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Abstract

Purpose—Fatty liver alters liver transporter expression. Caloric restriction (CR), the 

recommended therapy to reverse fatty liver, increases Sirtuin1 deacetylase activity in liver. This 

study evaluated whether CR and CR mimetics reversed obesity-induced transporter expression in 

liver and hepatocytes.

Methods—mRNA and protein expression was determined in adult lean (lean) and leptin-

deficient obese (OB) mice fed ad libitum or placed on 40% (kCal) reduced diet. Hepatocytes were 

isolated from lean and OB mice, treated with AMP Kinase activators, and gene expression was 

determined.

Results—CR decreased Oatp1a1, Oatp1b2, and Abcb11 mRNA expression in lean, but not OB 

mice. CR increased Abcc2 mRNA OB livers, whereas protein expression increased in both 

genotypes. CR increased Abcc3 protein expression increased in OB livers. CR did not alter Abcc1, 

4 and 5 mRNA expression in lean mice but decreased expression in livers of OB mice. CR 

increased Abcc4 protein in lean, but not OB mice.

Conclusions—CR restriction reversed the expression of some, but not all transporters in livers 

of OB mice. Overall, these data indicate a potential for CR to restore some hepatic transporter 

changes in OB mice, but suggest a functional leptin axis is needed for reversal of expression for 

some transporters.
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INTRODUCTION

Non-Alcoholic Fatty Liver Disease (NAFLD), or steatosis, is defined as lipid accumulation 

exceeding 5% by weight in hepatocytes in the absence of substantial alcohol intake, often 

with increased hepatic triglyceride accumulation (1). Metabolic syndrome (MetS), which is 

a cluster of risk factors for coronary heart disease (e.g. obesity, inflammation, dyslipidemia, 

and type-2 diabetes), is considered to be the underlying cause of NAFLD (2). It is estimated 

that more than 86% of US adults will be overweight or obese, and more than 50% obese by 

the year 2030 (3). In the United States, prevalence of NAFLD alone, or in combination with 

increased liver enzymes in serum, was 3.1% and 16.4% among adults, respectively (4). With 

no intervention, NAFLD can progress to Non-alcoholic steatohepatitis (NASH) and 

cirrhosis.

Epidemiological and clinical studies demonstrate changed pharmacokinetic and –dynamic 

parameters of some drugs in obese subjects (5). NAFLD and NASH are associated with 

altered pharmacokinetics of some drugs (e.g. ezetimibe, acetaminophen), as well as, altered 

endogenous metabolite levels, such as cholesterol and bilirubin (6,7). Acetaminophen-

glucuronide concentration in plasma and urine was higher in children with NAFLD (6), 

similar to what has been reported in db/db mice that exhibit hepatic steatosis (8). This likely 

occurs because Phase-I, -II biotransformation enzyme, and drug transporter expression is 

altered compared to non-steatotic livers (9,10).

Dietary changes, such as caloric restriction (CR) and exercise, are the recommended 

therapeutic intervention to treat NAFLD and reverse hepatic fat accumulation (11). For 

example, a regimen of diet and exercise decreased hepatic steatosis and serum lipids in 

overweight subjects with NAFLD (12). Also, vigorous physical activity was associated with 

decreased adjusted odds of having NASH in adults with NAFLD (13).

Beneficial effects of CR are attributed to activation of Sirtuin 1 (Sirt1), a deacetylase that 

activates gluconeogenic and fatty acid oxidation gene expression via deacetylation and 

upregulation of the transcriptional co-activator, Peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (Pgc-1α) (14). The AMP Kinase (AMPK) secondary messenger 

pathway is an upstream activator of the Sirt-Pgc1-α cascade during CR. AMPK activates 

Sirt1 deacetylase in response to changes in redox status (NAD+/NADH ratio, AMP/ATP 

ratio) of the cell (15). Steatotic livers exhibit decreased AMPK pathway activity in rodents 

and increased activity can reverse fatty liver (16). CR alters activity and expression of 

various biotransformation enzymes, such as Sult2a1, Cyp2b10, Ugt1a1, Cyp4a14 in liver 

(17–19). However, to our knowledge, no studies have shown how CR actually affects drug 

transporter expression in livers of obese mice, which have hepatic steatosis and could better 

mimic the population most likely to undergo intervention.

In the present study we hypothesized that CR would reverse the transcription factor (TF) and 

drug transporter expression changes previously observed in obesity-induced hepatic steatosis 

(10,20). Constitutive androstane receptor (Car), Farnesoid x receptor (Fxr), Pregnane x 

receptor (Pxr), and Nuclear factor E2-related factor 2 (Nrf2) are transcription factors 

previously described to regulate transporter expression in liver (21). Given the well-
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described association of Nrf2 with Abcc transporter induction (22,23), emphasis was placed 

on the Nrf2 pathway in the present study, but Car, Fxr, and Pxr were also evaluated. Our 

data herein illustrate that CR differentially regulates TF, bio-transformation enzyme, and 

transporter expression in livers from lean and Lepob/ob mice. Furthermore, AMPK and Sirt1 

activators differentially modulated transporter and NR expression in lean and steatotic 

hepatocytes.

