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Abstract

Anomaly detection methods can be very useful in identifying unusual or interesting patterns in 

data. A recently proposed conditional anomaly detection framework extends anomaly detection to 

the problem of identifying anomalous patterns on a subset of attributes in the data. The anomaly 

always depends (is conditioned) on the value of remaining attributes. The work presented in this 

paper focuses on instance–based methods for detecting conditional anomalies. The methods rely 

on the distance metric to identify examples in the dataset that are most critical for detecting the 

anomaly. We investigate various metrics and metric learning methods to optimize the performance 

of the instance–based anomaly detection methods. We show the benefits of the instance–based 

methods on two real–world detection problems: detection of unusual admission decisions for 

patients with the community–acquired pneumonia and detection of unusual orders of an HPF4 test 

that is used to confirm Heparin induced thrombocytopenia — a life–threatening condition caused 

by the Heparin therapy.
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1. Introduction

Anomaly detection methods can be very useful in identifying interesting or concerning 

events. Typical anomaly detection attempts to identify unusual data instances that deviate 

from the majority of examples in the dataset. Such instances indicate anomalous (out of 

ordinary) circumstances, for example, a network attack (Eskin, 2000) or a disease outbreak 

(Wong et al., 2003). In this work, we study conditional anomaly detection (Hauskrecht et al., 

2007) framework that extends standard anomaly detection by identifying partial patterns in 

data instances that are anomalous with respect to the remaining data features. Such a 

framework is particularly promising for identifying unusual patient–management decisions 

or patient outcomes in clinical environment (Hauskrecht et al., 2007).

Our conditional anomaly detection approach is inspired by classification model learning. Let 

x defines a vector of input attributes (representing the patients state) and y defines the output 
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attribute (representing the target patient–management decision). Our goal is to decide if the 

example (x, y) is conditionally anomalous with respect to past examples (patients) in the 

database. In other words, we ask if the patient management decision y is unusual for the 

patient condition x, by taking into account records for past patients in the database. Our 

anomaly detection framework works by first building a discriminative measure d(·) that 

reflects the severity with which an example differs from conditional (input–to–output) 

patterns observed in the database. All anomaly calls are then defined relative to this 

measure. To construct d we rely on methods derived from classification model learning.

In particular, our method exploits discriminant functions often used to make classification 

model calls. We investigate and experiment with discriminative measures derived from two 

classification models: the Naïve Bayes model (Domingos & Pazzani, 1997) and the support 

vector machines (Vapnik, 1995).

The anomaly detection call for the current instance (patient) can be made with respect to 

either all patients in the database or their smaller subset. In this work we pursue instance–

based anomaly detection approach. The instance–based methods do not try to learn a 

universal predictive model for all possible patient instances at the same time, instead the 

model is optimized for every data instance (patient) individually. The instance–specific 

model Mx may provide a better option if the predictive model is less complex and the dataset 

is small (Aha et al., 1991).

An instance–specific methods typically rely on a distance metric to pick the examples most 

relevant for the comparison. However, standard distance metrics such as Euclidean or 

Mahalanobis metrics are not the best for the anomaly detection task since they may be 

biased by feature duplicates or features that are irrelevant for predicting the outcome y. 

Thus, instead of choosing one of the standard distance metrics we investigate and test 

metric–learning methods that let us adapt predictive models to specifics of the currently 

evaluated example x.

We investigate two metric–learning methods that were originally used for building non–

parametric classification models. The first method is NCA (Goldberger et al., 2004). The 

method adjusts the parameters of the generalized distance metric so that the accuracy of the 

associated nearest neighbor classifier is optimized. The second method, RCA (Bar-Hillel et 

al., 2005) optimizes mutual information between the distribution in the original and the 

transformed space with restriction that distances between same class cases do not exceed a 

fixed threshold. We test the methods and show their benefits on two real–world problems: 

identification of unusual patient management decisions for (1) patients suffering from the 

community acquired pneumonia, and (2) post–surgical cardiac patients on the Heparin 

therapy.

2. Methodology

2.1. Conditional anomaly detection

The objective of standard anomaly detection is to identify a data example a that deviates 

from all other examples E in the database. Conditional anomaly detection (Hauskrecht et al., 
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2007) is different. The goal is to detect an unusual pattern relating input attributes x and 

output attributes y in the example a, that deviates from patterns observed in other examples 

in the database. To assess the conditional anomaly of a we propose to first build (learn) a 

one–dimensional projection d(·) of the data that reflects the prevailing (or expected) 

conditional pattern in the database for y given x. The projection model d is then used to 

analyze the deviations of a’s to determine the anomaly. We say that the case a is anomalous 

in the output attribute(s) y with respect to input x, if the value d(y|x) falls below certain 

threshold. Our conditional anomaly detection framework can be used for a number of 

purposes. Our objective here is to use it detect anomalous patient–management decisions. In 

this case the input attributes x define the patients condition and the output attribute y 

corresponds to the patient–management decision we want to evaluate.

