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Abstract

Recent reports of training-induced gains on fluid intelligence tests have fueled an explosion of 

interest in cognitive training—now a billion-dollar industry. The interpretation of these results is 

questionable because score gains can be dominated by factors that play marginal roles in the 

scores themselves, and because intelligence gain is not the only possible explanation for the 

observed control-adjusted far transfer across tasks. Here we present novel evidence that the test 

score gains used to measure the efficacy of cognitive training may reflect strategy refinement 

instead of intelligence gains. A novel scanpath analysis of eye movement data from 35 participants 

solving Raven’s Advanced Progressive Matrices on two separate sessions indicated that one-third 

of the variance of score gains could be attributed to test-taking strategy alone, as revealed by 

characteristic changes in eye-fixation patterns. When the strategic contaminant was partialled out, 

the residual score gains were no longer significant. These results are compatible with established 

theories of skill acquisition suggesting that procedural knowledge tacitly acquired during training 

can later be utilized at posttest. Our novel method and result both underline a reason to be wary of 

purported intelligence gains, but also provide a way forward for testing for them in the future.
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Can intelligence be improved with training? For the most part, the numerous training 

methods attempted through the years have yielded disappointing results for healthy adults 

(e.g., Detterman & Sternberg, 1982). Nonetheless, if an effective training method could be 

designed, it would have immense practical implications. Therefore, when Jaeggi, 

Buschkuehl, Jonides, and Perrig (2008) recently published some encouraging experimental 

results, they were greeted with remarkable enthusiasm. Cognitive enhancement is now a 

billion-dollar industry (“Brain sells,” 2013). Millions of customers buy “brain building” 

games and subscribe to “mental gyms” on-line where they perform various “cognitive 
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workouts” in the hope of raising their IQ (Hurley, 2012). Hundreds of millions of dollars are 

being invested in educational (e.g., Cogmed, http://www.cogmed.com), military, and 

commercial programs (e.g., Lumosity, http://www.lumosity.com) on the assumption that 

intelligence can be improved through training. But can it really? Given the massive societal 

resources that are at stake and the checkered track record of similar initiatives in the past 

(e.g., Detterman & Sternberg, 1982; Melby-Lervåg & Hulme, 2013; Owen et al., 2010), this 

claim must be evaluated very carefully. Here we present novel evidence that suggests 

reasons for skepticism. The evidence is not definitive and the question remains open. It leads 

directly to three other questions: (i) What is intelligence? (ii) How can we measure 

intelligence? (iii) How can we measure gains of intelligence? The first two of those have 

been debated and researched for over a century (see, e.g., Neisser et al., 1996, for an 

authoritative review). The last question, however, has not received the attention it deserves. 

One goal of this article is to point out how methodologically challenging it is to measure the 

change of a latent variable.

With respect to the first two questions, we adopt the popular (though not universally 

accepted) psychometric approach that both defines and measures fluid intelligence as the 

latent variable explaining the intercorrelations in performance on tasks such as analogy 

making, reasoning, and problem solving. This approach is grounded in the fact that 

individual differences in performance across a wide variety of cognitive tasks are positively 

correlated (Spearman, 1927). Through factor analysis, the matrix of intercorrelations can be 

explained in terms of a hierarchical arrangement with a general intelligence factor G at the 

apex and various more specialized abilities arrayed below it (Carroll, 1993; Jensen, 1998). 

The second tier in the hierarchy includes the distinction between crystalized (Gc) and fluid 

(Gf) intelligence (Cattell, 1963; Carroll, 1993). Gc refers to overlearned skills and static 

knowledge such as vocabulary, which undoubtedly accumulate with experience. In contrast, 

Gf refers to the ability to detect patterns and relations, solve problems, and “figure things 

out” in novel environments. Empirically, fluid intelligence predicts many forms of 

achievement, especially school achievement (Gottfredson, 1997). There is strong evidence 

that Gf is highly heritable—between 50% and 75% of the variance of intelligence test scores 

in healthy adults is linked to genetic variation (Neisser et al., 1996). Although heritability 

does not entail immutability (Dickens & Flynn, 2001), most psychometricians conceptualize 

Gf as a stable trait that is relatively immune to interventions in adulthood (Carroll, 1993; 

Jensen, 1998).

This is why a recent study by Jaeggi et al. (2008) triggered such excitement and controversy. 

The study used a pretest-train-posttest design with an untrained control group. A titrated, 

adaptive dual n-back task was practiced for up to 18 sessions in the experimental group (N = 

34) but not in the control group (N = 35). All participants were pre- and post-tested on two 

parallel short-form versions of a matrix-based Gf test—either Raven’s Advanced 

Progressive Matrices (Raven, Raven, & Court, 1998) or BOMAT (Hossiep, Turck, & 

Hasella, 1999). Whereas the results showed statistically significant score gains in both 

groups, the average gain in the trained group was significantly higher than that in the control 

(p < 0.05, , Jaeggi et al., 2008). The latter finding—a significant control-adjusted 

gain—was interpreted as an improvement in Gf and fueled the current boom in the cognitive 
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enhancement industry, as well as a big controversy in the scientific literature. Of particular 

relevance to the controversy is that the original study (Jaeggi et al., 2008) had various 

methodological shortcomings (Moody, 2009) and subsequent attempts to replicate the 

putative improvement in Gf have produced mixed results (e.g., Chooi & Thompson, 2012; 

Harrison et al., 2013; Jaeggi, Buschkuehl, Jonides, & Shah, 2011; Jaeggi et al., 2010; Redick 

et al., 2012; Thompson et al., 2013). This rapidly growing field is characterized by large 

variations in reported effect sizes (see Melby-Lervåg & Hulme, 2013, for a meta-analysis of 

23 studies), polarization of opinion, and contradictory reviews (e.g., Buschkuehl & Jaeggi, 

2010; Morrison & Chein, 2011, on the optimistic side; Melby-Lervåg & Hulme, 2013; 

Shipstead, Redick, & Engle, 2012, on the skeptical side).

The neurobiological interpretation of Gf (M. Anderson, 2005; Duncan et al., 2000) 

emphasizes its linkage to factors such as processing speed (Jensen, 2006; Sheppard & 

Vernon, 2008) and working memory capacity (Fry & Hale, 2000; Gray & Thompson, 2004; 

Halford, Cowan, & Andrews, 2007; Kane & Engle, 2002). The interest in the latter linkage 

surged after Jaeggi et al.’s (2008) publication because their participants trained on a WM 

task. The hypothesis that fuels the current enthusiasm is that WM training increases WM 

capacity (near transfer), which in turn improves Gf (far transfer). There is a strong analogy 

with athletics, where swimming workouts, for example, increase cardiovascular capacity, 

which in turn improves the general athletic ability. Thus, Jaeggi et al. (2011) characterize 

WM as “taking the place of the cardiovascular system.”