MATERIALS AND METHODS

Animals and Treatments

Adult male lean and OB mice were chosen for this study because previous work revealed 

that transporter expression was markedly altered in livers of OB mice (20). Adult male 

C57BL/6 (lean, stock no. 000664) and Lepob/ob (OB, B6.V-Lepob/J, stock no. 0000632) 

mice were purchased from Jackson Laboratories (Bar Harbor, ME). C57BL/6 mice used in 

this study as lean controls are the recommended vendor controls (Jackon Laboratories, Bar 

Harbor, ME). Mice were housed in a temperature-, light-, and humidity-controlled 

environment in cages with corn-cob bedding, and fed Harlan Teklad LM-485 Mouse/rat 

sterilizable diet (Harlan Laboratories, Madison, WI) ad libitum. After acclimation for 2 

weeks, mice were transferred on to a purified diet (AIN93-G) obtained from Test Diet, IN, 

USA and allowed to acclimate for a period of 2 weeks. The average caloric consumption 

was calculated for each mouse over a period of 10 days. At 16 weeks of age, lean (n=7) and 

OB mice (n=7) were fed ad libitum, or lean (n=10) and OB mice (n=10) were fed a 40% 

reduced caloric diet for 10 weeks with access to water ad libitum. Body weight and food 

consumption were monitored at least once per week for the entire study. The study was 

terminated when weights remained similar for several weeks. Blood glucose measurement 

and necropsy was performed in the morning between 10–12 am. The study was carried at 

University of Rhode Island and IACUC approved.

Primary Mouse Hepatocyte Isolation

Primary mouse hepatocytes were obtained from livers of adult C57BL/6 and OB mice using 

a two-step collagenase perfusion; 1×106 cells/well in 2 mL completed medium (MEM 

supplied with 10% FBS) were seeded on collagen-coated 6-well plates. After cell attachment 

(~4 h), they were cultured in serum-free MEM containing 1% ITS supplement (Invitrogen, 

CA). Approximately 24 h post-plating, hepatocytes were treated with control (media or 

0.01% DMSO), AICAR (0.5 mM), NAD+(5 mM) or Metformin (1 mM) for 6 h. Total RNA 

was isolated from TRIzol reagent (Invitrogen, CA) according to the manufacturer’s 

instructions.

RNA Isolation and mRNA Quantification

Total RNA was isolated from liver by phenol-chloroform extraction with RNAzol B reagent 

(Tel-Test Inc., Friends-wood, TX) according to the manufacturer’s instructions. RNA 

concentration was determined by measuring UV absorbance at 260 nm using NanoDrop™ 

and integrity was confirmed by formaldehyde gel electrophoresis. The total RNA samples 

were stored at −80°C until further use for analysis. The total RNA samples were analyzed 

for mRNA quantification using Branched DNA signal amplification assay (Quantigene 1.0 
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assay), obtained from Panomics Inc., CA, USA. RNA obtained from hepatocyte treatment 

was quantified using RT2-PCR methods as described in (10).

Tissue Homogenate, Membrane, and Cytosol Preparation

Liver membrane and cytosol fractions were obtained as previously described for assessing 

transporter expression (20,24). Briefly, tissues were homogenized 150 mM sucrose in 10 

mM Tris–HCl (ST) buffer (1:9 ratio), pH 7.5, using a Potter Elvehjem motorized 

homogenizer. Homogenates were centrifuged at 100,000×g for 1 h at 4°C. The resulting 

supernatant (cytosolic fraction) was saved and pellets were re-suspended in ST buffer.

Western Blotting

Fifty microgram protein lysates were solubilized in Laemmli buffer containing β-

mercaptoethanol and electrophoretically separated by SDS-PAGE (8% for Abccs and 10% 

for Oatps, 12% for cytosolic, nuclear and homogenate samples) at 200 V for 50 min and 

transferred onto a polyvinylidene difluoride membrane at 100 V for 30–45 min or at 75 V 

for 1.5 h. The membrane was blocked overnight with 5% Non-fat dry milk (NFDM) in 

phosphate-buffered saline with 0.05% Tween 20 (PBS/T) or 50 mM Tris, 150 mM NaCl, 

0.05% Tween 20 (TBS/T). After blocking, the membrane was incubated with primary 

antibodies diluted in 5% NFDM in PBS/T or TBS/T for 2 h and subsequently with 

corresponding horseradish peroxidase labeled secondary antibodies also diluted in 5% 

NFDM in PBS/T as previously described in (8, 10). The blots were incubated in Pierce 

ECL-Plus western blot detection reagent (Thermo Fisher Scientific, Rockford, IL, USA) and 

exposed to X-ray film, developed, and visualized. The resulting autoradiography films were 

quantified using ImageQuant software (Bio-Rad, Hercules, CA). Oatp1a4 and 2b1 western 

blots were attempted, but not successful. Details of the antibodies used are as previously 

published (25).

Transcription Factor Binding Assay

Nuclear extracts were isolated from livers using a TF Procarta nuclear extraction kit 

(Panomics Inc, CA, USA) and protein concentrations were measured with BCA protein 

assay (Pierce, Rockford, IL, USA). The resulting fractions were checked for enrichment of 

nuclear proteins by western blot with Lamin B1 antibody. Nrf2, AhR, Pxr, Fxr, binding to 

described consensus sequences was quantified using a Procarta TF custom array 

(Affymetrix, CA) using 10 µg nuclear extract protein per sample according to 

manufacturer’s instructions and published work (10). Samples were analyzed using a 

Luminex Bio-Plex 200 array reader with Luminex 100 xMAP technology, and data were 

acquired using Bio-Plex Manager software (version 5.0). Data was acquired by a Luminex 

Bio-plex™ 200 Array reader with Luminex 100 X-MAP technology, and data were acquired 

using Bio-Plex Data Manager Software Version 5.0 (Bio-Rad, Hercules, CA).

