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The acute cellular response to stress generates a subpopulation of
reversibly stress-tolerant cells under conditions that are lethal to
the majority of the population. Stress tolerance is attributed to
heterogeneity of gene expression within the population to ensure
survival of a minority. We performed whole transcriptome se-
quencing analyses of metastatic human breast cancer cells sub-
jected to the chemotherapeutic agent paclitaxel at the single-cell
and population levels. Here we show that specific transcriptional
programs are enacted within untreated, stressed, and drug-
tolerant cell groups while generating high heterogeneity between
single cells within and between groups. We further demonstrate
that drug-tolerant cells contain specific RNA variants residing in
genes involved in microtubule organization and stabilization, as
well as cell adhesion and cell surface signaling. In addition, the
gene expression profile of drug-tolerant cells is similar to that of
untreated cells within a few doublings. Thus, single-cell analyses
reveal the dynamics of the stress response in terms of cell-specific
RNA variants driving heterogeneity, the survival of a minority
population through generation of specific RNA variants, and the
efficient reconversion of stress-tolerant cells back to normalcy.
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Amajor barrier to successful cancer treatment is the re-
currence of cancer cells with acquired resistance to che-

motherapy (1–3). However, the molecular events underlying cancer
cell evolution toward a drug-resistant phenotype are largely un-
known. Recent studies using next-generation sequencing (NGS)
systems have attempted to identify the genetic changes that drive
tumorigenesis and resistance to treatments (4, 5). These sequenc-
ing studies have revealed that many of the resistance-imparting
mutations identified are different from tumor to tumor. In addition
to heterogeneity across tumors from different patients, intratumor
heterogeneity adds another level of complexity. Minor sub-
populations of cancer cells can harbor aberrations that are asso-
ciated with resistance to therapy and tumor progression (6–8).
Thus, treatments may be effective against the majority of the tu-
mor, but a small population of resistant cells can cause the per-
sistence, recrudescence, or recurrence of cancer that is refractory
to further treatment. Sequencing studies on bulk tumor tissue can
only identify mutations present in subpopulations of a heteroge-
neous tumor in a limited capacity. By sequencing the transcriptome
of single cells in depth, low abundance mutations can be detected
that will facilitate identifying the drivers of drug resistance.
Recent advances have enabled the analysis of DNA and RNA

within a single cell. The coupling of whole genome amplification
and DNA sequencing have allowed multiple groups to study the
genetics of single cells, but not without significant amplification
biases (9–11). Moreover, single-cell exome sequencing con-
firmed the clonal heterogeneity of a solid tumor identifying key
mutations across much of the genome (12). DNA sequencing can
identify mutations across the genome, but is unable to illuminate
expressional differences that can contribute significantly to drug

resistance. Multiplexed single-cell quantitative PCR (qPCR)
assays allow expression-based analysis of up to 96 targets in
a single experiment (13). Recently, a few groups have demon-
strated that RNA-Seq of single cells using NGS technology is
feasible, reproducible, and usable for gene expression-based
classification of cell subpopulations (14–17). A major advantage
of RNA-Seq in single-cell studies is that the entire transcriptome
can be surveyed, rather than a limited number of genes. DNA
and RNA methodologies are not mutually exclusive and can be
combined to generate more biologically significant information.
Paclitaxel (Taxol) is a chemotherapy drug commonly used to

treat solid cancers including breast tumors (18). This toxin targets
microtubules to interfere with the mitotic spindle, resulting in cell
cycle arrest and ultimately apoptosis. Paclitaxel treatment kills
most tumor cells but, for the residual cancer cells, the mechanisms
of resistance are unclear (18). An important question is whether
mutations that drive drug resistance are common in a population
or arise from unique mutations in individual cells.
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Tumor cells are heterogeneous, and much variation occurs at the
single-cell level, which may contribute to therapeutic response.
Here, we studied drug resistance dynamics in a model of toler-
ance with a metastatic breast cancer cell line by leveraging the
power of single-cell RNA-Seq technology. Drug-tolerant cells
within a single clone rapidly express high cell-to-cell transcript
variability, with a gene expression profile similar to untreated
cells, and the population reacquires paclitaxel sensitivity. Our
gene expression and single nucleotide variants analyses suggest
that equivalent phenotypes are achieved without relying on
a unique molecular event or fixed transcriptional programs.
Thus, transcriptional heterogeneity might ensure survival of
cancer cells with equivalent combinations of gene expression
programs and/or single nucleotide variants.
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Here we leverage the power of single-cell RNA-Seq to identify
single nucleotide variants (SNVs) and gene expression at the
single-cell level in an insightful drug-tolerance experimental
paradigm. We evaluated three groups of cells from the human
breast carcinoma cell line, MDA-MB-231: untreated cells, stressed
cells that had been exposed to paclitaxel treatment for 5 d plus 1 d
drug free, and drug-tolerant cells from a small (n < 64) clonal
population of cells that resumed proliferation after paclitaxel
treatment. In addition to sequencing the mRNA of single cells, we
also performed DNA sequencing of a population of untreated
cells and RNA-Seq of a population from each of the three groups
to facilitate the identification of SNVs and RNA variants. We also
performed differential gene expression profiling for single cells
and population cells of the three groups to identify the tran-
scriptional stress response and cytotoxic effects of paclitaxel on
gene expression.