This hypothesis is simple and elegant but the methodology for testing it empirically is 

fraught with difficulties because an objective method for measuring Gf gains is required. 

The commonly used test-retest method is seriously flawed. The overwhelming majority of 

studies use test-retest score gains to measure Gf gains. This practice is based on the 

misleading intuition that if a test such as Raven’s APM is a valid measure of Gf, then a gain 

in the score on this test is a valid measure of Gf gain. This is not necessarily true because, in 

addition to Gf, the scores reflect non-Gf factors such as visuospatial ability, motivation, and 

test-taking strategy. The latter factors—and hence the test scores—can improve while Gf 

itself remains stable. Indeed, Raven’s APM scores increase significantly on repeated testing 

without any targeted training (e.g., Bors & Vigneau, 2003; Bors & Forrin, 1995; Denney & 

Heidrich, 1990). Worse, a large meta-analysis of 64 test-retest studies (te Nijenhuis, van 

Vianen, & van der Flier, 2007) indicates a strong negative correlation between score gains 

and the G loadings of test items. To control for such “mere retest” effects, the common 

practice in the field is to compare the score gains in the treatment group to those in an 

untreated control group. Cognitive enhancement advocates (e.g., Jaeggi et al., 2008) 

acknowledge the interpretive problems of unadjusted score gains but assume that control-

adjusted gains necessarily measure real gains in Gf. As we argue below, however, this 

assumption is incorrect because the adjustment does not guarantee validity either.

These methodological difficulties can be illustrated by analogy with athletics. In a classic 

study of motor skill learning (Hatze, 1976), an athlete practiced kicking a target as rapidly as 

possible. His performance improved at first and then plateaued. However, after seeing a film 

about kicking technique, the athlete immediately improved his time considerably and with 

additional practice was able to reach a much higher asymptote. For our purposes, this 
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illustrates the relationships between the following three variables. The first is kicking time, 

which was the only objective measurement. The second variable is general athletic ability, 

which includes factors such as cardiovascular capacity, agility, muscle strength, and so 

forth. The third is kicking technique—the optimal way to execute a kick so as to minimize 

kicking time, all else being equal. Importantly, because the kicking time reflects a mixture of 

athletic ability and technique, gains in kicking time can occur without any change in athletic 

ability. Indeed, watching a movie could not have changed the strength or agility of the 

participant in Hatze’s (1976) experiment. Analogously, gains in test scores can occur 

without any change in “brainpower” factors such as WM capacity or processing speed.

This brings us to the central topic of transfer across tasks. The most widely used inference 

pattern in the cognitive enhancement literature is to infer gains in Gf on the basis of control-

adjusted gains in test scores. This inference pattern logically requires the auxiliary 

assumption that only Gf can transfer across tasks. Few cognitive-enhancement advocates 

would endorse such a strong claim, and the more cautious authors explicitly disavow it, 

often near the end of their Discussion sections (e.g., Morrison & Chein, 2011, p. 58). But 

without this assumption, there is no logically necessary link from the observed control-

adjusted score gains to the theoretical conclusion of Gf gains. Why not? Because non-Gf-

related factors can transfer across tasks too.

The athletic analogy can easily be extended to illustrate this. Suppose that instead of 

watching a movie, the athlete in Hatze’s (1976) experiment practiced a seemingly unrelated 

task such as high jump. The problem is that tasks that seem unrelated on the surface can still 

share critical technical components. For example, the approach of the high jump may 

actually be as important as the take off. It requires the right amount of speed and the correct 

number of strides—factors that affect kicking too. So, if an athlete practices high jump for 

many hours and then can kick a ball faster than before, is this because the jumping practice 

improved the explosive power of their leg muscles? Or is it because it provided an 

opportunity to learn to control the approach better? In other words, was there transfer of 

athletic ability, of technical components, or both? These possibilities cannot be 

differentiated on the basis of measured gains in kicking speed alone. Analogously, a control-

adjusted gain on an intelligence test may stem from genuine Gf transfer from the training 

task, from transfer of some non-Gf -related component(s), or from a combination thereof.

Despite these interpretive problems, the research community continues to explore various 

combinations of treatment tasks, control tasks, and tests (see Morrison & Chein, 2011; 

Melby-Lervåg & Hulme, 2013, for recent reviews), and in many studies the only dependent 

variable is the (adjusted) gain in test scores from pretest to posttest. This approach treats the 

test as a black box and yields very few data points per participant, which exacerbates the 

practical difficulties inherent in multi-session between-subject designs. Progress has been 

slow and the results have been inconsistent and open to conflicting interpretations as 

referenced above. In the final analysis, the problems persist because no conclusive 

inferences can be drawn on the basis of test-retest comparisons alone. A richer data source is 

needed.
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There are two complementary ways to marshal more data to test whether WM training 

improves Gf. The first is to assess Gf not with a single test but with a broad battery of 

multiple tests. The second approach is to use tools from cognitive psychology to open the 

black box and investigate the actual processes that determine the test scores and the gains 

thereof. In this article we follow the second approach. The topic of multiple tests is 

introduced only briefly here and will be discussed in more detail later. This literature is in 

active development and the results are still tentative. Two emerging patterns are particularly 

relevant to the present analysis. First, when a battery of multiple Gf tests was administered 

before and after WM training, strong inter-test correlations were found as expected, and yet 

only some tests showed a significant control-adjusted transfer effect (Colom et al., 2013; 

Harrison et al., 2013; Jaeggi, Buschkuehl, Shah, & Jonides, 2014; Stephenson & Halpern, 

2013). This selectivity of transfer highlights that test scores and gains can index distinct 

aspects of the variability across individuals. The high inter-test correlation presumably 

reflects the shared Gf loading of scores, whereas the dissociable gains suggest plasticity in 

one or more non-Gf -related factors. This dissociation reinforces the methodological caveats 

discussed above. The second pattern that emerges from the recent literature is that the tests 

that did show significant control-adjusted transfer were tests with a prominent visuospatial 

component1 (Colom et al., 2013; Jaeggi et al., 2014). This raises the possibility that the 

experimental intervention in these and earlier studies (e.g., Jaeggi et al., 2008) may have 

improved the visuospatial ability rather than the fluid intelligence of the participants, via the 

visuospatial demands of the dual n-back task intended for WM training (Moody, 2009; 

Stephenson & Halpern, 2013).