Heatmap and Cluster Analysis—mRNA expression of genes quantified in vivo and in 

vitro were plotted on a heatmap using the R software environment (R Foundation for 

Statistical Computing, Vienna, Austria). The genes in lean and OB CR groups were 

normalized to their respective ad libitum controls and the fold changes relative to control 
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were used for heat map generation. The spectrum of fold changes spans from −14 to +14 

fold in reference to control.

Statistics—The statistical significance of differences was determined by a two-way 

ANOVA followed by a Duncan’s Multiple Range post-hoc test. Groups without a common 

letter are considered significantly different from each other (p≤0.05).

RESULTS

CR Decreases Body Weight and Hepatic Lipid Content in Lean and OB Mice

After 10 weeks of CR, average body weight decreased by 30% and 12% in lean and OB 

mice, respectively (Fig. 1a). CR decreased the average liver and liver-to-body weight ratio 

in both genotypes, with a greater liver weight decrease in lean mice (Table I). CR also 

decreased serum glucose (50% in leans), TG (50% in lean and 11% in OB), and increased 

Non-esterified fatty acid (NEFA) levels (60% in lean and ~100% in OB over the AL fed 

controls). Additionally, CR decreased micro and macrovesicular vacuolation in both lean 

and OB mice, but more so in lean mice. Similarly, glucagon expression was increased in OB 

mice undergoing CR (Table II). CR decreased serum insulin levels in both lean and OB 

mice (by 80% and 40%, respectively) and decreased leptin. Overall, OB mice were 

relatively more resistant to CR than lean mice with regard to weight loss and reversal of 

steatosis, which is consistent with a previous observation (26).

CR Decreases Lipogenic Gene and Increases Gluconeogenic Gene Expression

CR induces glucagon secretion to increase mitochondrial biogenesis and up regulate glucose 

production. This well characterized response results in the induction of genes needed to 

increase gluconeogenesis (27). Therefore, genes known to be regulated by CR were 

measured to further confirm response to the food restriction. mRNA expression of the 

lipogenic master regulator, Srebp-1c, was decreased in lean mouse livers but remained 

unchanged in OB mouse liver after CR (Fig. 1c). CR increased expression of gluconeogenic 

genes Pgc-1α and Pepck in lean mouse livers (2 and 3.5 fold, respectively), however this 

increase was decreased in OB mouse livers (Fig. 1c), which has been previously described 

(14). CR did not increase Ppar-α mRNA expression in leans, but did in OB mice.

CR Alters mRNA Expression of Various Drug Biotransformation Enzymes, Transporters 
and Transcription Regulators in Livers of Lean and OB Mice

The effect of CR on mRNA expression of various Phase I drug biotransformation enzymes, 

Phase II conjugation enzymes, antioxidant enzymes, drug transporters, and transcriptional 

regulators in livers from lean and OB was determined and heat maps were generated using 

R-software. As seen in Fig. 2 and Table III CR affected the gene expression differently in 

lean and OB livers. Overall, there was little relative change in lean mice after CR, whereas 

multiple genes examined had decreased expression in livers of OB mice after CR.

Kulkarni et al. Page 5

Pharm Res. Author manuscript; available in PMC 2014 November 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Effect of CR on Phase I Biotransformation Enzyme Expression in Livers of Lean and OB 
Mice

Phase I biotransformation enzymes are typical downstream target genes for NRs (28,29) and 

are often measured as indirect markers of NR activation/repression. Therefore, several Cyps 

described to be regulated via NR activation were measured in lean and OB mice fed AL or 

after CR. Consistent with previous observations (20), Cyp2b10, Cyp3a11 and Cyp4a14 

basal expression was higher in OB mice compared to lean mice (Fig. 3a). In contrast, 

Cyp7a1 and Cyp7b1 basal expression was lower in OB mouse livers as compared to lean 

mice (Fig. 3a). CR increased expression of Cyp2b10 and Cyp4a14 mRNA expression in 

lean, but not in OB mouse livers. Cyp3a11 mRNA expression was similar between AL and 

CR mice. In contrast, CR significantly decreased expression of Cyp7b1 in both lean and OB 

mouse livers (Fig. 3a). CR did not affect Cyp7a1 mRNA expression in lean mice, but 

increased Cyp7a1 mRNA expression in livers from OB mice (Fig. 3a).

Effect of CR on Antioxidant and Phase II Biotransformation Enzyme Expression in Livers 
of Lean and OB Mice

Nuclear factor-E2-related factor 2 (Nrf2) is a transcription factor, which upregulates 

antioxidant enzymes (e.g. Super-oxide dismutase, Sod-1; Glutamate cysteine ligase catalytic 

subunit, Gclc), biotransformation enzymes (e.g. Glutathi-one S-transferase a1, Gsta1; Heme 

oxygenase 1, Ho-1; Nad(p)h:oxidoreductase 1, Nqo1) and ATP Binding Cassette 

transporters (Multidrug resistance-associated proteins) (30). Multiple studies have shown an 

association between Nrf2 activation and ATP Binding Cassette (Abcc) transporter induction 

(22) . Moreover, Nrf2 binding and target genes are increased in steatotic livers (10,20,31). 

Nrf2 and Nrf2 target gene expression is increased in livers of OB mice (10,31). Compared to 

lean, OB mouse livers had increased Gclc, Gsta1, Nqo1, and Ho-1 mRNA expression (Fig. 

