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Abstract

We review some widely studied models and firing dynamics for neuronal systems, both at the 

single cell and network level, and dynamical systems techniques to study them. In particular, we 

focus on two topics in mathematical neuroscience that have attracted the attention of 

mathematicians for decades: single-cell excitability and bursting. We review the mathematical 

framework for three types of excitability and onset of repetitive firing behavior in single-neuron 

models and their relation with Hodgkin’s classification in 1948 of repetitive firing properties. We 

discuss the mathematical dissection of bursting oscillations using fast/slow analysis and 

demonstrate the approach using single-cell and mean-field network models. Finally, we illustrate 

the properties of Type III excitability in which case repetitive firing for constant or slow inputs is 

absent. Rather, firing is in response only to rapid enough changes in the stimulus. Our case study 

involves neuronal computations for sound localization for which neurons in the auditory brain 

stem perform extraordinarily precise coincidence detection with submillisecond temporal 

resolution.

1 Introduction

Fundamental notions of neuronal responsiveness to stimuli rest on the concepts of 

excitability and threshold. In the classical view, a neuron that has a stable resting potential, 

i.e., an equilibrium in phase space, can be perturbed with a brief stimulus. If the stimulus 

amplitude is below a critical value (threshold) the response is weak; the voltage returns more 

or less directly to the resting potential. If it is large enough the neuron will respond with a 

characteristic large-amplitude, transient excursion from rest (the action potential, AP, or 

spike) (Figure 1.1 A). This property is known as excitability. The threshold value will 

depend on whether the stimulus is suddenly turned on or ramped up slowly. The 

superthreshold membrane potential or action potential has a brief regenerative phase with 

duration of a millisecond or so followed by a recovery or relative refractory phase (several 
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milliseconds), during which a second AP can be evoked but only if the stimulus is 

sufficiently above the threshold.

Many types of neurons can fire repetitively for a long-duration stimulus (Figure 1.1 B); i.e., 

the state of such neurons has a limit cycle or stable periodic orbit. Here, again, there is a 

threshold value for the minimal steady stimulus that leads to repetitive firing. In a seminal 

paper [27], Hodgkin identified three classes of repetitive firing behaviors based on 

experimental observations from responses of various axon types to steady inputs. Two of 

them, Classes I and II, could show repetitive firing for sustained inputs; but not Class III, for 

which only one spike or a few are generated at the onset of a step current.

Some neurons may undergo transitions from resting to tonic spiking resulting in a dynamic 

behavior known as bursting (bursts of AP interleaved by silent phases) (Figure 3.1 A). 

Bursting can be an intrinsic property of individual neurons (spiking modulated by intrinsic 

slow negative-feedback conductances) or a property emerging from the neuronal network 

(with activity modulated, for example, by slow coupling mechanisms such as slow synaptic 

inhibition or slow depression of excitatory synapses). In both situations, the bursting 

behavior emerges from the interactions of variables that evolve on very different timescales, 

these dynamics can be dissected mathematically using slow-fast analysis.

In this presentation we will review the mathematical framework for understanding generic 

transitions to repetitive activity in single-neuron models, as developed in [4, 51]: the Type I 

(saddle-node-homoclinic) and Type II (Hopf bifurcation) emergence of limit cycles, which 

relate to Hodgkin’s Classes I and II. We will further summarize the mathematical treatment 

of burst-patterned repetitive activity. The fast/slow analysis (first developed in [50]) will be 

illustrated with idealized Hodgkin-Huxley-like (HH-like) models for single cells. Then we 

will demonstrate the generality of the approach with a case study for a network’s bursting 

activity, as described with a firing rate (mean-field) model. The effects of noise on active 

and silent phase durations will be considered for an idealized slow wave model for bursting. 

Finally, we will cover cellular Type III excitability in which repetitive activity is not found 

for steady inputs. For a time-varying input a neuron may fire once if the input rises fast 

enough. This “differentiation-like” behavior is compatible with Hodgkin’s Class III and is 

known as phasic firing. Our case study will be in the context of sound localization for which 

phasic firing is a significant dynamical feature of the neurons that perform coincidence 

detection (as for inputs from the two ears) with extraordinary, submillisecond, temporal 

precision.

2 Firing Properties and Excitability

Excitability implies the concept of a firing threshold, which separates the sensitivity of a 

quiescent neuron (the neuron is in a state that has just one stable fixed point) to brief 

external stimuli. Weak stimuli lead to small changes in voltage and direct return to the 

steady state (subthreshold). Strong stimuli are boosted by autocatalytic/ regenerative 

currents and lead to large voltage responses (spikes) before returning to rest 

(superthreshold). Since stimuli can have arbitrary time courses, a common definition of 

threshold is frequently ascribed to the neuron, by saying that the neuron has a threshold 
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voltage, VT, and it “fires” when the membrane potential just exceeds VT. There is growing 

appreciation, however, that firing is a multi-conditional event that depends on V as well as 

on dV/dt and other factors, e.g., [3, 63]. In some neuronal systems this transient spike 

response can be turned into a sustained one (the neuron is in a state that has a limit cycle) 

when a steady input is applied.

In a foundational paper, Hodgkin identified different qualitative features associated with an 

axon’s repetitive firing properties, the onset of repetitive firing, and the near-threshold 

behavior [27]. By comparing responsiveness of different axons to steady inputs, Hodgkin 

proposed three classes of excitability. Classes I and II showed repetitive firing, while Class 

III could not exhibit sustained spiking activity.

Some 40 years later Rinzel and Ermentrout [51] described the mathematical framework for 

identifying two of these three classes. They demonstrated, using concepts from dynamical 

systems theory, that the onsets to repetitive firing for Classes I and II correspond to different 

types of bifurcations from steady state to periodic behavior of neuronal excitability models 

in the case of a point neuron or space-clamped model. These onsets are generic and 

therefore can be classified generally; they refer to the onsets according to their mathematical 

descriptions as Types I and II, respectively. Next, we review the mathematical framework 

for Types I and II and we discuss Type III excitability, where no bifurcations occur, in 

Section 4.

2.1 Exemplar Two-Variable Morris-Lecar Model

The differences between excitability types I and II can be easily demonstrated with a two-

variable biophysically meaningful model that has become widely used as a prototype for the 

dynamics of relatively simple Hodgkin-Huxley-like neuron models [29]. The so-called 

Morris-Lecar (ML) model was developed to describe the behavior of an electrically 

excitable barnacle muscle [42]. It takes the following form:

(2.1)

where the regenerative inward current is a fast-activating calcium current (instantaneous 

activation, m = m∞(V)) and the slower negative feedback process is a potassium current 

with gating variable w(t), analogous to the HH potassium current but with w(t) as the 

fraction of open channels rather than w4 as in the HH model. Note also that the inward 

current is noninactivating (there is no h-variable as in HH). A major advantage of this model 

is that it can be analyzed with phase plane methods [4, 29, 51]. It exhibits in different 

parameter regimes the two generic types of bifurcation that we identify with Hodgkin’s 

classification scheme. We stress that although we focus our description of excitability types 

on a particular model, this classification is very general. Indeed, there is a wide range of 

possible biophysical mechanisms of excitability that can fit in one of the excitability types.
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2.2 Onset of Repetitive Firing, Type II

The dynamical mechanism for this onset type is a Hopf bifurcation, also found in the HH 

model. Consider first a geometrical viewpoint. The V – w phase plane of the ML model 

(Figure 2.1 A, left) has the classic features of excitability. In this case, the stimulus strength 

Iapp is below the threshold for eliciting repetitive firing. Here, the rest state (VR, wR) 

(intersection of the nullclines, the fixed point) is a global attractor, and the trajectory is for 

initial conditions that lead to a single AP. For larger Iapp (Figure 2.1 A, middle) we see the 

limit cycle of repetitive firing, which occurs over a range of Iapp values (Figure 2.1 B, left). 