2.2. Discriminative projections

In our work we consider two methods for building discriminative projections d(·). Both of 

these methods are derived from the models used frequently in classification model learning: 

the Naïve Bayes model (Domingos & Pazzani, 1997) and the support vector machines 

(SVM) (Vapnik, 1995). The fact that we use classification models is not a coincidence. 

Classification models attempt to learn conditional patterns in between inputs x and class 

outputs y from the past data and apply them to predict the class membership for the future 

inputs. In our case, we aim to model the relation between input x and output patterns y and 

apply it to detect pattern deviations in the new example (x, y). In both cases the model 

learning attempts to capture the prevailing conditional patterns observed in the dataset and 

the difference is in how the learned patterns are used in the two frameworks.

2.2.1. Naïve Bayes model—A Naïve Bayes classifier (Heckerman, 1995) is a generative 

classification model used frequently in machine learning literature and comes with excellent 

discriminative performance on many ML datasets. The Naïve Bayes model is a special 

Bayesian belief network (Pearl, 1988; Lauritzen & Spiegelhalter, 1988) that defines the full 

joint probability of variables x and the class variable y as:

The model is fully defined by the following set of parameters: (1) prior distribution on class 

variable and (2) class–conditional densities for all features x. This decomposition reflects the 

major assumption behind the model: all features (attributes) of x are independent given the 

class variable y we would like to predict. We note that any probabilistic calculation can be 

performed once the full joint model is known. The parameters of the Naïve Bayes model can 

be learned using the maximum likelihood or the Bayesian approaches from the training data. 

We adopt the Bayesian framework to learn the parameters of the model and compute any 

related statistics. Let M define the Naïve Bayes model. In such a case the parameters θM of 

the model M are treated as random variables and are described in terms of a density function 

P(θM|M). To simplify the calculations we assume (Heckerman, 1995) (1) parameter 

independence and (2) conjugate priors. In such a case, the posterior follows the same 
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distribution as the prior and updating reduces to updates of sufficient statistics. Similarly, 

many probabilistic calculations can be performed in the closed form. The Naïve Bayes 

model predicts the class y by calculating the class posterior P(y|x). If one model is used then 

the class posterior is calculated as:

The Naïve Bayes model can be adopted for the anomaly detection purposes by defining the 

discriminative projection of an example (x, y) to be equal to the class posterior, that is: d(y|x) 

= P(y|x). In this case the projection has an intuitive probabilistic interpretation: an example 

(x, y) is anomalous if the probability of the decision y with respect to its input attributes x 
and past examples in the database is small. Moreover, the smaller is the probability, the 

more likely is the anomaly. We note that the Naïve Bayes model described here can easily 

extend to more complex generative models based on the Bayesian belief networks.

2.2.2. Support vector machines—The support vector machine (SVM) (Vapnik, 1995; 

Burges, 1998) is a discriminative machine learning model very popular in the machine 

learning community primarily thanks to its ability to learn high–quality discriminative 

patterns in high–dimensional datasets. In our work we adopt the linear support vector 

machine algorithm to build the conditional projection d for the anomaly detection purposes.

The linear support vector machine learns a linear decision boundary that separates the n–

dimensional feature space into 2 partitions corresponding to two classes of examples. The 

boundary is a hyperplane given by the equation

where w is the normal to the hyperplane, and w0 is the distance separating the “support 

vectors” —a set of representative training examples from each class which are most helpful 

for defining the decision boundary. The parameters of the model (w and w0) can be learned 

from the data through quadratic optimization using a set of Lagrange parameters (Vapnik, 

1995). These parameters allow us to redefine the decision boundary as

where only samples in the support vector set (SV) contribute to the computation of the 

decision boundary. To support classification tasks, the projection defining the decision 

boundary is used to determine the class of a new example. That is, if the value
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is positive then C(x) belong to one class, if it is negative it belongs to the other class. 

However, in our conditional anomaly framework we use the projection itself for the positive 

class and the negated projection for the negative class to measure the deviation:

In other words, the smaller the projection is the more likely is the example anomalous. We 

note that the negative projections correspond to misclassified examples.