3b). CR significantly increased Gsta-1, Nqo1, and Sod1 in livers of lean mice. In livers of 

OB mice, CR decreased Gsta-1 expression, but not Nqo1 and Sod1 expression (Fig. 3b). 

Ho-1 expression was similar in livers of lean mice fed AL or placed on CR, whereas CR 

decreased Ho-1 by about 50% in livers of OB mice. Consistent with the data in Fig. 3b, CR 

decreased hepatic glutathione (GSH) by 60% in lean and 30% in OB mice (Fig. 3c).

Effect of CR on Oatp Expression in Livers of Lean and OB Mice

Consistent with previous observations (20) Oatp1a1 and 1b2 mRNA expression was lower 

in livers of OB than lean mice and Oatp1a4 expression was similar between the two 

genotypes (Fig. 4a). CR decreased Oatp1a1 and 1b2 mRNA, but not 1a4 mRNA expression 

in livers of lean mice (Fig. 4a) (19). Oatp1a1 and 1b2 expression remained low in livers OB 

mice even after CR, perhaps indicating importance for leptin-associated regulation. Lastly, 

Oatp1a1 protein expression was relatively undetectable in livers from OB mice, consistent 

with Cheng et al., 2008. Oatp1a1 protein expression was undetectable in livers from lean 

and OB mice after CR (Fig. 4b).

Effect of CR on Abc Transporter Expression in Livers of Lean and OB Mice

OB mice fed ad libitum had higher liver expression of several Abc transporters (e.g. Abcb4, 

Abcc1, Abcc3–5) and lower expression of others (e.g. Abcb11, Abcc2) (Fig. 5a) compared 
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to AL fed lean mice. Abcc4 protein expression increased, whereas Abcc2 and 3, Abcg2 

protein expression was decreased in livers of OB AL fed mice compared to lean AL fed 

mice (Fig. 5b).

Figure 5a and b depict CR effects on Abc mRNA and protein expression in liver. CR 

induced Abcb4 in livers of lean mice, but not OB mice. CR decreased Abcb11 mRNA 

expression in lean, but not OB mice. CR did not change Abcc1 expression in leans, but 

decreased it in OB mice. Abcc2 mRNA and did not change after CR in lean mice, but 

increased in OB mice (Fig. 5a & b). CR decreased Abcc3 mRNA expression in lean and OB 

mice while protein expression increased in Lean CR livers, but this was not observed at the 

protein level (Fig. 5a & b). CR did not affect Abcc4 mRNA expression in lean or OB mice, 

but did increased protein expression in livers of lean mice. Abcc5 mRNA expression was 

similar between fed and CR lean mice, but decreased in OB mice after CR. Abcc6 

expression was similar between all groups. CR decreased Abcg2 mRNA expression in lean 

and OB mice, an also Abcg2 protein expression in lean mice (Fig. 5b).

Transcription Factor Binding Activity in Lean and OB Mouse Livers After CR

Transcription factor binding to prototypical consensus sequences was also determined in 

nuclear fractions isolated from liver (Fig. 6a). Creb, and Pxr binding was increased in liver 

nuclear fractions from OB mice compared to lean mice, with a trend for increased Ahr 

binding (p<0.07). In lean mice, CR decreased Ahr, Fxr, and Nrf2 binding, but did not affect 

Creb or Pxr binding. In OB mice, CR decreased Ahr, Creb, and Nrf2 binding.

To determine whether prototypical targets of these transcription factors were affected 

similarly by CR, a heat map was created to better visualize differences how CR affects 

transcriptional pathways in lean and OB mice (Fig. 6b). For the most part, prototypical Ahr, 

Car, Fxr, Pxr, and Nrf2 target genes were regulated similarly in lean livers. However, in the 

OB livers, the CR effect was not consistent among the transcriptional pathways. For 

example, CR induced some Car target gene expression, but not others. In contrast, CR 

predominantly decreased the expression of most Nrf2 target genes.

Effect of AMPK and Sirt1 Activators on Abcc and NR Induction in Hepatocytes Obtained 
From Lean and OB Mice

The AMPK pathway is an important CR signal transduction pathway upstream of 

transcription factor activation. Hence, primary mouse hepatocytes were isolated from 11-

week old lean and OB mice and treated with pharmacological AMPK (AICAR, Metformin) 

and Sirt1 (NAD+) activators (Fig. 7). Heat maps illustrate the effect of AICAR, NAD+, and 

Metformin on transcription factor, Abcc, and Nrf2 target gene expression. Overall, the 

treatments downregulated expression of many genes in hepatocytes from lean mice, but less 

so in hepatocytes from OB mice. Abcc2 and 3 mRNA expression was increased about 3 fold 

in hepatocytes isolated from OB mice compared to lean mice (Fig. 7a and Supplementary 

Fig. 1), which is similar to mRNA expression observed in intact livers from lean and OB 

mice of the same age (20). Treatment with AMPK activators (AICAR, NAD+) significantly 

increased mRNA expression of Abcc2 and Abcc3 in lean mouse hepatocytes (Fig. 7a and 

Supplementary Fig. 1). As opposed to lean hepatocytes, AICAR and NAD+ treatment 
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decreased Abcc2 and 3 mRNA expression in steatotic hepatocytes, thus reversing their 

expression back to normal levels (Supplementary Fig. 1). The effect of AICAR, Metformin, 

and NAD+ treatment on NR expression was also evaluated (Fig. 7b). Car mRNA expression 

was increased about 50% above control in hepatocytes isolated from OB mice compared to 

lean mice (Fig. 7a), which is similar to what was observed in intact livers from lean and OB 

mice of the same age (10). Fxr, Nrf2, and Pxr expression was equivocal between lean and 