Results
Generation of a Paclitaxel Tolerance Paradigm in Metastatic Human
Cancer Cells and Isolation of Single Cells. To investigate the mo-
lecular events associated with the response of cancer cells to
drug-treatment followed by drug withdrawal that may be po-
tentially associated with drug tolerance, we exposed the pacli-
taxel-sensitive (IC50 < 10 nM) (18) metastatic human breast
cancer cell line MDA-MB-231 to paclitaxel (100 nM) according
to the regimen diagrammed in Fig. 1A. After 5 d of drug expo-
sure, most cells had died. Residual cells alive 1 d after paclitaxel
removal were considered to be a stressed cell population, and the
majority of these cells underwent apoptosis within 2–4 wk. A
small number of residual stressed cells resumed proliferation and
established clones, and such cells were considered to be drug-
tolerant cells (Fig. 1B). A drug–toxicity curve was also con-
structed using a range of paclitaxel concentrations (Fig. 1C). The
IC50 was ∼7 nM with ∼20% viable cells. Interestingly, reexposure
of the drug-tolerant cell population to paclitaxel resulted in these
cells becoming much more drug sensitive, with an IC50 of ∼0.2 nM.
This apparent increase in sensitivity was also found in pre-
cancerous MCF10A cells (Fig. 1C, Lower), indicating that this is
not an exclusive phenomenon of fully transformed cells and that
drug-tolerant cell populations retain a cellular memory of the prior
drug exposure. This result suggests that smaller paclitaxel doses
would be more effective in killing drug-tolerant cells. However, we
observed that higher doses of paclitaxel reduced the growth rate of
tolerant cells to a similar (MDA-231) or lesser (MCF10A) extent
than in naïve cells, indicating that high dosage of paclitaxel is
equally effective for drug-tolerant cells. These results suggested
that (i) phenotypic heterogeneity is reestablished after expan-
sion of these cells; (ii) drug tolerance is reversible; and (iii) the
new IC50 may reflect a protective preconditioning effect by
stopping cell growth even at lower concentrations of paclitaxel
on the drug-tolerant cells.

Early Drug Tolerance Dynamics Analysis at the Single-Cell Level. To
better understand the early events occurring soon after the onset
of proliferation of the rare drug-tolerant cells, we conducted
whole transcriptome sequencing analyses at the single cell level
for untreated, stressed and drug-tolerant (collected from a pro-
liferating clone at less than six cell divisions) populations. Five
single cells were isolated from each treatment group by picking
single cells with glass needles using micromanipulators over an
inverted microscope and immediately placing each cell in lysis
buffer (Fig. 1D). For whole population analyses, >10,000 pooled
cells were collected from each group. We used a linear RNA
amplification system for the whole transcriptome sequencing
(19). The use of such a system prevents reproduction of an error
introduced in earlier amplification cycles, a concern in exponential
amplification systems.

We generated similar average numbers of sequencing reads
for individual single cells and each cell population, 77 million
reads and 100 million reads, respectively (SI Appendix, Table S1).
With a somewhat similar number of sequencing reads, RNA-Seq
from single cells generated a much greater sequencing depth than
it did for cell populations. On average, we had 117 times coverage
for single cells and 23 times coverage for cell populations. By
contrast, RNA sequencing reads of the cell populations covered
5.4 times more genomic regions compared with that of a single cell
(SI Appendix, Table S2). This result indicates that with a compa-
rable number of reads generated, the single-cell RNA sequencing
generates less coverage than the cell population RNA sequencing,
with the consideration that each individual cell may be express-
ing only a fraction of the genes that are expressed in the bulk
population. Indeed, the fraction of genes expressed above 1
RPKM (or 1 adj-RPKM; Experimental Procedures) in single cells
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Fig. 1. Reversible phenotypic equilibrium in response to paclitaxel in cancer
cells. (A) Regimen for expansion of paclitaxel (Ptx) stress-tolerant cells.
Highly metastatic MDA-MB-231 naïve (yellow) cells were treated with Ptx
(100 nM) on day 1 and day 3. After 5 d, Ptx was removed, and cells were left
in a drug-free culture. Most stressed cells arrested (red) and ultimately died,
whereas rare drug-tolerant cells (orange) resumed proliferation after 10–15 d,
and clones were expanded. Five single cells per group were analyzed either
before treatment, 1 d after Ptx removal, as well as from recently estab-
lished (n < 64) or long-term expanded, drug-tolerant clones. Populations were
analyzed from long-term expanded clones. Frequencies of surviving stressed
and drug-tolerant cells observed are indicated between parentheses. Cell-to-cell
heterogenous RNA content is indicated with varying colors. (B) Bright field
images of untreated, stressed, and drug-tolerant cells at the indicated times
after drug removal. Total magnification is indicated. (C) Paclitaxel toxicity
assays on naïve or drug-tolerant MDA-MB-231 cells (Upper) and MCF10A cells
(Lower). Growth inhibitory concentrations 50% (IC50) are indicated. Data
shown are the mean ± SEM from a quadruplicated representative experiment.
(D) Bright-field image of an MDA-MB-231-Ptx-tolerant clone (n < 64) during
single cell collection by micromanipulation. The number of days in drug-free
culture is indicated at the top. The opening of the micropipette of roughly
20 μm is shown. Total magnification is indicated.
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compared with their bulk populations is only 20%, whereas
pooling and mapping the reads from each cell within the same
group resulted in a much greater approximation of the number
of genes expressed above the same threshold (SI Appendix,
Table S3).

Low-Abundance Novel RNA Variants in Single Cells Are Not Detectable
in Cell Populations. SNVs consist of somatic mutations propagated
from DNA and other RNA variants that are introduced by
processes such as RNA editing or errors in transcription. RNA
variants in our data are supported by sufficient evidence that
they are only present in the RNA sequencing reads and not in
any of the DNA sequencing reads. Novel SNVs are variants that
are not present in dbSNP (The SNP Database) (20). Variants in
dbSNP are common SNPs that are found in at least 1% of the