For Iapp very large (Figure 2.1 A, right) the model no longer fires repetitively (the limit 

cycle disappears), the fixed point becomes stable again, corresponding to the physiological 

state of “nerve block.” In this case, the two V -gated currents are in a dynamically stable, 

steady state, balanced at a high membrane potential.

We can appreciate from the phase plane portrait that, if w is much slower than V, the fixed 

point is unstable when it lies on the middle branch of the V -nullcline (Figure 2.1 A, middle). 

That is, if w is very slow compared to V, then the flow will be horizontal everywhere except 

just near the V -nullcline. Hence, if we imagine that the initial condition is very near to but 

not at the fixed point, the trajectory would immediately shoot away from it, moving 

horizontally either rightward or leftward. If w is not very slow, then the condition for 

instability would depend on how slow w is.

By linear stability analysis we find the eigenvalues of the Jacobian for the linearization of 

ML about (VR, wR). From this we obtain an inequality for the condition of instability (real 

part of the eigenvalues greater than 0):

where Iinst is the instantaneous current-voltage relation of the ML membrane:

This result may be interpreted as follows: Instability only happens if (VR, wR) is on the 

middle branch of the V -nullcline (negative resistance for Iinst), and the timescale of negative 

feedback or recovery is sufficiently slow (τw large enough). The instability occurs by way of 

a Hopf bifurcation, and there is a nonzero minimum firing frequency at the onset of 

repetitive firing (Figure 2.1 C). We called this Type II excitability, corresponding to 

Hodgkin’s Class II axons.

The HH model also has Type II excitability, and the bifurcation is subcritical as well as for 

ML. As a consequence, these systems show bistable behavior for Iapp just below the critical 

value for the destabilization: the rest state (VR, wR) is stable and coexists with the stable 

limit cycle of repetitive firing over the Iapp-interval indicated by the shading in Figure 2.1 B. 

This characterization of bistability for the HH model leads to a prediction of bistability for 

the squid giant axon. The prediction was confirmed experimentally by showing that 
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repetitive firing in response to just superthreshold Iapp could be terminated by a brief 

superimposed pulse of current [24]. This bistability suggests that there are two different 

threshold values for repetitive firing: one if Iapp is gradually increased from 0 and a lower 

Iapp-value for abrupt (step) turn-on. We re-emphasize that this mathematical result implies 

that for Type II excitability one cannot, by finely adjusting Iapp, induce the neuron model to 

fire at arbitrarily low rates. Among the neurons that show Type II behavior are so-called 

fast-spiking inhibitory neurons in the cortex [61].

2.3 Onset of Repetitive Firing, Type I

In contrast, some neurons, e.g., excitatory pyramidal neurons in the cortex [61], can fire at 

very low rates for steady inputs, a feature that fits into Hodgkin’s Class I [27]. We illustrate 

this case for the ML model (Figure 2.2) with parameter values that differ from those we used 

in the preceding subsection. Mathematically, this type of onset behavior corresponds to a 

saddle node bifurcation as Iapp passes through a critical value, Iapp-HC. Associated with this 

saddle node, a homoclinic orbit appears (Figure 2.2 A1, A2). The transition involves an 

invariant “circle” in the phase space: a pair of heteroclinic orbits that emerge from the saddle 

point that become the closed cycle of repetitive firing as Iapp increases through the value 

Iapp-HC. The AP time course for Iapp just above criticality shows a long interspike interval 

with the membrane potential hovering near the “ghost” of the saddle node fixed point 

(Figure 2.2 B); the system moves very slow in this part of the trajectory. The firing 

frequency as a function of Iapp has the generic behavior of such Type I excitability, 

proportional to the square root of Iapp − Iapp-HC (Figure 2.2 D). The bifurcation diagram in 

Figure 2.2 C summarizes the solution structure. It also shows a key signature of Type I 

excitability: the steady state current-voltage relation is not monotonic but must be N-shaped 

(shown, rotated, as the thin S-shaped curve in Figure 2.2 C). This model also shows nerve 

block for large Iapp.

2.4 Is There a Threshold Voltage?

The application of dynamical systems concepts to neuronal excitability was pioneered by 

FitzHugh [19, 20]. He developed a two-variable model that we now call the FitzHugh-

Nagumo (FHN) model (in recognition of the near simultaneous but separate work by 

Nagumo that included implementing a similar model in an electronic circuit [44]). The 

phase plane analysis by FitzHugh revealed some basic qualitative features of excitability 

(associated with Type II).

Consider the response to an initial voltage displacement, say ΔV, from the rest point (VR, 

wR) (imagine it from Figure 2.1 A). By incrementally increasing ΔV we would find a 

continuous gradation of the response’s peak voltage as a function of ΔV. That is, there is not 

a discontinuous jump in the peak voltage at some critical stimulus value; the response curve 

is not discontinuous; the response is not strictly all-or-none. If the recovery process is made 

slower (say, by decreasing ϕ, the “temperature factor”) the response curve will be steepened. 

The same is true of the HH model [28]. This insight led to a prediction for an experiment on 

the squid giant axon that was confirmed as the temperature was raised [16]. In contrast, for 

Type I excitability there is a true threshold phenomenon. The stable manifold of the saddle 

RINZEL and HUGUET Page 5

Commun Pure Appl Math. Author manuscript; available in PMC 2014 November 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



point (Figure 2.2 A1, A2) provides a separatrix that distinguishes subfrom superthreshold 

responses.

This type of “true” threshold behavior is partial justification for the widely used and highly 

idealized leaky integrate-and-fire (LIF) neuron model. The classical LIF model embodies a 

threshold voltage, VT, and a passive leak current for the subthreshold regime (V < VT) along 

with a reset condition (say, V is set to VR) when V reaches threshold. The model yields a 

spike time but does not describe the dynamics of spike generation and recovery. It is 

pseudo–Type I, allowing arbitrarily low firing rates for constant input (for review, see [9]). 

Various enhancements of the LIF model have included replacing the leakage-only 

subthreshold current with a nonlinear current that allows, among other features, for saddle 

node behavior, e.g., [8]. Some renditions of LIF (the so-called resonate-and-fire models) 

include a second variable that corresponds to a dynamic recovery-type process, enabling the 

subthreshold dynamics to show damped oscillatory behavior. Izhikevich has tuned the two-

variable version (parameter values, including reset conditions for both variables) so that a 

variety of firing patterns can be produced (see, e.g., [30]).

2.5 Classification and Reality

While Hodgkin’s classification was based on experimental observations of isolated axons, 

the mathematical description [51] was given for a noisefree space-clamped model. Taking a 

step toward reality, we could ask about extending the classification to models that account 

for the cable properties of neuronal dendrites and axons. Rinzel and Keener demonstrated 

the analogue of Type II excitability for a two-variable FHN-like model in a uniform “axon” 

cable with stimulation at one end by constant Iapp [52]. The mathematical treatment of 

stability appeared as a Schrödinger eigenvalue problem.