In this article, we focus on Raven’s Advanced Progressive Matrices (APM, Raven et al., 

1998) as the paradigmatic example of the class of matrix-based visual analogy tests that are 

commonly used in cognitive enhancement research (Buschkuehl & Jaeggi, 2010). A Raven 

problem consists of a matrix and 8 response alternatives. There are multiple distinct 

relations among the entries in a given row or column (Figure 1, left). To answer the problem 

correctly, the participant must identify the relations and select the response that matches the 

pattern. This requires relational reasoning, pattern matching, working memory, executive 

control, and other abilities central to fluid intelligence. However, Raven scores also depend 

on test-specific factors, including a prominent visuospatial component. These factors are 

unrelated to Gf and are potential confounds in cognitive enhancement research. Thus, it is 

important to understand them, find ways to measure them, evaluate their potential to 

contaminate the assessment of Gf gains, and correct this contamination.

In this article we open the black box of Raven’s APM with the help of detailed eye-tracking 

data and a novel method for scanpath analysis (Hayes, Petrov, & Sederberg, 2011). This rich 

data source allows us to investigate the information-processing mechanisms associated with 

the observed gain in test scores. Arguably, this variable—the score gain on a matrix 

reasoning test—is the most frequently used and potentially misunderstood dependent 

measure in cognitive enhancement research.

1By contrast, the scores on verbal tests of Gf did improve from pre- to posttest in both studies, but the gains in the experimental and 
control groups were statistically indistinguishable.
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Recently we (Hayes et al., 2011) demonstrated that approximately 40% of the variance of 

Raven’s APM scores across participants can be predicted on the basis of individual 

differences in eye-fixation patterns. Critical for this success was a novel data-processing 

algorithm called Successor Representation Scanpath Analysis (SRSA, Hayes et al., 2011) 

that captures the statistical regularities of scanpath sequences of arbitrary lengths. SRSA 

uses temporal difference learning (Sutton, 1988) to represent these regularities by a fixed-

size matrix called a successor representation (SR, Dayan, 1993) that can be aggregated 

across trials and analyzed with standard multivariate methods such as principal component 

analysis (PCA, Everitt & Dunn, 2001). Importantly, the SRs are interpretable: Different test-

taking strategies give rise to characteristic SR patterns that can be traced in the human data 

(Figure 2). SRSA thus provides unprecedented insight into the role of strategic processing in 

matrix reasoning tests.

Our goal in this article is to apply this powerful new tool to investigate whether strategy 

refinement can account for the test-retest improvement of Raven scores. The answer is a 

clear yes. We observed a highly significant practice effect, replicating published results 

(Bors & Vigneau, 2003; Denney & Heidrich, 1990). Approximately 30% of the variance of 

score gains across participants could be predicted on the basis of individual differences in 

the changes in eye-fixation patterns as captured by SRSA. Moreover, the latter changes had 

a clear interpretation in terms of strategy refinement: Individuals that moved toward a more 

systematic scanning pattern at posttest also tended to improve their scores. Furthermore, 

when the strategy-dependent variance was partialled out, the residual score gains were no 

longer statistically distinguishable from zero. These results indicate that strategy is a critical 

latent variable and a strong potential confound that must be considered whenever matrix 

reasoning tests such as Raven’s APM are used to measure fluid intelligence gains.

Method

Thirty-five university students with normal or corrected-to-normal vision completed two 

short-form tests from Raven’s Advanced Progressive Matrices, Set II (Raven et al., 1998) on 

two separate days approximately a week apart. The participants were paid $6 per hour plus 

$1 bonus for each correct answer. Half of them completed items 2, 4, 6, 9 10, 11, 16, 17, 19, 

21, 23, 24, 26, and 29 on the first session and 1, 3, 5, 7, 12, 13, 14, 15, 18, 20, 22, 25, 27, 

and 28 on the second. The other half completed the same subsets in the opposite order. The 

instructions followed the Raven APM Manual guidelines for individual test administration 

(Raven et al., 1998). Between the two test sessions, 23 participants completed two additional 

sessions of paper-and-pencil training on Raven-like problems (Matzen et al., 2010). The 

remaining 12 participants were no-contact controls.

Each trial began with a brief alert sound. A fixation cross appeared on a 21” CRT monitor in 

a darkened room (Figure 1, right). After the participant fixated for 1 s, the Raven problem 

appeared and remained onscreen until the participant selected a response using the mouse. 

Eye-tracking data were collected on both test sessions2 using a desktop Eyelink 1000 tracker 

2Verbal “think aloud” protocols were also collected but are beyond the scope of this article. Hayes et al. (2011) analyzed an 
orthogonal partition of the eye-tracking data.
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(SR Research, 2006). Saccades and fixations were segmented with Eyelink’s standard 

algorithm using velocity and acceleration thresholds (SR Research, 2006). Each fixation was 

assigned to one of 10 distinct areas of interest (AOIs, see Figure 1 for details). A single AOI 

(labeled R) covered the entire response area so that the spatial layout of the answers could 

not be used to decode the participants’ choices. The few (<1%) fixations outside the 10 

designated AOIs were ignored.

Relational Item Scoring

Most APM items contain multiple distinct relations that must be extracted to arrive at the 

correct answer (Carpenter, Just, & Shell, 1990). However, it is often the case that even when 

items are answered incorrectly the participant still extracts some of the correct relations. On 

items in which incorrect answers captured some of the correct relations, we used that 

information to infer which relations were successfully extracted by the participant and were 

able to increase statistical power by capturing this information. Seven relational rules were 

identified within the APM items: the five rules introduced by Carpenter et al. (1990) plus 

two new rules, opacity and unique:

• Constant in a row (CIR): Relation in which an element is the same across rows, but 

changes down columns.

• Quantitative pairwise progression (PP): Relation in which an element increases or 

decreases down rows or across columns.

• Figure addition or subtraction (ADD/SUBTRACT): Relation in which an element 

from one column is added or subtracted from another column to produce a third 

column element.

• Distribution of three values (D3): Relation in which three values from a categorical 

attribute are distributed across a row or column.

• Distribution of two values (D2): Relation in which two values from a categorical 

attribute are distributed through a row, and the third value is null.

• Opacity (OPACITY): Relation indicating which figural elements occlude other 

figural elements when elements overlap.

• Unique (UNIQUE): Used to demarcate special relations that are specific to an 

individual APM item.