human population; therefore, they are not rare variants. Most of
the novel SNVs identified in single cells were not detected at the
cell population level, despite the fact that there were 2–10 times
more total SNVs found in cell populations than in single cells (SI
Appendix, Table S4) and that SNVs detected in the cell pop-
ulations cover more genomic regions than those from single cells,
as indicated above. Within comparable genomic regions where
there was at least 10 times RNA read coverage, there were about
6 times fewer SNVs detected at the population level than in
single cells. In most cases, the novel variants in single cells were
not the major variants in the cell populations, whereas most
dbSNP variants were shared between single cells and population
cells (Fig. 2A). Because the number of RNA variants called
could be directly related to the depth of sequencing, we com-
pared the amount of SNVs detected in both single cells and cell
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Fig. 2. SNVs identified at the single cell level. (A) The percentage of SNVs shared between single cells and their corresponding population was small. The
majority of novel variants in single cells were unique (gray bars) and not detected at the population level. Most of the common variants that were present in
a single cell and its corresponding population were known variants cataloged in dbSNP (orange bars). A relatively small number of unique SNVs were
detected in the population in genomic regions that had read coverage in both the single cell and population (green bars). Also see SI Appendix, Table S4. (B)
There were highly disparate variant rates within the different treatment conditions. Single cells from the stressed cell group (red triangles) contained about
two times more novel SNVs than did single untreated cells or single drug-tolerant cells. Drug-tolerant cells had a variant rate similar to that of untreated cells.
(C, Left) Cell-to-cell novel SNVs comparison. Novel variants are the ones that are not present in the dbSNP database. We only considered SNVs in genomic
regions where both single cells have at least 10 reads in the cell-to-cell comparison; therefore, the differences between two cells are not due to the differing
amount of coverage. The bar plot shows the average percent of novel shared variants between any two single cells for each group. (Right) Most known
variants present in one cell were present in another cell of any different group. The bar plot shows the average percent of known (dbSNP) shared variants
between any two single cells for each group. Also see SI Appendix, Fig. S3.
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populations at various depth of read coverage thresholds (SI
Appendix, Fig. S1). The number of SNVs was normalized by the
number of genomic bases with the corresponding depth of read
coverage to ensure that the difference in the number of SNVs
was not due to differences in genome coverage breadth. Strik-
ingly, most SNVs were found at genomic regions with less than
60 times read coverage, whereas the genomic regions with
deeper read coverage do not present more SNVs. Moreover,
more novel (non-dbSNP) variants were detected from single cells
than from populations regardless of the depth of coverage. In
contrast, more dbSNP variants were detected at the population-
cell level compared with the single-cell level at all depths of
coverage. Additionally, we observed that with a similar number
of uniquely mapped reads for single-cells vs. cell populations; the
latter have only slightly more transcriptomic bases with reads at
lower depth of coverage, but this difference is minimal or even
reverts in regions with higher depth of coverage (SI Appendix,
Fig. S2). Thus, with a similar amount of resources and effort,
RNA sequencing from single cells has increased sensitivity to
detect novel SNVs that are not apparent from RNA-Seq from
cell populations.

RNA Variation Is Similar in Drug-Tolerant Cells and Other Cancer Cells.
We measured the number of novel variants shared between any
two cells in the genomic regions where each single cell has at
least 10 times read coverage. Before paclitaxel treatment, un-
treated single cells shared about 30% of novel variants with any
other untreated cell. On exposing the cells to 5 d of paclitaxel
treatment, the stressed cells appeared to have accumulated ad-
ditional novel variants that were not previously present in the
untreated cells (Fig. 2B). On average, stressed cells shared 24%
of novel variants with each other, but fewer than 20% novel
variants in stressed cells were found in any single cell in either
the untreated or drug-tolerant group (Fig. 2C and SI Appendix,
Fig. S3). Although drug-tolerant cells were clonal, they shared
similar percentages of novel SNVs among themselves compared
with untreated single cells: about 25–45%. Drug-tolerant cells
and untreated cells shared about 30% of novel variants. Overall,
most novel variants in one cell were unique (Fig. 2C and SI
Appendix, Fig. S3). Furthermore, all single cells shared more
than 75% of the known dbSNP variants with any other cell of any
of the three groups (Fig. 2C). This result shows that those var-
iants cataloged in the dbSNP are not rare even at the single
cell level.
To compare our RNA-Seq variant calls and variant calls using

other single cell RNA-Seq datasets that used normal human cells
and other cancer cells, we performed SNV analysis with two
other published single cell RNA-Seq datasets using the same
SNV analysis method described in Experimental Procedures, in-
cluding single cells collected from human early embryos (21),
human embryonic stem cells (hESCs) (14, 21), and human
melanoma cells (14). Single-cell RNA-Seq from human early
embryos including oocytes, two-cell embryos, four-cell embyros,
and hESCs (passage 0) shows that as cells go through each cell
division, the number of novel variants progressively increases (SI
Appendix, Table S5). Importantly, the frequency of total cell-
specific SNVs, i.e., those not present in any other cell of the
drug-tolerant group, is about 4.7e-4/bp (∼7.8e-5 SNVs/bp/cell
division; SI Appendix, Table S6). Meanwhile, the polymorphism
frequencies from the other two datasets were 3.3e-4/bp for hES
cells, 7.0e-4/bp for cancer cells (14), 1.4e-4/bp for two-cell stage
human embryos, and 4.7e-4/bp for four-cell stage human em-
bryos, with 2.4e-4 SNVs/bp/cell division (21). Moreover, al-
though neither untreated cells nor long-term stressed cells are
monoclonal, the frequency of cell-specific SNVs in the latter is
greater, suggesting either that cellular stress may increase errors
in transcription such as when RNA polymerase inserts the wrong
base into the transcript, or RNA editing events, or those cells

that persisted in a permanent arrest state are rare cells preex-
isting in the heterogeneous untreated population.
To identify the RNA editing events, one needs to compare

DNA and RNA from the same cell. However, it is not yet pos-
sible to sequence whole genome DNA and whole transcriptome
RNA simultaneously from a single cell. To gain insight into
whether our single-cell RNA variants result from RNA editing, we
compared the base substitution patterns between our single-cell
RNA variants and other previously published RNA editing events.
A-to-G substitution is typically the most frequently occurring

RNA variants detected in other RNA editing studies (22–25).
Curiously, we found that after T-to-C, A-to-G substitutions were
the more frequent substitutions identified in our study (Fig. 3A).
In addition, most of the A-to-G RNA variants observed in the
single cells occurred in the intronic regions and UTRs (Fig. 3C), in
agreement with previous A-to-G RNA editing studies (24, 26, 27).