Going further, we could consider the effects of heterogeneous properties of the membrane. 

Voltage-gated currents are not distributed uniformly over a neuron’s dendrites, axon, and 

soma membrane; there will generally be different types of currents in different substructures. 

For example, the dendritic membrane in isolation could behave as Type II while the soma/

axon membrane could be Type I. The onset behavior could depend on the input location, 

say, whether the synaptic input was delivered to the distal dendrites or near to the soma [54]. 

Also, the dendro-somatic-axonal architecture can affect the onset behavior and the input-

output properties of the neuron [37, 46].

In models of neuronal networks the transmission of spikes from neuron to neuron is usually 

idealized with time of transmission fixed, say, to 0 or some activity-independent constant 

value. But we should ask whether the axon, as the output line of the neuron, faithfully 

transmits or reshapes spike timing information. A preceding spike leaves a wake of post-

spike recovery, which can affect the propagation speed locally. That is, propagation along 

the axon cable is subject to the dispersion properties of the membrane, which can influence 

the spike time patterning that is transmitted. For example, a Type II axon shows resonant 

properties and is capable of locking interspike times, during transmission, into multiples of 

the resonant period [41]. Could propagation in Type II axons favorably prepare interspike 

intervals if the target neurons, say, have resonant properties as well?
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Noise is ubiquitous in the nervous system and its effects should not be overlooked. It may 

serve a useful function in some situations, as in stochastic resonance [43]. With regard to 

repetitive firing and our care in classifying onset behavior, we expect that noise would smear 

out the frequency-versus-Iapp curve. The frequency (spikes per second) should actually be 

interpreted as spike probability per unit time in the presence of noise. In both cases, Types I 

and II, the spike probability would be a smooth function of Iapp, decreasing to 0 with an 

exponential-like foot as Iapp decreases, rather than as in Figure 2.1 C and Figure 2.2 D.

Does this mean we could not distinguish Types I and II or that the distinction is not 

meaningful? Well, there may be only slight differences in the mean probability, but one can 

expect differences between Type I and II behaviors for the CVs and autocorrelations. This 

has been demonstrated experimentally for some neurons in the cortex. Inhibitory neurons 

(so-called fast-spiking interneurons) are identified as Type II, and regular spiking excitatory 

neurons are Type I. Neurons in vivo constantly receive background synaptic inputs that in 

some cases may lead to changes in the membrane excitability [48]. Of tantalizing interest is 

whether and how these differences in intrinsic properties influence the behavior or 

computational abilities of a network.

3 Bursting Oscillations

Some neuronal systems show spontaneous activity with multiple timescale dynamic 

patterning, in particular rhythmic bursting (Figure 3.1 A). Rhythmic bursting consists of 

periods of repetitive firing interleaved by quiescent phases. Individual neurons can be 

bursting pacemakers: spontaneously or conditionally, when stimulated with steady input or 

activating substances. Network burstlike rhythms can arise that depend on both coupling 

dynamics and intrinsic cellular properties even if no cells in the network are spontaneous 

bursters [11]. Biophysically, the bursting behavior is generated by a negative feedback that 

acts at a slower timescale than the spike generation process. This negative feedback might 

be intrinsic to the cell or due to the network interaction. It turns on slowly during active 

phases, eventually terminating a burst, and recovers slowly during a silent phase, allowing 

the system to initiate the next burst of spikes.

3.1 Fast-Slow Analysis of Bursting Dynamics

A mathematical framework for understanding the mechanisms for cellular bursting behavior 

was introduced by Rinzel [50] and extended by others; see [18, 29]. The approach exploits 

the timescale differences between the fast processes that generate the spikes (milliseconds 

timescale) and the slow dynamics that regulate the times of initiation and termination of the 

bursts (maybe seconds timescale). If the vector X(t) denotes the fast variables associated 

with spike generation and Y(t) denotes the variables for the slow processes, we write the 

model equations, generally, as

(3.1)

(3.2)
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where, to indicate the relative timescales, 0 < ε ≪ 1.

The analysis of the system can be conducted in two steps:

Description of the fast subsytem: We consider the slow variables Y as parameters and 

describe the spike-generating fast subsystem (3.1) for X as a function of Y. This 

description involves finding invariant objects (steady states, periodic orbits, and their 

periods, etc.) as well as transitions between these solutions (bifurcations) of the fast 

subsystem (3.1) as a function of Y :

or

Notice that if Y is one-dimensional (there is only one slow variable), then the results can 

be summarized in a bifurcation diagram such as the ones in Figure 2.1 B and Figure 2.2 

C, with Y as the bifurcation parameter. When Y is multidimensional it simply adds more 

dimensions to the bifurcation diagram and visualization can become harder.

Overlay with slow dynamics: To describe the full system, we overlay the slow dynamics 

(3.2) on the fast subsystem (3.1) behavior. As Y evolves slowly in time according to 

(3.2), X is tracking its stable states. Therefore, we must understand the direction of 

change of Y at each part of the bifurcation diagram for X.

When the full burst dynamics is projected onto the (Y, V)-plane, it coincides with 

portions of the bifurcation diagram. The results of this analysis allow one to make 

phenomenological descriptions of the bursting behavior and predict effects of parameter 

changes on behavior.

3.2 Bursting Oscillations, Cell Level

We will illustrate the fast/slow dissection method for one type of bursting, so-called square 

wave bursting (Figure 3.1). For our purposes here, we utilize a modified ML model that 

incorporates a third variable for slow negative feedback. The model idealizes a mechanism 

that has appeared in many models of bursting neurons: a potassium current IK-Ca that is 

activated by increases in intracellular calcium concentration, call it Ca(t). The dynamics of 

Ca are slow because calcium is highly buffered inside the cell so that only a small fraction, f, 

of the calcium that enters during an AP in the ML model remains free and able to activate 

IK-Ca. The dynamics for Ca(t) are described by the balance equation
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where ICa is the calcium current from equation (2.1) (with a minus sign to indicate that 

calcium current is inward), α is proportional to the ratio of surface area to volume, and k is 

the removal rate of calcium from the cytoplasm.

Notice that in this example, the fast variables X in (3.1)–(3.2) correspond to the spike 

generation variables V – w in the ML model, while the slow variable Y in (3.1–3.2) 

corresponds to the variable Ca, describing the calcium evolution. The time course of 

bursting (Figure 3.1 A) shows that during the active phase of spiking, the cell model is 

depolarized and spiking. Ca(t) increases a small amount with each spike, thereby 

incrementally activating the negative feedback current IK-Ca.

When Ca and IK-Ca are large enough, the burst terminates and V falls abruptly. During the 

silent phase, the calcium current is not activated and Ca is slowly “removed”; IK-Ca 

decreases, allowing the membrane potential to increase slowly until a critical level is 

reached when the next burst starts suddenly. The abrupt starts and stops to the active and 

silent phases lead to the identifier: square wave bursting. They reflect an underlying 

bistability in the fast subsystem: V – w in this case. This bistability is revealed in the 

bifurcation diagram (Figure 3.1 B) with Ca treated as a parameter, expressed here in terms 

of z = Ca0/(Ca + Ca0), the gating variable for IK-Ca (see the caption of Figure 3.1).