OB mice, which is different from what was observed in intact livers from lean and OB mice 

of the same age (10). AICAR, Metformin, NAD+ treatment increased CAR, decreased Nrf2, 

and did not change Fxr expression in lean hepatocytes. In lean hepatocytes, Pxr expression 

slightly decreased with Metformin treatment, and did not change with AICAR or NAD+ 

treatment. In OB hepatocytes, Car expression was not affected by AICAR or NAD+ 

treatment, but slightly decreased by Metformin treatment. AICAR decreased Fxr, but 

Metformin and NAD+ did not in OB hepatocytes. AICAR, Metformin, and NAD+ treatment 

decreased Nrf2 mRNA expression in OB hepatocytes. In OB hepatocytes, Pxr expression 

was decreased by NAD+ treatment, but not AICAR or Metformin treatment.

DISCUSSION

The study herein demonstrates that CR affects the expression of some drug transporters in 

conjunction with alterations in NR binding and NR-target gene expression. As CR is known 

to activate AMPK and Sirt1 activity, the work herein demonstrates that CR mimetics, such 

as AICAR, Metformin, and NAD+ can modulate transporter and NR expression in 

hepatocytes from lean and OB mice. Treatment with AICAR, Metformin, and NAD+ 

indicated that AMPK and Sirt1 are potential upstream regulators of NR and Abcc transporter 

expression in hepatocytes. Lastly, our work illustrates that CR produced different gene 

expression patterns in the lean or obese condition in vivo, and that leptin-associated 

regulation for some transporters (e.g. Oatp1a1) was present, but not for others (e.g. Abcc2)

In lean mice, CR increased Cyp2b10 and Cyp4a14 mRNA expression, which is similar to 

previously published observations (19,32). Consistent with induction of Cyp2b10, Car 

mRNA expression was increased in lean mice, and induced in hepatocytes from lean mice 

treated with AICAR and NAD+, consistent with a previous report (33). Cyp7a1 mRNA 

expression was unchanged in livers from lean mice after CR, which corresponded to 

minimal or no changes observed in Fxr mRNA expression of hepatocytes treated with 

AICAR, NAD+, or Metformin. In lean mice, mRNA expression of Phase-II and antioxidant 

enzymes, such as Gsta-1, Nqo1, and Sod1 increased after CR, whereas Gclc expression 

decreased and Ho-1 mRNA expression remained unchanged. Induction of Nqo1 and 

(Gsta-1) in livers of lean mice is consistent with a previous report (34). CR decreased 

mRNA expression of Oatp1a1, Oapt1a4 and Oatp1b2 in lean mice, with protein expression 

following a similar trend in general. These observations, in part, agree with previously 

published data by (19). mRNA expression of efflux transporters of the ABC family did not 

follow a consistent pattern. For example, in lean mice, Abcb4 and Abcc4 mRNA expression 

increased after CR, whereas Abcb11 and Abcg2 expression decreased and Abcc1, 5 and 6 

expression remained unchanged. On the other hand, Abcc2 and 4 protein expression in livers 

from lean calorically restricted mice increased. Abcg2 protein expression was similar to the 

observed mRNA expression, being decreased in expression after CR.
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The effect of CR on transporter expression in liver differed in OB mice compared to leans. 

In livers of OB mice, CR did not cause marked changes in mRNA expression of Phase-I 

enzymes or some transporters as compared to AL livers. For example, Cyp2b10, Cyp3a11, 

Cyp4a14, Oatp1a1, Oatp1a4 and Oatp1b2, Abcb4, Abcb11, Abcc4 and Abcc6 mRNA 

expression remained unchanged in livers of OB mice after CR. In addition, CR decreased 

the expression of multiple Nrf2 regulated genes, such as Gsta-1, Gclc, Ho-1, Abcc1, 3, and 5 

in livers of OB mice.

The Nrf2-ARE pathway is an upstream regulator of various Phase-II biotransformation 

enzymes, as well as, Abc transporters along with a battery of genes responsive to oxidative 

stress. It has been previously reported that CR restriction induces Nqo1 expression via an 

Nrf2 dependent mechanism (34). The present study had similar observations in lean mice 

that underwent CR, which were consistent with the latter study – induction of Nqo1 in liver. 

However, the present observations point to decreased Nrf2 target gene expression and Nrf2 

binding in livers of OB mice after CR. First, Ob/ob mice exhibit increased Nrf2 gene 

expression and markers of oxidative stress, which can be decreased by treatment with 

antioxidant compounds (20,35). CR decreases markers of lipid oxidation in obese mice (36) 

Therefore, a likely reason in our study is that CR decreased fat content and inflammation-

induced oxidative stress, which in turn, decreased Nrf2 activation. Second, AMPK and Sirt1 

can potentially modulate Nrf2 binding activity. For example, Sirt1 has been described to 

decrease Nrf2 binding and anti-oxidant response element activation (37), whereas P300 

activators increase Nrf2 target gene activation (38). This could be through acetylation sites 

present on the Nrf2 protein (38). So, perhaps, CR induced Sirtuin activity, which resulted in 

decreased Nrf2 acetylation along with Nrf2 binding to various antioxidant response 

elements. The effect of CR on Abcc3, Abcg2, Gclc was similar between OB and lean mouse 

livers, despite lack of Pgc-1α induction in OB mice. Third, decreased recruitment of Pgc-1α 

to the Nrf2 transcriptional complex could result in decreased Nrf2 binding. Additionally, 

recruitment of different cofactors within the transcriptional complex of Nrf2 at the 

promoters of target transporters such as GCN5 (39), p300/cbp (38) in the OB livers, could 

affect activation of Pgc-1α and thus the target gene transcription. Last, as significant cross-

talk between the AhR and Nrf2 transcriptional pathways has been decribed (40), it should be 

considered whether decreased AhR binding could result in decreased Nrf2 target gene 

expression or vice versa. As increased AhR activity has been implicated in steatosis (41), 

thus the effect of CR mimetics on AhR activity should be considered.