RNA Variants Found Only in Drug-Tolerant Cells Are Involved in
Microtubule Stabilization and Organization. In any single cell,
there were ∼5,000 cell line-specific SNVs that were different
from the human reference genome (hg19), and about 63,000 cell
line-specific SNVs were found in the population cells of all three
groups. After removing all cell line-specific variants, the remaining
DNA-RNA variants that passed all additional filters were con-
sidered to be RNA variants (Fig. 3B). The accuracy of the variant
calls was validated through pyrosequencing (SI Appendix, Table
S7). We validated the SNVs at 10 different loci on a new set of
single cells from independent groups of untreated MDA-MB-231
cells and different drug-tolerant clones. All of the SNVs identified
by pyrosequencing agreed with the ones detected using Illumina
HiSEq. 2000. To estimate the percentage of base calls generated
due to sequencing/amplification errors, we calculated the false-
positive SNV rate by comparing the fraction of known (dbSNP)
variants that were found only in a single cell but not in the pop-
ulation in comparable genomic regions (where both the pop-
ulation and the single cell have at least 10 times read coverage). In
most single cells, there are less than 5% false-positive variant calls
(SI Appendix, Table S4).
There were 38 RNA variants in at least three of five drug-

tolerant cells that were not present in any untreated or stressed
cells and were not detected in the population cells (SI Appendix,
Table S8). These RNA variants are identical at the nucleotide
level in the drug-tolerant cells. One of the variants present in all
five drug-tolerant single cells was located on chromosome 8
(chr8:17885150) and represented a missense mutation in the
PCM1 (pericentriolar material 1) gene that encodes a protein
essential for anchoring microtubules to the centrosome (28, 29).
PCM1 is involved in microtubule stabilization and assembly of
centrosomal proteins (29). Centrosome function is essential for
completion of interphase and mitosis (30), and aberrant cen-
trosomal activity has been implicated in tumor progression (31,
32). Three other RNA variants unique to the drug-tolerant single
cells were found in genes that were involved in microtubule or-
ganization and stabilization during mitosis: RAPGEF4, NUDCD3,
and KIAA1671 (Table 1). RAPGEF4 (Rap guanine nucleotide
exchange factor 4) was previously shown to interact with protein
complexes that were involved in microtubule polymerization and
organization (33, 34). RAPGEF4 protein is also known as ex-
change protein directly activated by cAMP 2 (EPAC2) and is one
of the binding partners of MAP1A (microtubule-associated pro-
tein 1A) (33). MAP1A is known to promote elongation and nu-
cleation of tubulin (35). Depletion of RAPGEF4 showed a
significant increase in paclitaxel-induced microtubule stabiliza-
tion in paclitaxel-resistant A549-T12 lung carcinoma cells and
partially restored paclitaxel sensitivity in a previous study (36). The
gene NUDCD3 encodes the NudCL (nuclear distribution gene
C-like) protein. NudCL has been shown to interact with the dynein
complex, a minus-end-directed microtubule motor (37), and is
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required for mitosis and cytokinesis (38). Depletion of NudCL
causes loss of dynein function, which leads to insufficient re-
cruitment of γ-tubulin to spindle poles and mislocalization of the
dynein complex during mitosis (37). The protein encoded by
KIAA1671 is involved in mitosis and chromosome segregation (39,
40). Antibodies against this protein were found in sera of breast
cancer patients that had developed autoantibodies (41). We also
analyzed the presence of SNVs in other genes known for their role
in paclitaxel resistance, including RAPGEF4. Most of these genes
showed variable depth of coverage (SI Appendix, Table S9), and
although other SNVs were called in some of these genes, only
RAPGEF4 presented a SNV in at least three of the drug-tolerant
cells (SI Appendix, Table S10). Interestingly, three different mis-
sense variants were found in three different survivor cells in the
same gene, RTN4. RTN4 protein was previously shown to se-
quester antiapoptotic proteins BCL2 and BCL-xL in the endo-
plasmic reticulum and prevent them from entering mitochondria
(42). The missense mutations in RTN can potentially alter its bind-
ing affinity for BCL2 and BCL-xL and increase the concentration of

the antiapoptotic proteins in the mitochondria, which could prevent
cells from entering apoptosis.

Stressed Cells Undergo a Paclitaxel-Induced Transcription Response
That Is Not Apparent in Drug-Tolerant Cells.Although acute changes
in gene expression (4–24 h) have been extensively analyzed for
a number of stressors including chemotherapeutic compounds,
the gene expression profiles in long-term stressed cells are
largely unknown. Single cells from our long-term stressed cell
group exhibited distinct gene expression patterns. We charac-
terized the cell type using the adjusted reads per kilobase per
million (RPKM) (Experimental Procedures) for 15 single cells
using principal component analysis (PCA). The first and second
PCA components clearly separated these stressed single cells
from the untreated and drug-tolerant cells by their gene ex-
pression profile (Fig. 4A). We also performed hierarchical clus-
ter analysis using the adjusted RPKM, and the same clustering
pattern was observed (SI Appendix, Fig. S4A). The differentially
expressed genes showed a long-term stress-induced response and
the effects of paclitaxel on microtubules and mitosis in stressed

Table 1. List of RNA variants present in at least three of five of the drug-tolerant single cells and not found in untreated or
stressed cells

RNA variants in drug-tolerant cells only Function Mutation Locus Δaa* Ref.

RAPGEF4 Rap guanine nucleotide
exchange factor (GEF) 4

Paclitaxel resistance Missense chr2: 173916571 L1785M (35)

AMOTL1 Angiomotin like 1 3′-UTR chr11: 94607183 — (42, 43)
PCM1 Pericentriolar material 1 Microtubule

organization and
stabilization

Missense chr8: 17885150 G227R (27, 28)
NUDCD3 NudC domain containing 3 Missense chr7: 44425714 H131D (36)
KIAA1671 Uncharacterized protein

KIAA1671
3-UTR chr22: 25592835 — (38, 39)