2.3. Instance–specific models

Discriminative models used for anomaly detection purposes can be of different complexity. 

However, if the dataset used to learn the model is relatively small, a more complex model 

may become very hard to learn reliably. In such a case a simpler parametric model with a 

smaller number of parameters may be preferred. Unfortunately, a simpler model may 

sacrifice some flexibility and its predictions may become biased towards the population of 

examples that occurs with a higher prior probability. To make more accurate predictions for 

any instance, we resort to instance–specific predictive methods and models (Aha et al., 

1991). The models in instance–based methods are individually optimized for every data 

instance x. To reflect this, we denote the predictive model for x as Mx. The benefit of the 

instance–based models is its more accurate fit to any data instance; the limitation is that the 

models must be trained only on the data that are relevant for x. Choosing the examples that 

are most relevant for training the instance–specific model is the bottleneck of the method. 

We discuss methods to achieve this later on.

3. Selecting relevant examples

3.1. Exact match

Clearly, the best examples are the ones that exactly match the input attributes of the instance 

x. However, it is very likely that in real–world databases none or only few cases match the 

target case exactly so there is no or a very weak population support to draw any statistically 

sound anomaly conclusion.

3.2. Similarity–based match

One way to address the problem of insufficient population available through the exact match 

is to define a distance metric on the space of attributes C(x) that lets us select the examples 

closest to the target example x. The distance metric defines the proximity of any two cases 

in the dataset, and the k closest matches to the target case define the best population of size 

k. Different distance metrics are possible. An example is the generalized distance metric r2 

defined:

(1)

where Γ−1 is a matrix that weights attributes of patient cases proportionally to their 

importance. Different weights lead to a different distance metric. For example, if Γ is the 

identity matrix I, the equation defines the Euclidean distance of xi relative to xj. The 
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Mahalanobis distance (Mahalanobis, 1936) is obtained from (1) by choosing Γ to be the 

population covariance matrix Σ which lets us incorporate the dependencies among the 

attributes.

The Euclidean and Mahalanobis metrics are standard off–shelf distance metrics often 

applied in many learning tasks. However, they come with many deficiencies. The Euclidean 

metric ignores feature correlates which leads to “double–counting” when defining the 

distance in between the points. The Mahalanobis distance resolves this problem by 

reweighting the attributes according to their covariances. Nevertheless, the major deficiency 

of both Mahalanobis and Euclidean metrics is that they may not properly determine the 

relevance of an attribute for predicting the outcome attribute y.

The relevance of input attributes for anomaly detection is determined by their influence on 

the output attribute y. Intuitively, an input attribute is relevant for the output y if is able to 

predict or help to predict its changes. To incorporate the relevance aspect of the problem 

into the metric we adapt (learn) the parameters of the generalized distance metric with the 

help of examples in the database.

3.3. Metric–learning

The problem of distance metric learning in context of classification tasks has been studied 

by (Goldberger et al., 2004) and (Bar-Hillel et al., 2005). We adapt these metric learning 

methods to support probabilistic anomaly detection. In the following we briefly summarize 

the two methods.

(Goldberger et al., 2004) explores the learning of the metric in context of the nearest 

neighbor classification. They learn a generalized metric:

by directly learning its corresponding linear transformation A. They introduce a new 

optimization criterion (NCA), that is, as argued by the authors, more suitable for the 

nearest–neighbor classification purposes. The criterion is based on a new, probabilistic 

version of the cost function for the leave–one–out classification error in the k–NN 

framework. Each point i can now select any other point j with some probability pij defined 

as softmax function over distances in the transformed space:

A linear transformation A is then sought to maximize the expected number of correctly 

classified cases (with k–NN):
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where Ci is the set of cases that belong to the same class as i. Intuitively, the criterion aims 

to learn a generalized distance metric by shrinking the distance between similar points to 

zero, and expanding the distance between dissimilar points to infinity.

The algorithm and the metric it generates was shown to outperform other metrics for a 

number of learning problems. The method climbs the gradient of g(A), which is (xij being xi 

− xj):

(Bar-Hillel et al., 2005) and (Shental et al., 2002) define a different optimization criterion 

based on the mutual information. The advantage of their method (relevant component 

analysis – RCA) is the existence of the closed form (efficient) solution. Under the mutual 

information criterion, the class information is incorporated and optimized by computing the 

averages of class covariance matrices. The resulting matrix is obtained by

where Σ̂i is the sample covariance matrix of class i and A is the resulting transformation for 

the data. The disadvantage of the method is that it assumes Gaussian distribution for the 

classes.