For an operating range of Ca the fast subsystem has two attractors: a low-V steady state and 

a limit cycle at high-V (about 40 mV peak-to-peak amplitude). The low-V state corresponds 

to slowly increasing V during the silent phase, and the limit cycle in the high-V state 

corresponds to repetitive spiking during the active state. This bifurcation diagram somewhat 

resembles that in Figure 2.2 C except here the limit cycle branch terminates on the saddle 

branch but away from the saddle node; this is the mathematical essence of the bistability that 

underlies square wave bursting. A key feature that underlies the bursting behavior is that Ca 

decreases during the silent phase and increases on average during the active phase. If the 

calcium removal were faster, say if parameter k were increased enough, bursting would give 

way to continuous spiking, while if k were decreased sufficiently, bursting would not occur 

and the system would sit stably on the lower branch.

We note that the IK-Ca mechanism was introduced first for square wave bursting in the 

context of electrical activity of pancreatic beta cells—the cells that are responsible for the 

release of insulin [14, 33]. An early interpretation was that the removal rate k of calcium 

increased with glucose so that low glucose meant no electrical activity and high glucose 

meant bursting or continuous spiking.

The dynamical mechanism for square wave bursting can be implemented with a variety of 

biophysical mechanisms. The bursting neurons that are involved in the neural circuit that 

drives repetitive muscle activity for respiration have their square wave pattern driven by 

divisive slow negative feedback (slow inactivation of a persistent sodium current INaP-h) 

rather than subtractive as with the IK-Ca mechanism [10].
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3.3 Bursting Oscillations, Network Level

The general mathematical structure that underlies cellular bursting can also account for 

repetitive episodic events in models for neuronal ensembles. Let us consider the spontaneous 

episodic activity recorded from the developing spinal cord of the chick (Figure 3.2) for 

which dynamical models have been developed [59, 60]. There are not enough experimental 

data available to justify development of a detailed, mechanistic model, a cell-based network 

model with HH-like cell units. So we opted for using a mean-field-like approach. We do not 

describe individual APs but rather the firing rate or mean activity of neurons, a(t), averaged 

over neurons and over the timescale of a few spikes. This treatment implicitly assumes that 

spiking is asynchronous and independent, not precisely timed or correlated across neurons. 

The responses show temporal organization on multiple timescales: episodes of 1 minute or 

so duration and faster cycles (1- to 2-second frequency) within an episode. Note the 

“interval” from one episode to the next is very long, 2 to 10 minutes (see Figure 3.2).

Various experimental observations are incorporated into the model formulation. Bursting at 

the individual cell level is not seen. The rhythm persists even if excitatory neurotransmission 

is blocked. If all synaptic coupling is blocked, the rhythm stops. The reversal potential for 

synaptic currents activated by inhibitory transmitters is very depolarized (near or above 

spike threshold) during this period of development; these synapses are functionally 

excitatory. Just after an episode the system shows a slow recovery (relative refractoriness) 

with weak responsiveness to applied stimuli that gradually grows until a new episode can be 

triggered or occurs spontaneously.

The model assumes that

1. all synapses are functionally excitatory;

2. cells can fire steadily but are not intrinsically bursting if driven with steady input;

3. network depression reflects multiple timescales of slow negative feedback.

The recurrent excitatory coupling provides the regenerative effects for cycling and episode 

activity. The negative feedback can be modeled as synaptic depression, one fast (say, 

timescale in seconds) and one slow (timescale in minutes). The dynamics for activity, a(t), 

take the general form

Here, a∞ is the input-output relation of a neuron, taken to be an increasing sigmoidal 

function (scaled so the maximum is 1). τa is an effective time constant (say, 100 ms or so), 

reflecting integration time within a cell and recruitment time for excitation to spread in the 

network. In our case, because of recurrent excitatory synaptic coupling the “input” is 

proportional to a(t). The synaptic coupling suffers depression, both fast and slow, 

represented by factors d(t) and s(t), respectively.

Our three-variable model takes the form
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(3.3)

where τa < τd ≪ τs; d∞ and s∞ decrease sigmoidally with a from 1 to 0, and these functions 

represent the activity-driven, steady synaptic depression for a presynaptic firing rate a; n is 

an adjustable constant for the overall synaptic efficacy, say as affected by a drug application. 

Note, this mean-field model is not derived from a detailed description but is rather ad hoc. It 

is only for mean activity. The development of statistical dynamics descriptions of networks 

is an ongoing and active area of research; see, e.g., [7].

The model’s behavior is analogous to that for the cellular burster in the preceding section 

and is understood by a fast/slow analysis. Here, the fast variables X in (3.1)–(3.2) 

correspond to the variables a and d in (3.3) and are responsible for fast oscillations during an 

episode (the equivalent of the spike generator variables in the ML model for cellular 

bursting). The slow variable Y in (3.1)–(3.2) corresponds to the variable s in (3.3), which 

controls the very slow depression of excitatory synapses (the equivalent of the Ca variable 

in the ML cellular burster). If s is large (excitatory synapses are active), rapid oscillations 

occur. On the contrary, if s is small (excitatory synapses are depressed or partially 

inactivated) the system is silent. For intermediate values of s the fast subsystem a – d shows 

bistability between a steady state of low activity and an “upper” oscillation that corresponds 

to cycling during an episode (Figure 3.3 A; compare with Figure 3.1 B). The full system 

shows alternating phases of high-activity episodes and relatively quiescent phases (Figure 

3.3 B). The variable s for slow synaptic depression decreases during an episode and recovers 

between episodes; see [59, 60] for specific examples and comparison with experiments.

In one study, combining theory and experiment, we suggested a specific biophysical 

mechanism for slow depression of the synaptic coupling [38]. If excitatory neurotransmitters 

are blocked then gaba-activated synaptic currents with chloride as the primary ionic 

component mediate the coupling. During the strong firing (and synaptic activity) of an 

active phase, we predict a slow decrease in intracellular chloride concentration that is 

restored by pumps during the silent phase. These changes in concentration affect the reversal 

potential for synaptic coupling, Vsyn, making it oscillate across the spike threshold to initiate 

and terminate episodes, providing a mechanism for rhythmic episodic behavior. The 

estimated slow pump rates are compatible with the long silent phases in this system.

In the model (3.3) the slow negative feedback was divisive, acting directly on the 

regenerative mechanism—the depression variables d and s multiply the term that models 

recurrent excitation. Alternatively, we could use a subtractive negative feedback; for 

example, we would replace the argument n·s · d · a of a∞ in (3.3) by n · d · a − θ, where θ 

represents a slow drift of the neuron’s firing threshold. Such a mechanism is referred to as 

spike frequency adaptation, an effective increased threshold during prolonged firing. Both 

mechanisms were considered and contrasted in [59, 60]. It is of general interest to 

characterize the dynamic properties of subtractive and divisive feedback mechanisms and to 

suggest an experimental approach to distinguish between these mechanisms.
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3.4 Square Wave Burster as a Relaxation Oscillator; Effects of Resetting and of Noise

The square wave burster is a kind of relaxation oscillator, like the Van der Pol oscillator [62] 

except that instead of its “upper state” being a slowly evolving pseudo–steady state, it 

comprises a fast oscillation. For many of the square wave bursters we may convert the upper 

state of firing to a steady state by speeding up the recovery processes for spike/cycle 

generation. In the ML burster if w were faster or for the spinal cord model if d were faster, 

the oscillation branch (thick curve in Figure 3.1 B or Figure 3.3 A) would disappear and the 

upper state would be a stable steady state. In this case the models could exhibit slow 

pacemaker oscillations without spikes or cycles during the active phase.