*Amino acid change.
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cells including down-regulation of genes involved in maintenance
of chromatin architecture, microtubule motor activity, mitosis,
DNA repair, mRNA splicing, mRNA polyadenylation, and chro-
matin binding. In addition, gene expression was up-regulated in
the following functional areas: cell–cell adhesion and signaling,
stress-induced response, apoptosis, glycolysis, amino acid bio-
synthesis, translation, protein folding, and protein modification
(Fig. 4C). The differential gene expression analysis between
stressed and drug-tolerant cells showed a reversed trend in up-
and down-regulation compared with that observed between un-
treated and stressed cells (SI Appendix, Fig. S4A). Differential
gene expression analysis between untreated and drug-tolerant cells
showed that microtubule motor activity, microtubule binding, and
protein kinase activity were up-regulated in drug-tolerant cells.
Furthermore, genes involved in mRNA splicing, mRNA tran-
scription factor activity, translation, and cell adhesion were down-
regulated in drug-tolerant cells. Interestingly, we find that ex-
pression of ITGA6 (integrin α6), histone demethylase KDM5A,
and IGF1R (IGF1 receptor) were each up-regulated in drug-
tolerant cells but not in untreated or stressed cells (SI Appendix,
Fig. S4 A and B). Expression of these genes was observed in the

majority of single cells as well as the population. Importantly,
our data are consistent with studies by Sharma et al. (8) that
implicated IGF1R signaling and an altered chromatin state
conferred, in part, by KDM5A as being required to maintain a dy-
namic drug-tolerant phenotype. Thus, despite apparent heteroge-
neity in single cells, our analysis captured known features of drug
tolerance conversion paths previously described with cell
population studies.
The averaged patterns of gene expression between untreated

and stressed or drug-tolerant groups of cells show a large number
of transcripts with diverging expression (SI Appendix, Fig. S6A).
However, a similar if not higher degree of divergence was found
between single cells from one drug-tolerant clone (SI Appendix,
Fig. S6B). The extent of divergence cannot be attributed solely to
possible differences in cell cycle stage as the same extent was
seen with stress-arrested single cells (SI Appendix, Fig. S6C).

Gene Expression Profiles of Single Cells Are Distinct from That of the
Population. To determine whether the gene expression profile of
the population is representative of that in a single cell, we per-
formed PCA and hierarchical clustering with the gene expression
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data from single cells, pooled single cells (combing all paired-end
reads of five single cells and treated them as one sample for read
mapping and gene expression analysis for each cell group), and
populations. The hierarchical clustering showed that pooled cells
clustered closer to the population cells in the untreated and
drug-tolerant groups (Fig. 4B). The single cells did not cluster
with their corresponding population, except for the stressed cells.
However, each stressed cell appeared to have distinct gene ex-
pression patterns; therefore, they did not cluster together as
tightly as untreated and drug-tolerant single cells (Fig. 4B and SI
Appendix, Fig. S5B). The distance between the stressed cell
population and the untreated population was farther than that
between the untreated and drug-tolerant populations, which
agreed with the pattern observed at the single-cell level. More-
over, great divergence of gene expression was found between any
drug-tolerant single cell and the averaged expression of the five-
cell group. These results indicated that gene expression in a sin-
gle cell is not reflected by the average expression found in the
five-cell group or in a large population of cells (Fig. 4B and SI
Appendix, Fig. S5B). These results underscore the value of single-
cell RNA-Seq to enhance the resolution of gene expression
analysis otherwise masked by averaged values of gene expression in
a bulk population.
The higher variability of single-cell gene expression compared

with bulk measurements makes it more difficult to find clear
patterns of differential gene expression in single cells, particu-
larly for those that are highly variable, as has been recently de-
scribed when performing RNA-Seq from normal single nuclei
from human neurons (43). Moreover, a much larger sample size
would empower a better examination for those transcripts that
are consistently highly variable.

Discussion
It has become technically and economically feasible to sequence
RNA from single cells, which enables highly sensitive detection
of rare SNVs and single cell-specific gene expression programs.
Such technologies will be critical for examining individual cells
from tissue biopsies of heterogeneous populations. For example,
we recently identified that TGF-β1 signaling represses the gene
expression program induced by DNA damage, and our immu-
nohistochemistry studies revealed heterogeneity of this phe-
nomenon in different cancer cells present in the same tumor
(44). Although not all rare variants are relevant to personalized
cancer treatment, some have the potential to drive drug re-
sistance or serve as biomarkers of therapeutic success. Thus, the
ability to detect rare SNVs and specific gene expression profiles
distinguishing drug terminally arrested vs. drug-tolerant single
cells at the very early onset of recurrence offers extremely
valuable information. This information may potentially provide
diagnostic/prognostic value to assess success or failure of cancer
chemotherapies shortly after administration and guide the se-
lection of appropriate treatments that will ultimately increase
therapeutic efficacy. Of note, performing single-cell trans-
croptomic analysis involves its own challenges and limitations
from the sample acquisition, data generation, data analysis,
and interpretation perspectives, which is now starting to gain
attention (17, 45).

Here, by using a single-cell RNA-Seq approach, we in-
terrogated both the RNA variants and expression levels present
at the very early onset of evolution of a monoclonal population
of drug-tolerant cells. We demonstrated that the majority of
novel RNA variants in a single cell were unique to that cell. Most
of the RNA variants shared among single cells or between pop-
ulations and any single cell were SNPs cataloged in the dbSNP.
The statistics of single-cell RNA-Seq for SNV identification is
summarized in Table 2. There were more SNVs detected in
stressed cells compared with untreated and drug-tolerant cells.
This finding could be the result of paclitaxel-associated down-
regulation of DNA repair that was detected in the differential
gene expression analysis.
Although it would be more rigorous to measured mutation

frequency at the DNA level, our data provide an indirect ap-
proximate estimation of the maximum effective mutation rate of
cancer cells from individual cells at the RNA level, with less than
5% of false-positive variant calls. Interestingly, the cell-specific
polymorphism frequencies we found in the datasets from
Ramsköld et al. (14) and Yan et al. (21) were very similar to ours
and among themselves, regardless of cells being normal or cancer
cells and the different protocols used in each study (SI Appendix,
Fig. S7). This result suggests that our single-cell RNA-Seq appears
to show equivalent if not superior base call fidelity than those
previously published.
We identified drug-tolerant-specific RNA variants that were

not found in untreated or stressed cells. Two of them resided in
genes that were previously reported to be involved in paclitaxel
resistance. One was a missense mutation located in RAPGEF4
that encodes a protein involved in microtubule polymerization
and organization (33, 34). The other was found in the 3′ UTR
region of AMOTL1. AMOTL1 protein interacts with the Hippo
pathway component TAZ, which is implicated in paclitaxel re-
sistance in breast cancer cells (46, 47). Four drug tolerant-spe-
cific RNA variants were found in genes involved in microtubule
stabilization and organization, including RAPGEF4, PCM1,
NUDCD3, and KIAA1671. Interestingly, expression of all these
genes is still quite variable between cell to cell of any group with
the sole exception of RAPGEF4, which is almost completely
undetected in all untreated or stressed cells compared with drug-
tolerant cells (SI Appendix, Fig. S9).
The PCA and hierarchical clustering analysis differentiates