For every item, each of the eight responses were scored as a vector indicating whether they 

contained a given relation (1) or did not3 (0). See Figure 1 for an example item coding and 

Appendix A for the complete relational coding scheme. With this form of relational coding, 

the participant’s performance for each session was measured as the total number of relations 

extracted (i.e., the sum of their response vectors) during pre- and posttest, respectively.

3Four items (11,14,18,27) had responses where partial credit was awarded for relational capture.
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Successor Representation Scanpath Analysis

We used SRSA (Hayes et al., 2011) to assess changes in participant strategy by quantifying 

individual differences in pre- and posttest eye-fixation patterns. SRSA quantifies regularities 

in sequences of eye-fixations using temporal-difference learning (Sutton, 1988) to construct 

a matrix called a successor representation (SR, Dayan, 1993). The key idea behind SRSA is 

that upon observing a transition from one AOI to another, instead of simply updating the 

transition probability from the first to the second AOI, we associate the first AOI with the 

second AOI and all expected subsequent AOIs based on prior visits to the second AOI. In 

this way the SRSA algorithm learns to predict future scanpaths based on past scanpaths. 

After traversing the entire fixation sequence for a trial, the resulting SR can be 

conceptualized as having extracted the statistical regularities in temporally extended 

scanpaths. Specifically, an SR matrix contains, for each AOI, the temporally discounted 

number of expected future fixations to all AOIs (Dayan, 1993). Given their uniform size and 

that they are based on the same set of AOIs, the SR matrices from different observers and/or 

trials can be analyzed using standard statistical methods to identify significant pattern 

regularities for various comparisons of interest. Since we were interested in examining the 

change in strategy between pre- and posttest, our present approach was to use the differences 

between the pre- and posttest SRs to predict the difference between pre- and postest Raven 

performance.

The first step in SRSA is to convert each trial scanpath into a trial SR. Each trial scanpath 

was defined as the sequence of fixations across the 10 distinct AOIs (9 cells of the problem 

matrix and the response area) on a given trial.4 A successor representation (Dayan, 1993) 

was calculated for each trial scanpath, resulting in one 10 ×10 SR matrix M per trial for each 

participant. Each trial SR matrix is initialized with zeros and then updated for each transition 

in the scanpath sequence. Consider a transition from state i to state j. The ith column of the 

matrix—the column corresponding to the “sender” AOI—is updated according to:

(1)

where I is the identity matrix, each subscript picks a column in a matrix, α is a learning-rate 

parameter (0 < α < 1), and γ is a temporal discount factor (0 < γ < 1). The learning rate 

parameter α controls the incremental updating and γ controls the amount of temporal 

discounting. The latter term is the key to extending the event horizon to encompass both 

immediate and long-range transitions—it includes the discounted future states in the 

prediction from the current state. For example, suppose a participant scans the top row of a 

Raven problem systematically from left to right: 1 → 2 → 3 → 1 → 2 … Then the 

successors of location 1 will include both location 2 and, weighted by γ, location 3. After 

traversing the whole scanpath, the estimated SR matrix approximates the ideal SR matrix, 

which contains the temporally discounted number of expected future fixations on all AOIs 

(rows), given the participant just fixated on any individual AOI (column). Note that the 

entries in the SR matrix are not probabilities, they are (discounted, expected) numbers of 

visits. When γ is set to zero the SR is equivalent to a first-order transition matrix and as γ 

4Despite wide variability in sequence length, no sequence clipping (Hayes et al., 2011) was used to attempt to regularize the sequence 
length for the SRSA difference analysis.
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increases the event horizon is extended farther and farther into the future. Note also that the 

learning parameter α does not reflect a cognitive learning rate, but only the learning rate that 

optimizes the temporal-difference learning algorithm.

The second step in SRSA depends on the question of interest—in our case the contribution 

of strategy to Raven APM improvement. Since we were interested in examining strategy 

differences between sessions, the trial SRs were not averaged across both sessions as they 

were in Hayes et al. (2011). Instead, for each participant a difference SR matrix was 

computed by averaging across the session 1 trial SRs and session 2 trial SRs separately, and 

then taking their difference (mean session-2 SR minus mean session-1 SR), resulting in 35 

participant difference SRs. Conceptually, each 10 × 10 difference SR captured the difference 

in eye-fixation patterns between pre- and posttest for the corresponding participant. To 

reduce the dimensionality of this 100 feature space and prevent over-fitting, we performed a 

principal-component analysis (PCA, Everitt & Dunn, 2001) of the difference SRs.5 PCA is a 

standard machine learning technique for reducing dimensionality by finding the most 

informative viewpoints (i.e. variance-maximizing orthogonal rotations) of a high-

dimensional space. The result is a set of linear orthogonal variables called principal 

components. Conceptually, the principal components of the SR differences represent 

dimensions of individual differences in fixation patterns between pre- and posttest. These 

are expressed mathematically as orthogonal basis vectors in the 100-dimensional difference 

SR space. Each participant was characterized by 20 projections onto this rotated basis. The 

difference SR projections were then used as predictor variables in a multiple linear 

regression analysis to predict relational score gain (i.e. the difference in the number of 

relations extracted, posttest minus pretest).

The final step in SRSA is to optimize and cross-validate the model fit between the difference 

SR projections and relational score gain. We implemented a two-tier algorithm to maximize 

the fit. In the inner loop, it calculated the difference SRs for given parameters α and γ 

(Equation 1), then calculated the first 20 principal components and the corresponding 

projections for each participant, picked the three projections that correlated most strongly 

with the relational score gain, and constructed a linear regression model with these three 

predictors.6 In the outer loop, a Nelder-Mead optimization routine searched for α and γ that 

maximized the multiple regression coefficient of the inner-loop model. To guard against 

over-fitting, we performed leave-one-out cross-validation to test the generalization 

performance of the two-tier fitting algorithm. We partitioned the data into a training set of 

34 participants and a test set of 1 participant. We ran our two-tier algorithm on the training 

set. The parameters α and α optimized on the training set were then used to calculate the 

SRs for the fixation sequences in the test set. Finally, we calculated the model’s prediction 

of relational score gain by multiplying the test set difference SR matrix by the weight matrix 

estimated from the training set. We repeated this process 35 times, testing on the data from 

each participant in turn. This produced 35 predicted relational score gains, each one based 

on a model that had no access to the data that was subsequently used to test it. For all SRSA 

analyses a cross-validated ( ) fit is reported.

5Following standard PCA practice, we re-scaled each feature so that it had zero mean and unit variance across the 35 participants.
6Note for the subgroup analyses (N=11) a reduced set of 6 principal components were used.