Activation of metabolic pathways during CR is mediated physiologically by hormones, such 

as glucagon, insulin, and leptin. CR is known to increase serum glucagon, decrease insulin, 

as well as, reverse increased leptin levels present in obesity (42). These conditions of low 

glucose, increased pyruvate, NAD+/NADH ratio, and glucagon levels during CR lead to 

activation of Sirt1/Pgc-1α cascade which in turn activates the expression of fatty acid 

oxidation regulators such as Pparα along with gluconeogenic genes such as Pepck (43,44). 

The AMPK pathway is regarded as one of the major secondary pathways delegating 

intracellular signals of CR, inhibiting gluconeogenic pathway activity and increasing fatty 

acid oxidation, as well, as glucose uptake into cells. Sirt1/Pgc-1α cascade and AMPK 

pathway can regulate activation of one another by phosphorylation and acetylation 
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dependent mechanisms as shown by (45–47). Pparα and γ regulate pathways responsible for 

fatty acid oxidation and synthesis respectively (48,49). PPARα is activated in models of CR 

via activation by Pgc-1 α via Protein Kinase A and AMPK secondary messenger pathways 

(43). In the study herein, CR likely activated Pparα, as observed by increased mRNA 

expression of Pparα target gene Cyp4a14 in lean mouse liver along with an important 

coactivator Pgc-1α (18,32). With leptin signaling being non-functional in OB mice, the 

signal transduction is hampered and hence Cyp4a14 and Pgc-1α (Figs. 1c and 3a) were 

induced in OB livers, as previously described (50). Consistent with these observations, CR 

increased Abcc4 protein expression in livers of wild type mice, which could suggest Pparα 

as an upstream regulator of Abcc4 expression during CR. Previous studies have described 

Pparα mediated induction of Abcc4 protein expression in mouse liver (51). As endogenous 

metabolites, such as cAMP and cGMP, are substrates Abcc4 (52), the increased Abcc4 

protein expression could be in response to increased liver concentrations of these substrates 

during CR (53). In OB mice, CR does not increase Cyp4a14 levels, which is likely due to 

lack of a functional leptin axis. The leptin axis is needed for proper liver responses to 

nutrient deprivation, as previously described (50). Lack of Abcc4 induction in OB mice after 

CR is consistent with lack of Cyp4a14 and Pgc1a induction, suggesting that a functional 

leptin axis is needed for Abcc4 induction. Biotransformation enzymes and transporters are 

regulated by various nuclear receptors and transcription factors such as Ahr, Car, Fxr, Pxr, 

and (29). Apart from metabolic pathways, activation of Pgc-1α during CR is likely a critical 

factor in also regulating expression biotransformation enzymes. Pgc-1α is a known co-

activator of Car, Fxr, Hnf4α, Pxr pathways (32). In lean mice, CR induced mRNA 

expression of Car, Cyp2b10. Car is known to activate Abcc2 by certain xenobiotic 

compounds (21). As observed in Fig. 5a, Abcc2 expression follows a pattern similar to Car 

and Cyp2b10 (Fig. 3).

The heatmap analyses illustrate that the CR elicits a different gene expression pattern in 

livers of lean and OB mice. As leptin deficient OB mice, were used to model obesity and 

steatosis, the differential expression could be due to the influence of leptin on the overall 

regulation of NR activity, expression, and regulation of the downstream targets. The data 

suggest an importance of the leptin axis in regulating downstream effects of CR on 

expression of transcription factors and drug processing genes. Serum levels of leptin are 

known to correlate with the severity of steatosis (54,55). Hepatic and central leptin 

resistance is known to cause insulin resistance and obesity (56). CR and exercise being 

AASLD recommended regimen to reverse NAFLD, the observations with leptin deficient 

models demonstrates a potential difference in the steatotic human population response to 

drug biotransformation enzyme and transporter changes after CR. Liver fat content 

markedly decreased in the steatotic liver after CR, but the biotransformational pathways are 

not completely reversed in these models, suggesting that a functional leptin axis is needed 

for reversal to occur. This could potentially explain why differences in effects on gene 

expression were observed between in vivo experiments compared to hepatocytes treated with 

AMPK activators.