This analogy with a relaxation oscillator and the underlying bistability in the fast subsystem 

leads to a prediction for the resetting effects of brief stimuli. For example, we predict from 

Figure 3.3 A that we could prematurely initiate an episode with a large enough, brief 

stimulus during the silent interval and, moreover, that the next episode would be shorter 

(Figure 3.4 A). This shortening is because the network would still be partially depressed so 

the episode would terminate sooner. Hence, there should be a correlation between the silent 

interval and the next episode duration by systematically varying the time of the perturbing 

stimulus. The prediction was confirmed for the model and in the experiments in which brief 

stimuli activated a nerve bundle that provided input to the cord segment that was being 

monitored (Figure 3.4 B, C, D). The data for the experimental case also includes transitions 

to the active phase that occur spontaneously, probably reflecting the effects of neuronal 

noise in the system.

These predictions and results provide strong evidence for (1) the underlying bistability and 

(2) the occurrence of episode termination at a critical state during the evolving episode (i.e., 

the disappearance of a stable upper state in the fast subsystem). For perturbations that would 

prematurely terminate an episode and induce a quiescent interval, the model predicts a 

correlation as well. Although experimental means were unavailable for terminating an 

episode on command, interestingly there was very little correlation between the duration of 

an episode and the next quiescent interval for spontaneous transitions in the cord. This 

suggests that somehow noise had a different effect on transitions from silent to active phase 

than from active to silent phase.

We explored further the dynamics and statistics of forced switching by considering the 

effects of noise on a slow-wave, two-variable version of the cellular burster from the 

respiratory pacemaker [36]. For this model, with analysis for the distributions from 

simulations of transition points, we were able to account for values of the slow variable at 

which jumps between phases occurred (Figure 3.5). The analysis involves viewing the fast 

subsystem as a slowly evolving, bistable system and applying Kramers’ rate theory [25, 35] 

for the transitions in a double-well potential. This step is coupled with a survival analysis to 

obtain estimates for the silent and active phase durations (Figure 3.5).

Finally, these pieces were put together in order to estimate the correlations between 

durations of successive phases. We found in the model significantly larger correlations of 

durations for silent-to-next-active phases than for active-to-next-silent phases. In this model, 

the slow negative feedback involved slow inactivation of a fast inward current. In contrast, 
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when we changed the model by formulating the feedback as a slowly activating outward 

current, we found very little correlation for either type of succession. A number of studies 

are pointing toward different effects of negative feedback when it is implemented as a 

divisive mechanism rather than as a subtractive mechanism [58]. There is room for further 

study in this area. Maybe the statistical properties of the alternations can lead to testable 

predictions about the underlying biophysical mechanisms. Also, we should be circumspect 

about drawing predictions for the bursting system when our treatment has been for the 

system without spikes.

Our treatment about the effects of noise on the slow-wave model relates to the mathematics 

of large deviation theory. Analyses of other two-variable systems with relaxation dynamics 

have shown that noise can lead to alternations even if there is a stable steady state on one or 

both of the attracting branches in the fast subsystem [17]. Interestingly, the noise-induced 

alternations can become very regular if the noise amplitude and slow speed of migration on 

the branches are matched in a limit as both become very small.

4 Sound Localization, a Case Study for Type III Excitability

In this section we focus on Type III excitability. As opposed to Types I and II discussed in 

Section 2, Type III neurons cannot exhibit sustained firing for steady currents. Instead they 

fire once at the onset of a steady input. This behavior fits into Hodgkin’s Class III [27] and 

is also known as “phasic” firing, in contrast to “tonic” or repetitive firing. Phasic firing 

underlies the functional description of these units as differentiators or slope detectors. They 

can encode the occurrence and time of rapid change in the stimulus. Impressive Type III 

excitability is displayed by neurons in the auditory brain stem, especially those in the medial 

superior olive (MSO).

Next, we discuss the neurophysiological profile of these neurons and the biophysical 

mechanisms that underlie their ability to perform precise timing computations, as well as the 

functional implications for sound localization. We then present a mathematical formulation 

for Type III excitability and discuss how the model shows highly precise coincidence-

detection properties as compared with a tonic version of it.

4.1 Sound Localization, Neurophysiology, and Computation

The neural computation for sound localization of low-frequency inputs (less than a few 

kilohertz for mammals) utilizes timing information based on interaural time differences 

(ITDs), the difference in arrival times of a sound at the two ears. A long-standing conceptual 

model [31] proposes how to use ITDs, with delay lines and coincidence-detecting units, to 

pinpoint a sound source (Figure 4.1 A). Anatomical substrates and neuronal firing 

characteristics that fit nicely with this concept have been found for the barn owl and in part 

for mammals [13] (see [2, 23] for a review and references). According to Jeffress, excitatory 

inputs from opposite sides (ears) converge, with an ordered range of conduction times, onto 

an array of cells that are well-designed for detecting temporal coincidence, with precision 

that can be tens of microseconds (Figure 4.1 A).
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The first bilateral convergence of precisely phase-locked inputs occurs in the auditory brain 

stem at the medial superior olive (MSO) in mammals and nucleus laminaris in birds. ITD 

sensitivity is represented by a tuning curve, spike rate versus ITD (say, for pure tone input), 

and the mapping between azimuth position and ITD value at a tuning curve’s peak defines a 

place code, as hypothesized by Jeffress and as found in the barn owl (Figure 4.1 B). Recent 

studies report that tuning curves for the gerbil have their peaks outside the physiological 

range (the range of possible interaural time differences determined by the animal’s head 

size) and hypothesize that ITD is encoded by the slope of the tuning curve rather than the 

peak [6, 26] (Figure 4.1 C).

Here, we will describe our experimental and modeling results, primarily for the gerbil, to 

demonstrate how Type III excitability arises and contributes to ITD tuning sensitivity and 

temporal precision.

4.2 Biophysical Properties Enable Fast Neuronal Signal Processing

The biophysical properties of MSO neurons and their inputs enable them to “compute” ITD 

with high temporal precision [12]. Synaptic inputs and spike-generating mechanisms are 

very fast (1 to 2 ms) [2]. The neurons have bipolar architecture, each set of dendrites 

receiving inputs from only one ear. They, like many other neurons in the auditory brain 

stem, fire phasically, only once or a few times, at the onset of an adequate depolarizing step 

current and then remain quiescent independently of the strength of the current (Figure 4.2 

A). They are slope detectors: they do not fire for slowly varying inputs, but they can encode 

the occurrence and time of rapid changes in the input (Figure 4.2 B). The sensitivity for ITD 

is an individual cell property. There appears to be no recurrent synaptic interactions between 

these MSO neurons.

Of particular significance, the phasic behavior is attributed primarily to a low-threshold 

voltage-gated potassium current (IKLT). It is partially activated at rest and contributes to 

giving the cell a very short membrane time constant (< 1 millisecond) for fast integration. 

But also very important are the voltage-dependent dynamics of IKLT. The current is 

recruitable at voltages below the activation range for the spike-generating INa and with a 

rapid timescale, 1 ms or so. These properties effectively give the cell a dynamic threshold. 