Hayes et al. Page 9

Intelligence. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Results and Discussion

The relational scores varied between 13 and 32 (M=26.8, SD=4.6) at pretest and between 16 

and 33 at posttest across the 35 participants (M=29.0, SD=3.7). The relational score gain 

(posttest minus pretest) was 2.2 relations on average and varied across individuals (SD=3.9, 

min=−4, max=11).7 The practice effect was highly statistically significant (t(34) = 3.30, p 

= .001 (one-tailed), d = .56) and consistent with earlier reports of practice-induced effects 

(Denney & Heidrich, 1990; Bors & Vigneau, 2003). Our effect size (d = .56) was in the 

upper half of the range of effect sizes typically reported in the Gf enhancement literature 

(Melby-Lervåg & Hulme, 2013). The larger effect size may reflect the increased statistical 

power of our relational scoring scheme compared to Raven’s standard scoring. Despite this 

abundant statistical power, the paper-and-pencil training manipulation had no significant 

effect relative to the no-contact control (F(2, 32) = .98; paper-and-pencil M=2.6, SD=4.2; 

no-contact control M=1.4, SD=3.4). Thus even without training, Raven performance 

increased significantly. This illustrates that the mere test-retest procedure is sufficient to 

induce score gains even when short test forms are used.

A multiple linear regression was performed using the difference SR projections from the 

PCA to predict the relational score gain for each participant. Utilizing the two-tier fitting 

algorithm detailed earlier, the best fit R2 = .56 was achieved with three principal 

components, learning rate α* = .35, and discount parameter γ* = .29. As was shown in 

Hayes et al. (2011), eye-movement data are susceptible to overfitting and so it is essential to 

perform leave-one-out cross validation to test the generalization performance. Using cross-

validation we were still able to account for approximately a third of the variance in relational 

score gains from pre- to posttest: . Panel a in Figure 2 shows the average prediction 

weight matrix across the 35 leave-one-out fits and panel b plots the cross-validated 

predictions against the observed gains. The average prediction weight matrix reflects the 

sum of the principal components (scaled by their respective regression coefficients) 

averaged across the 35 leave-one-out fits.

Just as important as the amount of variance explained by the difference SRs is the clear 

interpretation offered by the prediction weights themselves. The dominant patterns that were 

observed in the difference SR principal components are reflected in the prediction weights. 

In particular, the diagonal box structure indicates systematic row-wise scanning (cf. Figures 

2a and 2c). This finding suggests that a significant portion of the practice effect was 

associated with refinements in information processing strategy whereby participants scanned 

rows of the problem more systematically and were less prone to haphazard scanning at 

posttest. In addition to the diagonal box structure indicative of a constructive matching 

strategy, the weight matrix in Figure 2a also has “hot spots” in the bottom-left and top-right 

corners. This pattern indicates an increase in the systematic scanning of cells 1 2 3 (top row) 

followed by cells 8 and 9 (which need completion), followed by inspection of the response 

area (cf. Figures 2a and 2d).

7The number of correctly solved problems increased by 1.5 on average (t(34) = 3.48, p < .001).
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To get a clearer picture of the differences between participants that improved and those that 

got worse, we ran separate cross-validated models for the 11 participants that improved the 

most and the 11 participants that performed worse or showed no improvement at posttest. 

For both subgroups, the difference SRSA was able to predict a significant portion of the 

variance in relational score (low group ; high group ). The average 

prediction weights across the 11 leave-one-out fits are shown in Figure 3. The low group 

prediction weights shows more diffuse weights with no clear diagonal structure as well as 

some off-diagonal values, indicative of more haphazard scanning. This means that 

participants whose scores stayed the same or worsened at posttest used the same or less 

optimal scanning strategies on session 2 relative to session 1. The high group prediction 

weights shows the opposite pattern with an even stronger diagonal box structure than the full 

model, which clearly shows a strategically driven improvement in relational extraction. The 

bottom-left and top-right weight pattern is also brought into better focus in this high-

improvement group. As discussed above, this pattern can be generated from a sequential 

systematic scanning of the first row, cells 8 and 9, and then the response area (Figure 2d). 

We interpret this sequential pattern as an indication that participants are checking their 

answer more carefully at posttest prior to selecting it. These results are a further 

demonstration that strategy refinement between pre- and posttest can account for changes 

(gains and losses) in Raven’s APM performance.

To determine whether our practice effect remained after removing strategic gains in our 

participants, we performed a residual analysis to determine whether the significant practice 

effect we observed would survive in the absence of the strategic improvements that are 

clearly evident from the SRSA analysis. In both the entire group (t(34) = .30) and even the 

high-improvement subgroup (t(10) = .25), the practice effect was no longer statistically 

significant after the SR covariate was partialled out.

General Discussion

In this article we used eye-tracking data and a novel method for scanpath analysis to 

investigate the information-processing mechanisms associated with practice effects on 

matrix-based visual analogy tests. The results showed significant test-retest gains in the 

Raven scores (Bors & Vigneau, 2003; Denney & Heidrich, 1990). Importantly, over 30% of 

the variance of score gains across participants could be attributed to refinements in problem-

solving strategies as revealed by characteristic changes in eye-fixation patterns. Moreover, 

when the strategy-related variance was partialled out, the residual score gains were no 

longer significant, even in the high-improvement subgroup. This indicates that strategy 

refinement is a powerful determinant of score gains—it controls a major portion of the 

variance and can change the substantive conclusion of an experiment. Consequently, it must 

be considered carefully when interpreting score gains on Raven’s APM and similar matrix-

based tests.

The central topic in the cognitive enhancement literature is the topic of transfer across tasks. 

We acknowledge that, given the lack of a transfer group in our experiment, our data do not 

bear directly on this topic. Nevertheless, the present article contributes to this literature in 

two ways: empirical and conceptual. The empirical contribution is to examine in detail the 
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information-processing mechanisms underlying the most frequently used dependent measure 

in the Gf enhancement8 field—the score gain on a Raven-like matrix test. Until recently 

(e.g., Buschkuehl & Jaeggi, 2010; Morrison & Chein, 2011), the overwhelming majority of 

positive reports of far transfer of WM training to fluid intelligence relied exclusively on 

control-adjusted score gains on such tests. In effect, our results provide unprecedentedly 

detailed information on the likely mechanism for the score gains observed in the control 

groups of these experiments. Further research is needed to investigate whether the same 

mechanism can account for the gains in the WM training groups as well. The parsimonious 

hypothesis is that it does, barring evidence to the contrary.

