

in a more comprehensive collection of tissues.61

Partitioning heritability by eQTL classes also provides an

avenue for identifying genes and pathways that are rele-

vant to disease susceptibility and that might complement

current practices for implicating disease-associated genes

from associated loci. As previously reported, the majority
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of trait-associated variants for T2D and other complex dis-

eases are located in noncoding regions, such as intergenic

sites.17,18 This complicates interpretability, and investiga-

tors often report the gene most proximal to the associated

variant as the putative disease-associated gene. However, it

is possible that trait-associated variants occupy enhancer

elements that modulate the expression of genes distal to

the associated loci. For example, noncoding variants

within introns of FTO (MIM 610966) strongly associate

with obesity (MIM 601665) and have replicated across

multiple studies.62 However, recent molecular studies

have provided evidence that the obesity-associated in-

tronic sequences within FTO function as long-range en-

hancers of the homeobox gene IRX3 (MIM 612985) and

increase IRX3, but not FTO, expression in the human

brain.63 Moreover, the dramatic weight reduction observed

in Irx3-deficient mice corroborates a direct relationship

between IRX3 expression and body-fat composition.63

Incorporating eQTL information into studies of heritabili-

ty not only can provide insight into the relative contri-

bution of tissue-specific regulatory variation to disease

susceptibility but also might help implicate genes while

eschewing assumptions based on proximity.
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