Depolarizing inputs must be fast enough to outrace the opposing influence of this potassium 

current. Inputs that are significantly slower than IKLT will not lead to a spike.

Such empirical observations have led to hypotheses that IKLT underlies a high quality of 

phase locking, coincidence detection, and temporal processing generally; it is found in 

various neuron types in the auditory brain stem (octopus cells, bushy cells) [45, 53], as well 

as in other brain areas [22]. Pharmacological block of IKLT converts some cells from phasic 

to tonic behavior and diminishes phase-locking ability; see Figure 4.2 C and D.

4.3 Phasic Firing, Type III Excitability, Reduced Model

An HH-like model for phasic firing was developed for bushy cells in the auditory brain 

stem, the so-called Rothman-Manis model or RM03 [53]; it has been adapted and tuned to 
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gerbil MSO neurons [39]. The model involves several ionic currents with seven or more 

gating variables:

(4.1)

The model exhibits phasic firing with input-slope sensitivity (Figure 4.3), precise phase 

locking, ITD sensitivity, and a narrow temporal integration window (e.g., [40, 53, 56]). 

When the conductance gKLT for IKLT is frozen at its resting level in RM03, the model can 

fire tonically. As a dynamical system, RM03 has a stable steady state for each value of the 

input current I, while in the case of frozen gKLT the model shows Type II excitability with 

repetitive firing arising via a Hopf bifurcation (behaviors like those shown in Figure 4.4 A 

and B).

For our purposes it is convenient to consider a reduced two-variable model [40], in which 

we have frozen the slow-gating variables at rest, treated INa activation as instantaneous, and 

combined (in the spirit of Rinzel for the HH model [49]) inactivation h for INa and activation 

w for IKLT into one dynamic variable, U. The reduced model (V – U model) is given by the 

following system of differential equations:

(4.2)

The steady state function U∞ is given by

where a = 0.9, b = (a − w0)/h0, and τU (V) = min(τw(V), τh(V)). Membrane capacitance is Cm 

= 12 pF; maximal channel conductances are ḡNa = 1000 nS, ḡKHT = 150 nS, ḡKLT = 200 nS, 

ḡh = 20 nS, and ḡlk = 2 nS, and reversal potentials are ENa = 55 mV, EK = −70 mV, Ēh = 

−43 mV, and Elk = −65 mV. Values for the gating variables, fixed at rest, are w0 = 0.511, h0 

= 0.445, r0 = 0.147, z0 = 0.662, n0 = 0.0077, and p0 = 0.0011.

This reduced V – U model retains Type III excitability and many of the firing properties of 

the full RM03 model.

The V – U model fires phasically (Figure 4.4 A inset) and, correspondingly, the steady state 

is stable for any input current I (Figure 4.4 A). As for RM03, the V – U model converts to 

tonic mode when gKLT is frozen at its resting value (i.e., freezing U in the expression (1 − 

U)4) (Figure 4.4 B and inset). It switches from Type III to Type II excitability, with Hopf 

bifurcation to repetitive firing. Note, the frozen-gKLT model (V – U or RM03) retains the 

same VR and membrane time constant as in the (unfrozen) V –U model, underscoring the 

significance for firing due to the dynamic, not just static, properties of gKLT.
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With this reduction of RM03 to a two-variable model, we can gain insight with phase plane 

methods. The V-nullcline here, as is typical for excitable systems, is “cubic” shaped (Figure 

4.4 C, D); the U-nullcline (green) is monotonic decreasing. In either the phasic or tonic 

model, for I = 0, the nullclines intersect on the V - nullcline’s left branch, corresponding to a 

stable rest state. As I increases, the V -nullcline moves downward and the “left hump” is 

greatly reduced; the value of UR falls. This means less INa is available and, for the phasic 

mode, more gKLT is active at rest. This increased conductance severely limits the growth in 

VR with I for the phasic model.

A key geometrical feature is that for any I -value the rest point for the phasic model remains 

on the left branch (Figure 4.4 C) and therefore is stable. On the other hand, the rest point for 

the tonic model drifts onto the middle branch of the V -nullcline (Figure 4.4 D) with 

increasing I, consistent with the onset of repetitive firing. This insight provides us with a 

handle for the understanding and design of other models with Type III excitability. As an 

aside, we note that while the HH-model has Type II excitability, the squid axon typically 

fires in a phasic manner; a significant factor in modifying the HH-model to render it Type 

III is an adjustment in the potassium conductance (see [15]) so that it activates at lower V -

values as does gKLT.

From the phase plane we see that the phasic model can spike in response to an increasing I(t) 

only if the V -nullcline drops sufficiently faster than the phase point, allowing a spike 

upstroke. The parametric dependence of the V -nullcline on I is weaker in the phasic case 

(see the values of I for the positions shown) so that dI/dt must be larger to elicit a spike. This 

property reveals geometrically the slope sensitivity; for more elaboration on this, see [40]. 

Of course, the tonic model will fire eventually even without this dynamic effect, since the 

steady state destabilizes for large enough I. Hence, for Type III excitability the voltage 

threshold for firing is not fixed but strongly depends on the rate of rise. This behavior has 

been modeled with LIF models with a dynamic threshold [40, 47].

4.4 ITD Tuning

An idealization of the binaural synaptic input to an MSO neuron for a pure tone of 

frequency ω is given by a sum of two half-wave rectified sinusoids, with a phase difference 

ΔP:

where [·]+ = max(·, 0). The rectification is due to the biomechanical properties of 

transduction in the cochlea. White noise η(t) (strength σ) is added to mimic the jitter in 

arrival times of impulses that drive the excitatory synapses. By varying ΔP we generate the 

model’s IPD (interaural phase difference) tuning curve (Figure 4.5). In this example the 

maximum firing rate occurs for ΔP = 0, corresponding to a neuron tuned to an input centered 

in azimuth.

For small phase differences the model fires once on each cycle but with much lower firing 

probability for antiphase inputs. Notice that the amplitude of the input is less for the tonic 
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model to get 1:1 firing at IPD = 0. Since it does not recruit additional potassium current, its 

resistance remains high until V reaches the activation level for INa and therefore less input 

current is needed for firing. Notice two features: the ITD tuning is sharper for the phasic 

case (the tuning curve’s half-width is much less), and the tonic model fires with nearly 

equiprobability for ΔP in the troughs. That is, the tonic model elicits a lot more false 

positives. Another feature (not shown here) is that the phasic model tends to fire on the 

rising slope of the input (say, for small IPD), while the tonic model fires typically near the 

peak of input. From a dynamical systems viewpoint one might wonder if the deterministic 

problem of phase locking to this type of input, say two sinusoids shifted in phase, has any 

special features, and if one could expose the differences between Type III and Types I and 

II.

5 Discussion

We summarized features of excitability that are found in neurons, networks, and models of 

neuronal systems. We presented the mathematical framework for understanding generic 

transitions to repetitive activity in neuron models as developed by Rinzel and Ermentrout 

(1989), and the associated dynamical features as originally described empirically by 

Hodgkin (1948) for neurons; these are the Type I (saddle node on an invariant circle) and 

Type II (Hopf bifurcation) emergence of limit cycles. We also covered the case of so-called 

Type III excitability in which repetitive activity is not found for steady or slowly varying 

inputs and only a spike or a few are elicited for a step input. These dynamical properties and 

classifications have been referred to in functional/computational terms as integrators, 

resonators, and differentiators, respectively.