This hypothesis is also consistent with the longstanding distinction between the acquisition 

of skills and the improvement of abilities (e.g., J. R. Anderson, 2000). The former supports 

transfer only between tasks that have procedural and/or declarative knowledge in common, 

whereas the latter implies gains in general mechanisms and capacities that carry the potential 

for widespread transfer across diverse tasks. The difficulty of achieving such broad transfer 

has long frustrated educators. Decades of instructional research have demonstrated that it is 

hard enough to acquire specific skills but much, much harder to improve general abilities (J. 

R. Anderson, 2000). Given this general pattern, it seems much more likely that the transfer 

of WM training to Raven-like tests (Jaeggi et al., 2008) is due to skill acquisition—including 

strategy refinement—rather than improvement of Gf.

The conceptual contribution of this article is to articulate an assumption that is logically 

required for inferring Gf gains on the basis of test score gains—namely, that only Gf can 

transfer across ostensibly different tasks such as n-back and Raven’s APM. As we argued in 

the introduction, this assumption cannot be taken for granted because non-Gf -related factors 

can transfer across tasks too.

Consider motivation as a case in point: Participants who have invested time and effort to 

practice a challenging WM task are likely to be more motivated on the posttest compared to 

control participants. Higher motivation is expected to raise the test scores in the 

experimental group even when the treatment has no effect on fluid intelligence. When a 

suitably chosen “placebo” practice made the control participants equally motivated, their test 

scores improved by approximately the same amount in some studies (Redick et al., 2012; 

Melby-Lervåg & Hulme, 2013). Thus, motivation is an example of a factor that can 

sometimes transfer across different tasks and yet is clearly distinct from Gf. It should be 

mentioned that some studies (e.g., Jaeggi et al., 2011, 2014) suggest that motivation by itself 

cannot account for the totality of the improvement on reasoning tests. This fact, however, 

does not invalidate our general methodological point: It cannot be assumed that nothing 

except Gf can transfer from a WM task to a reasoning task. This is a substantive hypothesis 

that must be articulated explicitly and supported experimentally (Harrison et al., 2013; 

Shipstead et al., 2012).

Our results identify another factor that must be considered carefully: cognitive strategy. This 

is consistent with the evidence that strategy plays an important role in many tasks (e.g., 

8Of course, the broader field of cognitive enhancement employs a broad variety of dependent measures.
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Pressley et al., 1990; McCormick, Miller, & Pressley, 1989; Sternberg & Weil, 1980), tests 

(Bond & Harman, 1994), and specifically in Raven’s APM (Bethell-Fox, Lohman, & Snow, 

1984; Carpenter et al., 1990; Hayes et al., 2011; Vigneau, Caissie, & Bors, 2006). Hence the 

correlation between strategy refinement and Raven score gains is not too surprising. 

Nevertheless, it is notable how strong the correlation is and that it accounts for a significant 

portion of the improvement in test scores.

Raven’s APM includes a significant visuospatial component in addition to its well 

established Gf component. Jensen (1998) estimates that 64% of the variance in Raven’s 

scores are attributable to Gf. Other studies (e.g., Kane et al., 2004; Schweizer, Goldhammer, 

Rauch, & Moosbrugger, 2007) yield similar estimates. Thus, 30–40% of Raven’s variance is 

not related to Gf. While some of this residual variance is just random noise, some of it is 

systematic. In the study of Schweizer et al. (2007), for instance, there was 11% and 7% 

variance overlap between Raven’s APM and Horn’s (1983) visualization and mental-

rotation scales, respectively. This is not surprising given the visual nature of the test (Figure 

1). Theoretical (e.g., Carpenter et al., 1990), and computational (e.g., A. Lovett, Tomai, 

Forbus, & Usher, 2009) models of Raven’s APM also include a prominent visuospatial 

component. Analogous considerations apply to BOMAT (Hossiep et al., 1999) and all other 

matrix reasoning tests used in Gf enhancement research.

It is important to dispel a tempting interpretive mistake that arises at this point. For 

concreteness, let us assume that 60% of the variance in Raven’s scores are attributable to Gf, 

whereas less than 10% are attributable to visuospatial ability. One might argue on the basis 

of these figures that the the main Gf component dwarfs the visuospatial “contamination.” 

This is the rationale for the widespread acceptance of Raven’s APM as a unidimensional 

measure of Gf (Raven et al., 1998). However, these figures apply to Raven’s scores across 

individuals, whereas the dependent measure in WM training studies is the difference 

between two scores for the same individual. If Gf is a stable latent variable, it will contribute 

equally to the pre- and posttest scores and this contribution, no matter how large, will cancel 

out in the subtraction. Therefore, the variance of the score gains can have a radically 

different composition than the variance of the scores themselves. Indeed, a meta-analysis of 

64 test-retest studies (te Nijenhuis et al., 2007) found a strong negative correlation between 

score gains and the G loadings of test items.

This illustrates a general limitation of score gains—they can lead to fallacious conclusions 

and hence must be interpreted with great caution. Some prominent methodologists have 

even advised against their use altogether: “Gain scores are rarely useful, no matter how they 

may be adjusted or refined. … Investigators who ask questions regarding gain scores would 

ordinarily be better advised to frame their questions in other ways” (Cronbach & Furby, 

1970, p. 80).

Given that fluid intelligence is defined as the latent variable explaining the intercorrelations 

in performance on a wide spectrum of tasks (Cattell, 1963; Carroll, 1993; Jensen, 1998; 

Martínez et al., 2011; Spearman, 1927), one must employ a comprehensive battery of tests 

to evaluate whether Gf improves with practice at the latent level—that is, “at a level that 

represents the components of the variance common to the set of tasks indexing a given 
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ability” (Schmiedek, Lövden, & Lindenberger, 2010, p. 2). This methodological imperative 

is gradually being acknowledged in the field and there is a growing number of studies that 

administer multiple tests (Colom et al., 2013; Harrison et al., 2013; Jaeggi et al., 2014, 2011; 

Schmiedek et al., 2010; Stephenson & Halpern, 2013; von Bastian & Oberauer, 2013). As 

these studies are too complex to review in detail here, we will restrict our discussion to 

findings related to the topic of visual strategies.