distinct gene expression profiles of stressed cells from that of
untreated and drug-tolerant cells. This information could be
valuable in predicting the clinical significance of residual cancer
cells having either profile after chemotherapy. In fact, untreated
and drug-tolerant cells have quite similar gene expression pro-
files. The 50 most significant differentially expressed genes be-
tween untreated cells and stressed cells were those involved in
the stress response. Genes that are up-regulated in stressed cells
are involved in apoptosis, glycolysis, protein synthesis, cell-to-cell
adhesion, and signaling. Genes required for chromatin archi-
tecture, DNA repair, DNA replication, mRNA splicing, mRNA
polyadenylation, microtubule motor activity, and mitosis are
down-regulated in stressed cells, and their expression levels are
similar between untreated- and drug-tolerant cells. We observed
that expression of ITGA6, the histone demethylase KDM5A, and

Table 2. Statistics of SNV detection using single-cell RNA-Seq

Single-cell statistics Average

Percent transcriptomic coverage of single-cell RNA-Seq 8.3%
Percent of gene expressed in the population detected at the single-cell level 20%
Percent of non-dbSNP variants shared between any two single cells 30%
Percent of dbSNP variants shared between any two single cells 75%
Number of variants only present in the RNA but not in the DNA in a single-cell of MDA-MB-231 cell line ∼500
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IGF1R was each up-regulated in drug-tolerant cells but not in
untreated or stressed cells.
Drug-tolerant cells present gene expression profiles more

similar to untreated cells than to long-term stressed cells. These
cells could be either cells that became stressed and then resolved
the stress or cells that had been in a preexisting condition and
were never engaged in a stress response. However, these cells are
more sensitive to a second round of paclitaxel (Fig. 1C) and
present some SNVs in genes related to tubulin metabolism
showing a cellular memory of the damage previously encoun-
tered. This result would suggest that these cells have been
stressed, but obviously they enacted a rare program that ensured
survival. Drug-tolerant cells might originate from stressed cells.
When we performed hierarchical clustering on expressed genes
that are involved in cell cycle, DNA damage signaling, senes-
cence, drug resistance, metabolism, and apoptosis, we observed
that stressed cells are clustered together, but single cells within
the stressed group exhibit very distinct expression patterns
compared with each other (SI Appendix, Fig. S8). Thus, a single
molecular mechanism for drug tolerance might not be needed
because the diversity will ensure at any time a given cancer cell
containing the right gene expression and/or RNA variant will be
able to overcome massive stress.
Single-cell RNA-Seq not only allows us to detect cell-to-cell

transcript heterogeneity at the single nucleotide level, but it can
also identify gene expression heterogeneity among single cells.
By contrast, analyzing cell populations only generates an aver-
aged gene expression level in all cells.
Interestingly, it has been recently reported that to resolve the

stochastic gene expression heterogeneity found between single
cells, pooling the single cell RNA sequencing results from 30 to
100 single cells was able to reconstitute the averaged gene ex-
pression given by an entire population of cells (17). This obser-
vation might help to explain at least partially why pooling the
data will cluster closer to the actual population than with only
five cells (although our findings do not contradict these data but
agree with their proposed idea, because when comparing one cell
to another, they still find a high degree of variability). Our data
suggest that pooling five cells from different treatments or bi-
ological conditions is not sufficient to accurately reconstitute the
averaged expression of the populations.
Here we demonstrated that single-cell gene expression profiles

differ from profiles of their corresponding populations in sig-
nificant and illuminating ways. These data reveal logical con-
nections to genes involved in stress, cell proliferation, and cell
death. Importantly, we were able to trace the regeneration of
cancer cell heterogeneity in as few as six cell divisions after re-
suming proliferation from one founder drug-tolerant cell. This
colony led to the reestablishment of a heterogeneous response to
paclitaxel on further expansion, indicating that clonal evolution
of cancer cells can regenerate drug-tolerant and drug-sensitive
subpopulations. Use of this technique in a deeper examination
may further illuminate the underlying basis of such phenotypic
switching, as well as lead to the identification of genes not yet
implicated in cancer, cancer treatment, or other disease states.

Experimental Procedures
Cell Culture, Drug Treatments, and the Paclitaxel Paradigm. MDA-231 cells
were obtained from the Princeton Physical Sciences Oncology Center tissue
biorepository and routinely cultured in DMEM supplemented with 10%
(vol/vol) FBS. Taxol (paclitaxel; Sigma) was prepared as a 5 mM stock solution
in ethanol, and serial dilutions were prepared for toxicity assays.

The paclitaxel treatment paradigm was established as indicated in the
diagram of Fig. 1A. Briefly, 1 × 106 cells were plated in 100-mm culture dishes
for 24 h and then treated with 100 nM paclitaxel. After 3 d, fresh 100 nM
paclitaxel-containing media was added for another 2 d, totaling 5 d of
paclitaxel treatment. Cells were then rinsed with PBS and maintained in
drug-free culture with media replacement every 48 h, and clones of drug-
tolerant cells were expanded by the ring cloning technique. Cells still alive 1 d

after paclitaxel removal were considered residual cells undergoing a stress
response, most of which died within the next 2–4 wk. The clones of cells that
resumed proliferation are considered recurrent drug-tolerant cells. To calcu-
late the frequencies of stressed and drug-tolerant cells, the number of the
counted stressed or drug-tolerant founder cells was divided by the total
number of cells submitted to drug treatment.

Paclitaxel Toxicity Assays. Cell growth of naïve or expanded recurrent drug-
tolerant cells was determined as follows. Briefly, 25,000 cells were plated in
each well of 12-well plates and after 24 h were treated with vehicle-ethanol
or up to 100 nM paclitaxel-containing media. After 4 d, cells were fixed with
10% formaldehyde, and the IC50 was established by Giemsa staining (44).
Cell number was plotted as a percent of cells relative to vehicle control with
SE from four replicated wells from a representative experiment.