For Type III excitability, we presented a cellular example in the context of sound 

localization for which phasic firing is a significant dynamical feature of the neurons that 

detect ITDs with extraordinary temporal precision. For systems with Type III excitability, 

the input’s rate of change rather than amplitude is being detected, allowing such systems to 

perform temporally sharp coincidence detection. For the MSO case, even though action 

potentials and postsynaptic potentials are brief with durations of a millisecond or so, the 

responsiveness depends more on the timing of convergent, bilateral inputs and temporal 

alignment of their rising slopes than on summation of their amplitude or temporal duration, 

leading to coincidence detection with submillisecond sensitivity. The neurons act as 

differentiators rather than integrators. The firing behavior seems not amenable to a 

mathematical explanation via bifurcation theory, and the time course and transient nature of 

an input becomes important to consider. The Type III case deserves further mathematical 

treatment.

Our presentation of sound localization focused on the phasic firing property, Type III 

excitability. There are various other interesting dynamical properties of MSO neurons and of 

the neuronal computations they perform that we did not cover here but are worth 

mentioning.

1. Although the model does not respond to slow inputs, say 20 Hz sinusoidal input, it 

does so in the presence of noise. While it seems that this suggests a stochastic 

resonance mechanism, the firings here occur typically on the rising phase of the 
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stimulus rather than near the peak amplitude as one would expect in the classical 

case [43]. This sensitivity to rising phase is consistent with slope detection; we 

refer to the phenomenon as slope-based stochastic resonance [21].

2. bipolar, and moreover the dendrites (in the case of the barn owl) vary in length and 

correlate with the place map (see Figure 4.1 A): preferred tuning for higher-

frequency sounds correlates with shorter dendrites. These features motivated our 

theoretical treatment and conclusions that distributing bilateral inputs on opposite 

dendrites led to improved ITD sensitivity and decreased the chance of false 

positives (less chance of firing in antiphase troughs) [1].

3. Recently we combined modeling and in vitro experiments for the gerbil to address 

how the soma-dendritic distribution of IKLT affects temporal precision [39]. 

Sodium spikes have not been reported in MSO dendrites and are barely detectable 

in the soma; it has been suggested that the V -dependence of inactivation for 

somatic (and dendritic) INa disfavors spiking in the soma [55, 57]. Nevertheless, 

IKLT in dendrites can affect the signaling of subthreshold synaptic potentials in the 

dendrites. We showed that the IKLT recruited by such potential transients affects 

their shape, notably cutting down their “tails.” In contrast to the classical case of 

passive dendrites where synaptic potentials widen as they propagate toward the 

soma, we found that potential half-widths are maintained and that the resultant 

somatic half-widths are nearly independent of input site. This voltage-dependent 

sharpening seems well suited to preserving timing information.

4. In the gerbil tuning curves are positioned asymmetrically (Figure 4.1 C). We 

proposed that the temporal slope sensitivity endowed by IKLT could underlie this 

positioning based on our modeling and experimental finding (in vitro) that synaptic 

potentials are slower rising from the contralateral side [32]. Our model also 

accounts for the observations (in vivo) that inhibition shapes the tuning curve [6]. 

A nice application of information theory was developed in [26] about a population 

coding strategy that could account for when the place code or slope code is more 

appropriate (Figure 4.1); here, “slope” refers to an aspect of the tuning curve, not to 

the temporal aspect of inputs.

The dynamical features and classifications that we have reviewed may naturally extend to 

network contexts, with perhaps the simplest architecture being random, sparse connectivity 

without spatial or feature-distributed properties. Mean field models, as dynamical systems, 

can have generic properties of excitability and rhythm generation as we presented; see, for 

example, the analysis in [5]. The classifications, Types I, II, and III, should carry over. 

Among other interesting issues in moving to the circuit level are how cellular features 

contribute to network excitability and integrative properties. For example, it would be 

surprising if rhythmic network properties were not enhanced by cellular properties like, say, 

for gamma oscillations the properties of fast-spiking interneurons as resonators.

Many of the insights that we have obtained about neuronal dynamics could be made 

transparent by way of geometrical analysis. We have exploited reduced two-variable models 

to employ phase plane methods and exploited timescale differences to carry out fast/slow 
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analysis. Some of the qualitative insights have been further supported with computations on 

less idealized models, models that implement more quantitative biophysical instantiations of 

particular neurons. A general take-home message is that, qualitatively, excitability depends 

on a fast regenerative process (like sodium current activation for an action potential’s 

upstroke) and a slower negative feedback process to restore the resting state and/or to enable 

recovery and prepare the system for the next cycle, in the case of oscillations. In the case of 

Type III excitability an essential feature is the presence of a subthreshold dynamic negative 

feedback, an intrinsic dynamic process (not necessarily slow) that can filter slow inputs and 

preclude firing.

Neuronal systems are inherently dynamic: at the cellular level, for spike generation and 

patterns of spiking in response to changing and noisy inputs from many synapses; at the 

circuit level, for ensemble activity that may involve synchronization and waves or more 

complex patterning; at the system level, for coding, perception, and cognitive functions such 

as decision making. Some basic insights have emerged from the development and study of 

linear or nearly linear models for neuronal systems (cable theory for dendritic integration, 

lateral inhibition for sensory processing representation of information, feature detectors in 

the visual system for feed-forward architectures). But nonlinearities (thresholds, saturation, 

amplifications, etc.), complex architectures (feedback loops, delays, nonlocal and sparse 

coupling, etc.), stochastic effects, and plasticity of connections present challenges for 

mathematical and computational approaches. The combination of developing idealized 

models and applying the qualitative findings to specific neuronal systems, sometimes with 

more quantitative models, has proven worthwhile as we seek theories to understand 

computations by neuronal systems. What are the neuronal systems trying to compute and by 

what mechanisms do they compute?
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Figure 1.1. 
A: Excitability in response to a brief current pulse (duration, 1 ms) for the Hodgkin-Huxley 

(HH) model. Weak pulse (Iapp = 5 μA/cm2) gives subthreshold response. Large enough 

pulse (Iapp = 20 μA/cm2) elicits a single spike, with response-amplitude nearly independent 

of input strength (if Iapp exceeds critical value). B: Repetitive firing in the HH model in 

response to steady current for Iapp with values in a certain range. Firing frequency increases 

with Iapp. Time bar, 10 ms. (Adapted from [4, figs. 1 and 5] with permission from Elsevier.)
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Figure 2.1. 
Onset of repetitive firing for Morris-Lecar with one steady state (Type II). A: Nullclines for 

different values of Iapp (60, 160, and 260 μA/cm2), corresponding to excitable, oscillatory, 

and nerve block states of the system. B: Bifurcation diagram, voltage vs. Iapp. 