4. Experimental evaluation

We test anomaly detection framework and its the instance–based methods on the problem of 

identification of anomalous patient–management decisions for two real–world clinical 

datasets.

4.1. Pneumonia PORT dataset

The Pneumonia PORT dataset is based on the study conducted from October 1991 to March 

1994 on 2287 patients with community–acquired pneumonia from three geographical 

locations at five medical institutions. (Kapoor, 1996; Fine et al., 1997). The original PORT 

data were analyzed by (Fine et al., 1997), who derived a prediction rule with 30–day 

hospital mortality rate as the outcome. The authors developed a logistic regression model, 

which helped to identify 20 attributes that contribute the most to the mortality rate of 

pneumonia. To explore the anomaly detection methods, we have experimented with a 

simpler version of the PORT dataset that records, for every patient, only the attributes 
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identified by Fine’s study (Fine et al., 1997). The attributes are summarized in Figure 1. The 

output attribute corresponds to the hospitalization decision.

To study our anomaly detection methods in PORT dataset, we used 100 patient cases (out of 

a total of 2287 of cases). The cases picked for the study consisted of 21 cases that were 

found anomalous according to a simple Naïve Bayes detector (with detection threshold 0.05) 

that was trained on all cases in the database. The remaining 79 cases were selected randomly 

from the rest of the database. Each of the 100 cases was then evaluated independently by a 

panel of three physicians. The physicians were asked whether they agree with the 

hospitalization decision or not. Using panel’s answers, the admission decision was labeled 

as anomalous when (1) at least two physicians disagreed with the actual admission decision 

that was taken for a given patient case or (2) all three indicated they were unsure (gray area) 

about the appropriateness of the management decision. Out of 100 cases, the panel judged 

23 as anomalous hospitalization decisions; 77 patient cases were labeled as not being 

anomalous. The assessment of 100 cases by the panel represented the correct assessment of 

unusual hospitalization decisions.

4.2. HIT dataset

Heparin–induced thrombocytopenia (HIT) (Warkentin & Greinacher, 2004) is a transient 

pro–thrombotic disorder induced by Heparin exposure with subsequent thrombocytopenia 

and associated thrombosis. HIT is a condition that is life–threatening if it is not detected and 

managed properly. The presence of HIT is tested by a special lab assay: Heparin Platelet 

factor 4 antibody (HPF4).

The HIT dataset used in our experiment was built from de–identified data selected from 

4273 records of post–surgical cardiac patients treated at one of the University of Pittsburgh 

Medical Center (UPMC) teaching hospitals. The data for the was obtained with University 

of Pittsburgh Institutional Review Board approval. The data collected for patients was 

obtained from the MARS system, which serves as an archive for much of the data collected 

at UPMC. The records for individual patients included discharge records, demographics, all 

labs and tests (including standard and all special tests), two medication databases, and a 

financial charges database. For the purpose of this experiment the data were preprocessed 

and used to build a dataset of 45767 patient state examples for which the HPF4 test–order 

decision (order vs. no–order) was considered and evaluated. The patient states were 

generated automatically at discrete time points marked by the arrival of a new platelet result, 

a key feature used in the HIT detection. A total of 271 HPF4 orders were associated with 

these states (prior of a test order is 0.59%) Each data–point generated consisted of a total of 

45 features that included recent platelets, platelet trends, platelet drops from nadir and the 

first platelet value, a set of similar values for hemoglobin and hemoglobin trends, whether a 

transfusion was done in last 48 hourse, an indicator of the ongoing Heparin treatment and 

the total time on Heparin.

To study the performance of our anomaly detection methods in the HIT dataset, we used 60 

patient state cases (out of a total of 45767 of cases). The cases picked for the study consisted 

of 30 cases with the HPF4 order and 30 cases without HPF4. Each of these 60 cases was 
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evaluated for appropriateness of HPF4 order by a pharmacy expert. 28 were found 

anomalous.

4.3. Experiments

All the experiments followed the leave–one–out scheme. That is, for each example in the 

dataset of patient cases (100 for PORT and 60 for HIT) evaluated by humans, we first learn 

the metric. Next, we identified the cases in E most similar to it with respect to that metric. 

The cases chosen were either the some number of closest cases (40 for PORT and 100 for 

HIT), or all the other cases (2286 for PORT or 45766 for HIT) in the dataset. We then 

learned the NB model or SVM and calculated the projection.