These recent multi-test data suggest the possibility that the putative gain in fluid intelligence 

may actually be gain in visuospatial ability. The study of Stephenson and Halpern (2013) 

was designed to test this possibility. It included multiple training groups practicing purely 

visual, purely auditory, or dual versions of the n-back task. The results showed significant 

control-adjusted gains on only two out of four Gf tests and only for participants who had a 

visuospatial component in training. A limitation of Stephenson and Halpern’s (2013) design 

was that it tested transfer exclusively in the visual modality. By contrast, Jaeggi et al. (2014) 

included non-visual tests in the battery of outcome measures. The results showed significant 

transfer on the visuospatial reasoning tests in the visual training and the auditory training 

group, but no significant transfer on the verbal reasoning tests in either training group 

relative to the control group. Again, this is consistent with the hypothesis that transfer might 

be restricted to the visuospatial domain. Jaeggi et al. (2014) temper this conclusion with the 

caveat that the verbal reasoning measures have lower reliability and hence afford less 

statistical power than the visuospatial measures. A third study (Colom et al., 2013) also 

administered both visuospatial and verbal reasoning tests, and used item response theory 

(IRT) to derive indices of Gf and other constructs. No statistically significant transfer was 

obtained for any construct, although there was a trend for Gf (p < .06). This trend was 

undermined by the lack of significant near transfer to the WM construct (cf. Melby-Lervåg 

& Hulme, 2013; Shipstead et al., 2012). Moreover, once again the Gf transfer was limited to 

the visuospatial tests, whereas the verbal reasoning test improved equally in both training 

and control groups. A study with older adults (Stepankova et al., 2014) also found 

improvement in visuospatial skills following verbal n-back training. Finally, two studies 

(Schmiedek et al., 2010; von Bastian & Oberauer, 2013) report statistically significant Gf 

transfer at the latent level. Upon closer examination, however, these data too are compatible 

with the visuospatial hypothesis because the gain in the latent reasoning factor seems driven 

by visuospatial tests in both studies. This is hard to evaluate from von Bastian and 

Oberauer’s (2013) report because it tabulates the results only in terms of an aggregate 

reasoning score that lumps the verbal and visuospatial modalities together. There is a purely 

verbal reasoning test—syllogisms—included in the report and the error bars in von Bastian 

and Oberauer’s (2013) Figure 5 suggest that it did not transfer significantly. We should also 

note that all data are reported and analyzed in terms of standardized gain scores, which must 

be interpreted with caution as discussed above. The statistical analysis of Schmiedek et al. 

(2010) is more sophisticated. It employs a latent difference score model (McArdle & 

Nesselroade, 1994) that uses factor-analytic techniques to evaluate gains at the latent level. 

This study compared younger and older adults. The results showed a small (effect size d = .

19) but statistically significant transfer effect for the Gf latent factor in the younger 

experimental group (relative to younger control) and nonsignificant transfer in the older 

experimental group (relative to older control). At the level of individual tasks in the younger 
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group, the greatest transfer in the reasoning category occurred in the visuospatial modality 

(d = .38), whereas the verbal modality showed a trend (d = .13) but did not reach statistical 

significance (p = .26). Interestingly, reasoning was also tested in the numerical modality and 

it did show significant transfer (d = .33) in the younger group (Schmiedek et al., 2010, Table 

3). The interpretation of these results is complicated by the fact that both experimental 

groups practiced a diverse array of 12 tasks spanning all three modalities. Thus, it is possible 

that the transfer to numerical reasoning is driven by training on a numerical task, the transfer 

to visuospatial reasoning is driven by training on a visuospatial task, etc. Consequently, even 

this rich data set does not allow definitive conclusions with respect to the aforementioned 

distinction between the acquisition of skills and the improvement of abilities. In summary, 

the issues are complex and the results are not easy to interpret. Still, the available multi-test 

data seem consistent with the hypothesis that the observed Gf gains may be visuospatial 

gains in disguise.

Turning to the question of mechanism, the strategies for scanning a Raven’s problem matrix 

(Figure 1) can be modeled within a skill acquisition framework. They are a type of 

procedural knowledge and, after decades of research, a lot is known about how such 

knowledge is represented and acquired from experience (e.g., J. R. Anderson, 2000). Our 

discussion focuses on the ACT-R cognitive architecture (Adaptive Control of Thought–

Rational, J. R. Anderson, 2007; J. R. Anderson et al., 2004) as the flagship example of this 

multifaceted research tradition. Procedural knowledge in ACT-R is represented as a large set 

of production rules (or productions), each of which can be summarized in English as an if-

then statement. For example, “if the current goal is to determine whether object X appears 

on the top row of the display then scan the top row from left to right and search for object 

X.” Productions are designed to work in a coordinated manner while remaining relatively 

independent. Because of this independence, procedural knowledge can be acquired and 

practiced incrementally (J. R. Anderson, 1987; Taatgen, 2003). ACT-R has learning 

mechanisms that can construct new rules by proceduralization of declarative knowledge or 

by recombination of existing rules. Once these productions are created, a reinforcement-

learning mechanism incrementally updates the system’s estimates of their utility. These 

estimates provide a principled basis for selecting among competing productions and thereby 

choosing among alternative behaviors (e.g., M. C. Lovett, 1998, 2005). These mechanisms 

are consistent with neural-network models of action selection and reinforcement learning in 

the basal ganglia (Frank, Loughry, & O’Reilly, 2001; Jilk, Lebiere, O’Reilly, & Anderson, 

2008; Stocco, Lebiere, & Anderson, 2010). A detailed theory of skill acquisition has been 

developed in the ACT-R framework. It accounts for a large body of behavioral (e.g., J. R. 

Anderson, 1987, 2007; Taatgen, Huss, Dickison, & Anderson, 2008) and neuroimaging data 

(e.g., J. R. Anderson, Betts, Ferris, & Fincham, 2010). Specifically, it accounts in 

quantitative detail for key aspects of skill acquisition in multi-tasking (e.g., Salvucci & 

Taatgen, 2008; Taatgen, 2005) and for patterns of eye movements in complex displays (e.g., 

Lee & Anderson, 2001). ACT-R is also a proven platform for the development of 

instructional software (e.g., Ritter, Anderson, Koedinger, & Corbett, 2007).

These ideas can be applied to the type of visual scanning strategies relevant to our study. 

Consider the visual n-back task (e.g., Jaeggi et al., 2008) as a concrete example. On each 

Hayes et al. Page 15

Intelligence. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



trial, a small square appears in one of several positions in a rectangular grid. The participants 

must encode the location of the square and compare it to stored locations from previous 

trials. Three ACT-R models of the n-back task have been developed (Juvina & Taatgen, 

2007; Kottlors, Brand, & Ragni, 2012; M. C. Lovett, Daily, & Reder, 2000), one of which 

(Juvina & Taatgen, 2007) explicitly focuses on control strategies and another (M. C. Lovett 

et al., 2000) on individual differences in WM capacity. Unfortunately, these models work 

with verbal stimuli such as letters and, to our knowledge, no model of the visual n-back task 

has been developed yet. Nevertheless, it is possible to extrapolate from the existing models. 