Destabilization of steady state by Hopf bifurcation. Thin solid curves, stable steady state; 

thin dashed curves, unstable steady state; thick solid curves, maximum and minimum V of 

the stable limit cycle; thick dashed curves, maximum and minimum V of the unstable limit 

cycle. Shaded area corresponds to range of Iapp where system is bistable. C: Frequency vs. 

current curve for stable limit cycles in B. (Adapted from [4, fig. 12] with permission from 

Elsevier.)
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Figure 2.2. 
Onset of repetitive firing for Morris-Lecar via saddle-node- homoclinic bifurcation (Type I, 

excitability). A1: Schematic of V – w phase plane with steady states (filled circles, stable 

steady states; open circles, unstable), nullclines (dotted curves), and trajectories going in and 

out of the saddle point (solid curves). The curves are slightly modified from the actual 

computed ones for easier viewing; in particular, actual trajectories would not have extrema 

away from nullclines. A2: Schematic of change in phase plane with change of Iapp; unstable 

manifolds of saddle create a “circle” with saddle and node for Iapp below threshold for 

repetitive firing and limit cycle for Iapp above threshold. B: Time course of voltage for Iapp = 

40 μA/cm2. C: Bifurcation diagram. Notation as in Figure 2.1 B. D: Frequency vs. current 

relation for periodic orbits as represented in C. Dashed portion corresponds to unstable 

periodic orbit. (Adapted from [4, fig. 14] with permission from Elsevier.)
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Figure 3.1. 
Square wave burster: Morris-Lecar model with IK–Ca current and slow calcium dynamics. A: 

Bursting time course. Ca is playing the role of a slow variable, accumulating during the 

burst and slowly decaying during the silent phase. This slow modulation (timescale of 

hundreds of milliseconds) is entered into the original equation through the IK-Ca term: IK-Ca 

= gK-Ca(1 − z)(V – EK) where z = Ca0/(Ca + Ca0). B: Bifurcation diagram with z as a 

parameter. Arrows show direction of change of z during the firing and during the silent 

phase. C: Bistability in the fast subsystem with z frozen at some value within the burst cycle. 

(Adapted from [4, figs. 15 and 16] with permission from Elsevier.)
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Figure 3.2. 
Spontaneous population activity of a network of neurons in a segment of an embryonic 

chick spinal cord, excised and recorded in vitro. Recordings are with a large suction 

electrode that provides the averaged output of the motoneuron population. (Adapted from 

[60, fig. 1] with permission from the author.)
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Figure 3.3. 
Fast/slow treatment of model (3.3) for episodic activity in developing chick spinal cord. A: 

Bifurcation diagram of the a – d subsystem with s as a parameter. There is an S-shaped 

curve of the steady states (solid, stable; dashed, unstable), periodic orbits are shown with 

minimal and maximal a values (thick curve). Bursting solution of the full system is 

overlayed on top. B: Time courses of a and s of the same solution as in A. Time is in 

arbitrary units here; activity, a(t), is relative to a maximum. (Adapted from [4, fig. 22] with 

permission from Elsevier; see also [60]).
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Figure 3.4. 
Relationship between episode duration and interval preceding the episode. (A) Time course 

of activity generated by the s-model for different intervals between a spontaneous episode 

and a triggered (stim) episode. (B) Plot of episode duration against preceding interval for the 

model; a, b, c correspond to the time courses shown in A. (C) Time course of activity 

generated by a spinal cord obtained from a 10-day-old chick embryo. Stimulations (stim) 

were applied at different time intervals after a spontaneous episode. Traces were high-pass 

filtered at 0.01 Hz. (D) Plot of episode duration against preceding interval for evoked (black 

circles) and spontaneous (gray circles) episodes; d, e, f correspond to the records shown in 

C. (Adapted from [59, figs. 2 and 3] with permission from the author.)
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Figure 3.5. 
Noise-induced transitions in fast-slow dynamics of a model for a bursting pacemaker in a 

respiratory brain stem network. The bursting model is reduced to a two-variable slow-wave 

oscillator by precluding spikes during the active phase (AP). The slow negative feedback is 

due to slow inactivation, gating variable h (0 ≤ h ≤ 1), of a persistent sodium current. Noise 

is included as an additive current source (Ornstein-Uhlenbeck noise) in the model’s current 

balance equation. (a) and (b): Time courses of V and h, and trajectories in the V – h phase 

plane. The h-values at the transitions fluctuate around the mean, which is indicated by 

dashed horizontal lines and dots; histograms (labeled ρ) for h-values in (b) for transitions 

were obtained from simulation. (c) and (d): Probability density functions for transitions and 

silent-phase (SP) durations obtained from simulation and analysis. Good agreement of 

analysis (solid curves) with simulation is seen in (c); modest discrepancies in (d) between 

the simulation (histogram of SP durations) and the analysis (solid curves) are discussed in 

[36, appendix]. (Adapted from [36, fig. 3] with permission from Springer.)
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Figure 4.1. 
A: Schematic diagram of the Jeffress conceptual model [31] for sound localization: a place 

code based on delay lines and coincidence detector neurons (illustration by C. Carr, adapted 

from [34, fig. 7] with permission from the author). B, C: ITD tuning curves for pure tone 

inputs: extracellular recordings of spike frequency versus ITD from the barn owl (B) and 

gerbil (C). For the barn owl, tuning curves are narrow compared to the physiological ITD 

range (i.e., ITDs encountered naturally), ± 250–280 μs, and their different peak positions 

corresponds to the place map. For the gerbil, ITD-tuning curves are broad, and their peaks 

can lie outside the physiological range (±120 μs, shaded in (C)). See discussion for slope 

codes. (Adapted from [2, fig. 1] with permission from Elsevier.)
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Figure 4.2. 
The firing properties of MSO neurons. A: In response to a step current injection, MSO 

neurons showed only a single spike when the stimulus exceeded the threshold (phasic 

firing). B: Neurons did not fire in response to a slow triangular current-ramp stimulus, 

whereas faster stimuli evoked single spikes. C: After an application of DTX (a drug that 

blocks IKLT), the cells fired tonically and responded with spikes to a slow current-ramp 

stimulus (D). (Adapted from [56, fig. 1] with permission from the author.)
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Figure 4.3. 
Slope sensitivity of the RM03 model for ramps. Right: Voltage time courses of the RM03 

phasic model in response to ramp stimulus with different slopes (left). (Adapted from [21, 

fig. 2] with permission from PLoS.)
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Figure 4.4. 
Dynamic response properties and phase plane analysis of the V – U reduction of RM03 

model. A and B: Bifurcation diagrams of the phasic V – U model (A) and the tonic V – U 

model with gKLT frozen (B). Stable steady state (black solid) destabilizes at I = 287 pA 

when gKLT is frozen. Subcritical Hopf bifurcation leads to periodic orbits that stabilize for 

large amplitude and correspond to repetitive firing for I in the range of 287 to 396 pA (red 

bold line). Compare to Figure 2.1 B. C and D: Phase-plane portraits for the phasic V – U 

model (C) and the tonic V –U model (D) for different values of I. Steady state remains on 

the left branch for all I for the phasic model but migrates to the middle branch as I increases 

for the tonic model, corresponding to Hopf bifurcation and repetitive firing (panel B). For an 

increasing I, the phasic model will fire only if the V -nullcline falls fast enough (I increases 

fast enough); the tonic model will fire as long as I increases enough, regardless of speed. 

(Adapted from [40, fig. 4] with permission from the authors.)
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Figure 4.5. 
“Interaural” phase tuning curves (firing rate versus IPD, ΔP) for the phasic (left) and tonic 

(right) V – U model for 100 Hz input. Different curves correspond to different noise levels σ 

(in pA). The sinusoidal amplitude is 600 and 300 pA for the phasic and tonic model, 

respectively. (Adapted from [40, fig. 5] with permission from the authors.)
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