Mimicking CR in vitro is deemed difficult to mimic due to the complex nature of signaling 

pathways involved in the effect. Studies have demonstrated that sera obtained from animals 
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undergoing CR, mimic CR induced resistance to oxidative stress in hepatocytes (57). AMPK 

activators have been used to mimic AMPK activation and AMPK dependent Sirt1 activation 

during CR and their convergent beneficial downstream effects (44). Differences in NR and 

transporter expression were not entirely consistent between CR data from the in vivo study 

and in hepatocytes treated with caloric restriction mimetic compounds. When comparing 

both sets of experiments, CR induced Cyp2B10 and Car in livers of lean mice with virtually 

no expression change observed in livers of OB mice, which was consistent with increased 

Car expression in the hepatocytes treated with AMPK activators. However, in general, CR 

did not markedly affect the expression of many biotransformation, antioxidant enzyme or 

transporter genes in lean mice (e.g. expression change was less than 1 fold), whereas 

treatment of hepatocytes with AMPK or Sirt1 activators resulted in some decreased 

expression of Fxr, Nrf2 and Pxr expression. A potential reason for this observation could be 

the presence of high levels of glucose in the media diminishing the responsiveness of the 

hepatocytes to AMPK activation. In vivo, multiple hormone and signaling pathways elicited 

by CR converge to have an effect, and many have to be considered, whereas in vitro, 

additional of a single chemical activator may better reflect a potential regulation by AMPK 

or Sirt1. Overall, it is appreciated that modeling the CR effect in hepatocytes from lean and 

obese mice is complex.

Figure 8 depicts the observed changes in binding, gene expression and the potential 

mechanism by which the regulation might be occur in livers of lean and obese mice after CR 

in vivo. First, CR is known to increase AMP/ATP ratios, resulting in increased AMPK 

activity. In lean mice, CR decreased Ahr, Fxr and Nrf2 binding activity to known consensus 

sequences, with no observed change in Pxr binding activity, and increased Car pathway 

activity. It has been previously reported that although altered, the AMPK-Sirt1 pathway is 

functional in OB mice and can be targeted for therapeutic interventions (58,59). However, 

CR induces Pgc-1α expression in livers of lean mice, but not in OB mice. Fasting mediated 

Pgc-1α induction has been described to be dependent upon the leptin receptor (60). In OB 

mice, decreased Nrf2 and Ahr activity with no marked change in Car, Pxr, or Fxr activity. 

CR decreased Nrf2 binding activity in livers OB mice, which was associated with decreased 

Ho-1, Gclc, Abcb11, Abcc1, Abcc3, Abcg2.

Understanding how these results translate to differential human exposure to medications or 

chemicals through occupation or environmental is challenging because few studies address 

weight loss and chemical clearance. There are limited studies, some of which evaluate 

nutritional status and hepatic clearance, but some exist that use dyes to measure hepatic 

clearance. For example, indocyanine green (ICG) is a dye and organic anion used to 

evaluate hepatic clearance, and most likely a substrate for OATPs (61) and ABCC2 because 

it undergoes biliary excretion via Mrp2-mediated transport (62,63). ICG hepatic clearance 

was decreased in swine that were fasted to have weight loss for 20% of their body weight 

(64). Our results also indicated that CR increased MRP2 expression, which is also consistent 

with observations that ICG clearance is increased humans and rats after fasting (65).

All the above observations indicate that activation of CR pathways can only partly reverse 

the changes in drug bio-transformation enzyme and transporter expression that occurs with 
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obesity induced by leptin deficiency. Overall, leptin, AMPK, and Sirt1 can modulate 

biotransformation enzyme and transporter expression.
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Fig. 1. 
Effect of 40% kCAL reduced calorie diet in lean and obese mice. (a) Decreased body weight 

and percent body weight in C57BL/6 (lean) and OB mice after CR. During 10 weeks of 40% 

reduced caloric diet (CR), body weights of ad libitum (AL) fed and CR mice were 

determined weekly. The percent body weight changes were calculated with the body weight 

at initial time point considered as 100% and each mouse being its own control. (b) 
Morphological changes in livers of lean and OB mice after CR. Livers sections were stained 

with hematoxylin and eosin. (c) Induction of Pgc-1α, Pepck, Pparα, Car and downregulation 

of Srebp-1 mRNA expression in mouse liver after 10 weeks CR. Total RNA was quantified 

by the Branched DNA signal amplification assay and expressed as relative light units 

(RLU). The data is represented as average ± SEM (n =7 for AL and n =10 for CR). Groups 

without a common letter are considered significantly different from each other (p ≤0.05).
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Fig. 2. 
Heatmap analysis of biotransformation enzyme and transporter expression patterns in lean 

and obese mouse livers after CR. Total RNA was isolated from lean and OB mouse livers 

after CR and Phase I, Phase II biotransformation enzyme, and transporter expression was 

determined using the the Branched DNA signal amplification assay. Heat maps represent the 

spectrum of fold change compared to ad libitum fed mice, spanning from −14 to +14 fold.
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Fig. 3. 
Effect of CR on expression of Phase-I and-II biotransformation enzymes and antioxidant 

genes in lean and obese mouse livers. mRNA expression was quantified by the Branched 

DNA signal amplification assay. (a) Expression of Phase-I biotransformation enzymes in 

lean and OB mouse livers after CR. (b) Changes in expression of Phase-II biotransformation 

antioxidant enzymes in lean and OB mouse livers after CR. The data is represented as 

average ± SEM (n =7 for AL and n =10 for CR). Means with the same letter are not 

significantly different from each other (P <0.05). (c) Effect of CR on hepatic glutathione 
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(GSH) levels in lean and OB mice. The data is represented as average ± SEM moles 