Cell Analysis Experimental Design. For the single cells, we performed RNA
sequencing on the RNAs from five naïve, five stressed (day 5 + 1 d drug free),
and five drug-tolerant cells from one clone at early growth (5 d paclitaxel +
15 d drug free). Thus, the RNA-Seq was on five drug-tolerant cells from
a unique clone. The clone shown in Fig. 1B is a clone that was ultimately
expanded from an individual cell up to >8 million cells (>23 population
doublings). This clone was used to generate data in Fig. 1C, and the results
were similar to three other clones. For population RNA-Seq, we used 10,000
naïve (untreated) MDA-231 cells, 10,000 stressed cells (day 5 + 1 drug free,
nonclonal), and 10,000 cells from three independent, new drug-tolerant
clones expanded as explained above to render various millions of cells per
clone. Finally, we focused on SNVs that would be present in different drug-
tolerant clones rather than in clone-specific ones. For that reason, we per-
formed pyrosequencing from additional single cells from different drug-
tolerant clones, as well as from additional untreated single cells obtained as
described above.

Isolation of Single Cells and Cell Populations and cDNA Synthesis. Typically, five
single cells from populations of untreated, stressed, or proliferating drug-
tolerant cells obtained from single clones as indicated in Fig. 1 were collected
as follows. Media were removed and replaced by PBS at room temperature.
Single cells were picked within the next 10 min with <20-μm-diameter glass
needles using Narshige MO-188 and MN-188 hydraulic micromanipulators
over an inverted microscope, washed, and immediately lysed in Prelude
Direct Lysis Module (NuGEN Technologies) on glass-mounted microdroplets.
For population analyses, >10,000 pooled untreated, stressed, or drug-tol-
erant cells were lysed. Snap frozen lysates were stored at −80 °C. cDNA was
generated for each single cell lysate using the Ovation RNA-Seq system
(NuGEN Technologies) per the manufacturer’s recommended protocols and
as described previously in Tariq et al. (48). Briefly, total RNA of cell lysate was
reverse-transcribed to first-strand cDNA using a combination of random
hexamers and poly-T chimeric primers and then converted to double-
stranded (ds) DNA using fragmentation and RNA-dependent DNA poly-
merase. Finally, the ds cDNA was amplified linearly using a single-primer
isothermal amplification process and purified by using MyOne carboxilic
acid-coated superparamagnetic beads (Invitrogen). The cDNA was prepared
for 15 individual single cells for library preparation. The quality and quantity
of single-cell cDNA were evaluated using the Agilent Bioanalyzer 2100 DNA
High Sensitivity chip (Agilent).

RNA-Seq Library Preparation and Sequencing. For paired-end whole tran-
scriptome library preparation, ∼0.5–1.0 μg cDNA of each sample was sheared
to a size ranging between 200 and 300 bp using the Covaris-S2 sonicator
(Covaris) according to the manufacturer’s recommended protocols. Frag-
mented cDNA samples were used for the preparation of RNA-Seq libraries
using TruSeq v1 Multiplex Sample Preparation kit (Illumina). Briefly, cDNA
fragments were end-repaired, dA-tailed, and ligated to multiplex adapters
according to the manufacturer’s instructions. After ligation, DNA fragments
smaller than 150 bp were removed with AmPure XP beads (Beckman Coulter
Genomics). The purified adapter ligated products were enriched using PCR
(14 cycles). The final amplified libraries were resolved on 2.0% agarose gel
and manually size-selected in the range of 350–380 bp. The final single cell
RNA-Seq libraries were quantitated using the Agilent bioanalyzer 2100 and
pooled together in equal concentration for sequencing. The pooled multi-
plexed libraries were sequenced in five independent sequencing runs, with
eight lanes per run, and generated 50-bp paired-end reads on HiSEq.
2000 (Illumina).

Whole Genome DNA Sequencing of Naïve MDA-MB-231 Cells. For high-
throughput sequencing, high-molecular-weight genomic DNA (gDNA) was
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obtained from MDA-MB-231 cells (Princeton PSOC). For the DNA library
prep, 1 μg of gDNA was first sheared down to 200–300 bp using the
Covaris S2 per the manufacturer’s recommendations. A target insert size
of 200–250 bp was then size-selected using the automated electropho-
retic DNA fractionation system LabChip XT (Caliper Life Sciences). Paired-
end sequencing libraries were prepared using Illumina’s TruSeq DNA
Sample Preparation Kit. Following DNA library construction, samples
were quantified using the Agilent Bioanalyzer per the manufacturer’s
protocol. DNA libraries were sequenced using the Illumina HiSEq. 2000 in
two flow cell lanes with sequencing paired-end read length at 2 × 100 bp.
Reads were demultiplexed using CASAVA (version 1.8.2).

Sequencing Reads Quality Control and Mapping. Reads were subjected to
a series of preprocessing steps. First, the sequencing adapter sequences were
removed from the reads using SeqPrep (github.com/jstjohn/SeqPrep). The
first nine bases from the 5′ end of the reads were trimmed due to nucleotide
biases introduced during cDNA synthesis. The quality of the preprocessed
reads was evaluated with FastQC (www.bioinformatics.babraham.ac.uk/
projects/fastqc/). The preprocessed reads were mapped as paired-end reads
with the Tophat package (v.1.3.2), using default parameters (49), against the
UCSC (University of California, Santa Cruz) hg19 human DNA reference.
Duplicates reads were removed using the rmdup option of samtools (50).
Uniquely mapped reads were used for all of the analyses in this paper. These
reads were extracted from the bam file generated by Tophat with tag
“NH:i:1” using GNU fgrep package (www.gnu.org/s/grep/).

SNV Calling. The SNVs in single-cell RNA were called using BamBam (51). For
all data analyses, we only used variants that passed the strand bias filter and
read quality filter and had a genotype accuracy likelihood score greater than
30. We identified two types of SNVs: known SNVs (those cataloged in dbSNP
Build ID: 137), and novel SNVs (those not present in the dbSNP). BamBam
uses a Bayesian mutation caller and can be run in either single-sample mode
or in a two-sample mode in which we used both DNA and RNA. Each mu-
tation was appointed a confidence score according to the genotype accuracy
likelihood. Variants with supporting reads only in the first or last third of
a read’s data were removed.