The target example was declared anomalous if its projection value fell below the detection 

threshold. The anomaly calls made by our algorithms were compared to the assessment of 

the panel and the resulting statistics (sensitivity, specificity) were calculated. To gain insight 

on the overall performance of each method we varied its detection threshold and calculated 

corresponding receiver operating characteristic (ROC). For the hospital deployment no all 

thresholds are acceptable. Consequently, for the evaluation we selected only that part of the 

ROC curve that corresponds to specificity equal or greater than 95%. The 95% specificity 

limit means that at most 1 in 20 normal cases analyzed may yield a false alarm.

5. Results

Tables 1 and 2 show the ROC statistics for the feasible detection range. We see that for both 

datasets and models, using the NCA metric and selecting the closest patients outperformed 

all other methods (except for NB for PORT where it ended up second best). Moreover, in 

most of the other cases local models (using only close patients) achieved superior 

performance over their global counterparts. Close patients let us fit better the predictive 

model to the target patient, while taking all samples into the consideration biases the 

population. Regarding local models, performances of Naïve Bayes and SVM projections are 

comparable. For the HIT dataset we also show traditional area under ROC for the full 

specificity range and PR (precision–recall) curve in table 3. The results in table 3 are 

qualitatively equivalent to those in table 2.

6. Conclusions

Conditional anomaly detection is a promising methodology for detecting unusual events that 

may correspond to the medical errors or unusual outcomes. We have proposed a new 

anomaly detection approach that uses the discriminative projection techniques to identify 

anomalies. The method generalizes previously proposed probabilistic anomaly detection 

framework (Hauskrecht et al., 2007). The advantage of the method is that it performs fully 

unsupervised and with the minimum input from the domain expert.

The new method was tested on the new Heparin induced thrombocytopenia dataset with 

over 40k patient state entries. The experiments demonstrated that our evidence–based 

anomaly detection methods can detect clinically important anomalies very well, with the 

detector based on the NB or SVM projections.
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Despite initial encouraging results, our current approach can be further refined and 

extended. For example, instance–based (local) models tested in this paper always used a 

fixed number of 40 or 100 closest patients (or more, if the distances were the same). 

However, the patient’s neighborhood and its size depend on the patient and data available in 

the database. We plan to address the problem by developing methods that are able to 

automatically identify and select only patients that are close enough for the case in hand.
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Figure 1. 
Attributes from the Pneumonia PORT dataset used in the anomaly detection study.
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Table 1

PORT dataset: Area under the ROC curve in the feasible range of 95%–100% specificity. Please note that the 

baseline value for the random choice is 2.5%, maximum is 100 %.

PORT dataset

metric model #cases area

any NB 2286 11.6 %

metric model #cases area

NCA NB 40 16.8 %

Mahalanobis NB 40 17.6 %

RCA NB 40 17.6 %

Euclidean NB 40 16.4 %

metric model #cases area

any SVM 2286 12.1 %

metric model #cases area

NCA SVM 40 19.0 %

Mahalanobis SVM 40 11.9 %

RCA SVM 40 10.4 %

Euclidean SVM 40 11.2 %
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Table 2

HIT dataset: Area under the ROC curve in the feasible range of 95% – 100% specificity. Please note that the 

baseline value for the random choice is 2.5%, maximum is 100 %.

HIT dataset

metric model #cases area

any NB 45766 3.0 %

metric model #cases area

NCA NB 100 30.7 %

Mahalanobis NB 100 16.2 %

RCA NB 100 16.2 %

Euclidean NB 100 12.0 %

metric model #cases area

any SVM 45766 21.9 %

metric model #cases area

NCA SVM 100 30.4 %

Mahalanobis SVM 100 18.6 %

RCA SVM 100 18.6 %

Euclidean SVM 100 28.9 %
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Table 3

HIT dataset: Area under the Receiver Operating Characteristic and Precision–Recall curves.

HIT dataset

metric model AU–ROC AU–PR

any NB 57.8 % 50.9 %

metric model AU–ROC AU–PR

NCA NB 90.6 % 90.8 %

Mahalanobis NB 84.9 % 80.5 %

RCA NB 84.9 % 80.5 %

Euclidean NB 85.3 % 78.9 %

metric model AU–ROC AU–PR

any SVM 87.3 % 86.6 %

metric model AU–ROC AU–PR

NCA SVM 90.8 % 90.6 %

Mahalanobis SVM 87.6 % 82.9 %

RCA SVM 87.6 % 82.9 %

Euclidean SVM 90.4 % 90.8 %
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