GSH/mg tissue (n =7 for AL and n =10 for CR). Groups without a common letter are 

considered significantly different from each other (p ≤0.05).
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Fig. 4. 
Effect of CR on liver uptake transporter expression in lean and obese mice. (a) Relative 

mRNA expression was quantified by the Branched DNA signal amplification assay. The 

data is represented as mean relative light units (RLU)/ 10 µg total RNA ± SEM (n =7 for AL 

and n =10 for CR) and groups without a common letter are considered significantly different 

from each other (p ≤0.05). (b) Membrane proteins were isolated from livers of AL and CR 

lean and OB mice. Protein expression of Oatp1a1 was quantified by western blot. The data 

is representative of three individual protein quantifications.
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Fig. 5. 
Effect of CR on liver efflux transporter mRNA and protein expression in lean and obese 

mice. (a) Abcb4, Abcb11, Abcc1–6, Abcg2 mRNA was quantified by the Branched DNA 

signal amplification assay. The data is represented as mean relative light units (RLU)/10 µg 

total RNA ± SEM (n =7 for AL and n =10 for CR). (b) Relative Abcc2–4 and Abcg2 protein 

expression quantified by western blot. The data is representative of three individual protein 

quantifications. Groups without a common letter are considered significantly different from 

each other (p ≤0.05).
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Fig. 6. 
Effect of CR on transcription factor activity and relative expression patterns of prototypical 

target genes of transcription factors in livers of lean and obese mice. (a) CR changes the 

transcription factor binding activity in livers of lean and obese (OB) mice. Ahr, Creb, Fxr, 

Nrf2 and Pxr binding activity in nuclear fractions was determined using a Procarta TF 

binding assay. The data is represented as average mean fluorescence intensity (MFI)/10 µg 

protein ± SEM (n =7 for AL and n =10 for CR) fold change over the fed controls. Groups 

without a common letter are considered significantly different from each other (p ≤0.05). (b) 
CR differentially affects expression of prototypical target genes of transcription factors in 

lean and OB mouse livers. Heat maps were created for visual pattern analysis using R 

statistical software. Gene expression is represented as fold change of lean and OB CR mice 

over respective AL groups.
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Fig. 7. 
Effect of AMPK pathway activation on transcription factor expression in hepatocytes from 

lean and obese mice. (a) AMPK activators differentially transcription factor expression in 

lean and OB mice. Heat maps represent as fold change of lean and OB CR mice over 

respective AL groups. (b) mRNA quantification of transcription factor expression. Primary 

hepatocytes were obtained from lean and obese (OB) mouse livers and treated with media 

alone, AICAR (0.5 mM), NAD+(5 mM), or Metformin (1 mM) for 6 h. Total RNA was 

isolated 6 h after treatment and Car, Fxr, Nrf2, and Pxr mRNA expression was quantified 
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using quantitative PCR. The data is represented as fold change over the fed controls and 

target gene expression was normalized to 18S rRNA. Groups without a common letter are 

considered significantly different from each other (p ≤0.05).
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Fig. 8. 
CR-mediated biotransformation enzyme and transporter expression differs in liver differs for 

lean and obese mice. The observed effects of caloric restriction (CR) on liver gene 

expression differed between lean and obese (OB) mice. The figure depicts potential 

regulation based on nuclear receptor binding and mRNA expression data from the in vivo 

study. CR is described to activate the AMPK pathway and induce Sirtuin 1 (Sirt1) 

activation. CR induced Pgc-1α mRNA expression in livers of lean mice, consistent with 

previous reports, but did not do so in OB mice. Based on previous reports, Pgc-1 and Sirt1 

are known to regulate some NRs at the level of mRNA expression and binding to responsive 

elements. In general, receptor binding and downstream gene expression differed in the lean 

and OB mice after CR, suggesting that perhaps Sirt1, leptin, and perhaps Pgc-1α, are 

upstream modulators of biotransformation and excretion processes.
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Table III

Summary of Gene Expression Changes in Lean and Obese Mice Following Caloric Restriction

Transcript Lean CR OB CR

Transcription factors and metabolic regulators

    Car 1.15 1.15

    Hnf1alpha −1.12 1.09

    Keap1 1.08 1.00

    Lrh −1.06 −1.31

    Nrf1 1.17 1.83

    Nrf2 −2.22 1.03

    Pepck 3.32 1.85

    Pgc-1 alpha 2.03 −1.18

    Ppar alpha 1.11 1.58

    Shp −1.06 1.03

    Srebp1c −1.83 −1.07

Phase-I biotransformation enzymes

    Cyp1a1 −1.5 1.31

    Cyp2b10 6.97 1.23

    Cyp3a11 1.12 1.00

    Cyp4a14 13.77 1.78

    Cyp7b1 −6.27 −1.75

    Cyp7a1 1.05 1.56

Antioxidant enzymes

    Gclc −1.41 −1.64

    Gsta1 2.09 −1.65

    Ho1 1.03 −1.75

    Nqo1 1.51 −1.01

    Sod1 1.44 1.12

Uptake Transporters

    Oatp1a1 −14.91 1.02

    Oatp1a4 2.26 1.43

    Oatp1b2 −1.46 1.11

Efflux transporters (ABC family)

    Abcb4 1.79 1.08

    Abcb11 −1.54 1.22

    Abcc1 1.28 −2.48

    Abcc2 1.19 1.98

    Abcc3 −1.59 −1.31

    Abcc4 1.29 1.07

    Abcc5 1.11 −1.51

    Abcc6 1.16 −1.08

    Abcg2 −1.45 −1.14
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The following table represents fold changes (increase or decrease) in expression of various drug metabolizing and transporter genes in livers of lean 
and OB mice upon 40% CR. The data is represented as fold change in gene expression over the respective ad libitum fed controls
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