Determination of the SNV Rate. The SNVs were filtered to find those within
the exons of UCSCs known gene canonical transcripts, where the exon’s
average mapped read coverage in the cell line was greater than 50. Each cell
line’s variant rate was calculated by summing the total number of variants
that pass this filter and dividing by the total number of bases in exons with
average coverage greater than 50.

Identification of Common and Unique SNVs. To compare the SNVs between
a single cell and its corresponding population cells, we first identified the
comparable genomic regions where both the single cell and the population
cells of the same group have at least 10 times RNA-Seq read coverage. We
then identified the common and different SNVs between the single cell and
the population cells that are within the comparable genomic regions. For
identifying common and unique SNVs between any two single cells, we
performed all pairwise comparisons of single cells. We first identified com-
parable genomic regions where both single cells have at least 10 times RNA-
Seq read coverage. Then, we identified common and different SNVs between
the two single cells that are within the comparable genomic regions.

Detection of DNA-RNA Variants.DNA-RNA variants are the SNVs that are only
present in the RNA but not in the DNA. We identified the DNA-RNA
variants by comparing single-cell RNA-Seq data with the DNA sequencing
data from cell populations. DNA-RNA variants were detected for each of
the three single cell groups (untreated, stressed, and drug tolerant). We
first identified the DNA variants that were specific to the cell line by
comparing the population DNA to the human reference genome (UCSC
hg19). The population DNA was from two sources: one is from our whole
genome DNA sequencing (20 times), and the other is from ultra-deep
exome sequencing (200 times) (52). Next, we compared untreated RNA to
population DNA and the human reference and declared all differences as
DNA-RNA variants and those with sufficient evidence as RNA variants. An
event has sufficient evidence if there are enough reads in the RNA to
support the variant and enough coverage in the DNA to determine that
the variant seen in the RNA is not a DNA variant that is specific to the cell
line. RNA variants must be covered by at least 10 reads, and at least 4 of
the reads need to support the variant. In addition, at least 10% of the RNA
reads must support the variant. We also require 10 or more reads in the
population DNA, and none of the reads can support the RNA variant. We

identified the high-confidence RNA variants by requiring at least 100
reads in the cell line DNA at those loci, and none of the reads can support
the RNA variant. We continued to determine candidate RNA variants that
were newly emerged in the stressed single cells by comparing them to the
population DNA, human reference, and the untreated RNA. Lastly, we
identified RNA variants that had only occurred in the drug-tolerant cells
by comparing them to the population DNA, human reference, untreated
RNA, and stressed single cells. We performed additional filtering steps for
all of the RNA variants and removed all of the RNA variants that over-
lapped with SNP sites in dbSNP. We only considered RNA variants that
were within the accessible genome defined by the 1000 Genome Project
Consortium (30). To eliminate false-positive RNA variants, we used BLAT
(BLAST-like alignment tool) to ensure unique mapping of reads that
support any RNA variant (53).

Gene Expression Analysis. The number of reads per transcript was measured
using RSeQC (54). Whole transcriptome gene expression was calculated by
normalizing the read counts per transcript by the kilobases of the transcript
per million mapped reads that has at least 10 times coverage denoted as
adjusted RPKM (55). We characterized the single cells using gene expression
data for all 15 single cells and population cells from the three groups using
PCA and hierarchical clustering with 1,000 bootstrapping replications. A
matrix was generated with adjusted RPKM for each gene in each single cell
sample. Only those genes with RPKM > 0 in at least one sample were
retained for further analysis. The PCA was performed using FactoMineR (56)
to cluster the gene expression data. We used the Pvclust package in R to
perform the hierarchical clustering analysis using the Ward’s method with
distance measured in Euclidean distance (57). Differential expression analysis
was performed on single cells and population cells using DEGSeq that uses
a nonparametric approach with resampling to account for the different
sequencing depths (58). Functional classification of the differential ex-
pressed genes was performed using the PANTHER Classification System,
version 8 (www.pantherdb.org). Hierarchical clustering of differentially
expressed genes was performed using the heatmap function in R (version
2.15.1) (59).

PCR Amplification for Targeted SNV Pyrosequencing. Ten SNVs were selected
for validation with pyrosequencing using cDNA from nine different single
cells: two untreated cells, two stressed cells, and five drug-tolerant cells.
PCR primers and internal sequencing primers were designed using
Pyrosequencing Assay Design Software (Biotage) and were synthesized by
IDT. Amplicons were designed to be 100–200 bp long. Amplicons used in
pyrosequencing were amplified from cDNA used to generate HiSeq libraries.
Each PCR in a 50-μL volume contained the following: 5 ng cDNA, 0.1 μM of
each forward and reverse primer, 2.0 mM MgCl2, 200 μM dNTPs, 75 mM
Tris·HCl (pH 8.0), and 1.5 U of Titanium Taq polymerase (Clontech Labora-
tories). The amplification was performed in a Gene Amp PCR System 9700
Thermal Cycler (Applied Biosystems) under the following conditions: 95 °C
for 5 min, followed by 25 cycles of denaturing at 95 °C for 30 s and annealing
at the primer specific annealing temperature for 30 s, and a final extension
at 72 °C for 4 min.

Validating SNVs with Pyrosequencing. Fifty microliters of biotinylated PCR
amplicons was immobilized onto streptavidin-coated paramagnetic beads
(Dynabeads M-280-streptavidin; Dynal AS) in 2× binding wash buffer (10 mM
Tris·HCl, pH 7.5, 1 mM EDTA, and 2 M NaCl) and incubated at room tem-
perature for 15 min. The immobilized PCR product was treated with 100 μL
of 20 mM NaOH for 5 min to denature into single-stranded DNA. Single-
stranded DNA attached to the beads was washed twice with 1× annealing
buffer (200 mM magnesium acetate and 0.1 M Tris-acetate, pH 7.75).
Immobilized single-stranded DNA was resuspended in 20 μL of 1× annealing
buffer and 5 μL of sequencing primer at 10 μM. The sequencing primer was
annealed to single-stranded template at 95 °C for 2 min and then 50 °C for
8 min. Primed single-stranded template was sequenced using the PyroMark
Q24 system (Qiagen). SNV quantification was performed using the PyroMark
Q24 1.010 software (Qiagen).
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