An ACT-R model of this task would include various production rules that, when chained 

together, implement various strategies for scanning the grid—e.g., by rows, by columns, 

outward from the center, etc. It would also include productions that encode the target 

location—e.g., as a visual icon, by associating it to a digit on an imaginary keypad, by 

associating it to the letter formed by the empty cells on the grid, etc. A third set of rules 

would be needed to retrieve traces of past trials and compare them to the current one. 

Importantly, each of these unit-tasks can be performed in alternative ways implemented by 

competing productions. In ACT-R, productions with higher utility have a greater chance to 

fire on a given trial. The reinforcement learning mechanism increases the utilities of the 

productions that fired on correct trials and decreases those on incorrect trials. Gradually, 

productions that lead to success are strengthened and hence selected more often, whereas 

productions that lead to errors tend to drop out. This process is automatic and is a form of 

implicit learning. The improvements in accuracy and speed on practiced tasks are explained 

in terms of increased reliance on productions that achieve the goal with higher probability of 

success and in fewer steps (J. R. Anderson, 1987; Taatgen et al., 2008).

The learning effects in our data set also have a natural explanation in the ACT-R framework. 

On this interpretation, different visual strategies are implemented by sets of productions that 

can be chained together in various combinations. With practice, the reinforcement learning 

mechanism updates the utilities of these productions. This alters both the pattern of eye 

movements and the probability of solving the problem correctly. This common learning 

mechanism explains the correlation between the refinement in scanpath patterns and the 

gains in Raven’s scores (Figure 2).

Furthermore, the skill acquisition framework provides a straightforward explanation of the 

transfer from the visual n-back task to Raven’s APM. Both tasks share a lot of unit-tasks 

such as scanning a rectangular grid in search of an object that matches some description, 

encoding the location of such objects on the grid, comparing it to stored locations of other 

objects, and so on. Because production rules encode small and relatively independent bits of 

procedural knowledge, they can be used in multiple tasks. Productions constructed (e.g., 

from instruction) while learning one task can later be used in other tasks. Importantly, the 

utility of a given production rule reflects the history of successes and failures of applying 

this rule across all tasks it has been tried on. Thus, the utilities learned from practice on one 

task will affect the probabilities with which competing productions are selected while the 

system performs another task. This leads to positive transfer when many productions are 

beneficial in both contexts, and to negative transfer when most productions that were 

beneficial in the first turn out to be detrimental in the second. In a nutshell, these are some of 
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the key ideas of the ACT-R theory of skill acquisition (J. R. Anderson, 1987, 2007; Taatgen 

et al., 2008). Given its obvious relevance to WM training and transfer, it deserves to be 

widely known and discussed in the cognitive enhancement literature. It is, therefore, 

unfortunate that the latter currently makes virtually no references to ACT-R and only 

oblique references to skill acquisition research more generally. This is an instance of the 

unfortunate but still widespread estrangement of the comparative and information-

processing traditions in psychology (Cronbach, 1957).

ACT-R provides a solid framework for a mechanistic characterization of the distinction 

between skill acquisition and ability improvement. The model of Lovett and colleagues 

(2000) is particularly relevant in this context because it accounts for individual differences 

in WM capacity in terms of the so-called source-activation parameter W. This is a global 

architectural parameter that remains fixed throughout a given run but is assumed to vary 

across individuals. Lovett and colleagues (2000) estimate it from one task (modified digit 

span) for a given individual and then produce zero-parameter fits to the same individual’s 

performance on another task (n-back). In this framework, ability improvement can be 

modeled as an increase of W after practice, whereas skill acquisition can be modeled as 

outlined in the previous paragraph. A very promising direction for future research is to 

develop two ACT-R models—one with modifiable W and fixed production utilities, and 

another with fixed W and modifiable utilities. These two models can then be compared in 

terms of their fit to behavioral data.

In conclusion, let us recapitulate the diverse strands of evidence considered in this article. 

Fluid intelligence (Gf) is defined as a latent variable that cannot be measured directly but 

must be inferred from the intercorrelations in a diverse battery of tests. There is strong 

evidence that Gf is highly heritable. The prevailing opinion among psychometricians, based 

on decades of research and disappointments with past efforts at improvement, is that Gf is a 

relatively stable trait. The recent wave of enthusiasm in Gf enhancement was triggered by 

reports of score gains on matrix reasoning tests. The interpretation of these results is 

questionable because no single test score is identical with Gf and because score gains can be 

dominated by factors that play marginal roles in the scores themselves. The data reported 

here show score gains on Raven’s APM that are commensurate with the effect sizes typical 

of cognitive enhancement studies. Importantly, these gains can be accounted for in terms of 

refinements in problem-solving strategies as revealed by characteristic changes in eye-

fixation patterns. Our data do not address whether the same mechanism can account for the 

entire transfer of WM training to Raven-like tests. However, the newest studies that assessed 

Gf via a diverse battery of tests raised the possibility that the transfer may be restricted to the 

visual modality. This indirectly supports the hypothesis that at least some of this transfer 

may be driven by refinements in visual scanning strategies. This hypothesis is also 

consistent with established theories of skill acquisition that explain transfer in mechanistic 

terms. By contrast, the alternative hypothesis is usually formulated by means of vague 

analogies with athletics. We are not aware of a mechanistic proposal of how n-back training 

improves WM capacity. The Gf improvement hypothesis is advanced on the basis of data 

showing higher score gains on Raven-like tests following WM training compared to control. 

This inference logically depends on the assumption that Gf gain is the only possible 
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explanation for such control-adjusted transfer. This assumption cannot be taken for granted 

because non-Gf -related factors can transfer across tasks too. Notably, procedural knowledge 

can transfer in subtle ways even between tasks that seem unrelated on the surface, and 

especially between overlapping tasks such as visual n-back and Raven’s APM.

On the basis of this converging evidence, we conclude that it is entirely possible, indeed 

likely, that the reported transfer of WM training to Raven-like tests is due at least in part to 

refinements in visual scanning strategies. More broadly, the control-adjusted score gains 

probably include a contribution from procedural knowledge tacitly acquired and fine-tuned 

during the WM training and later utilized at posttest.

If strategic procedural knowledge transfers across tasks, does WM training induce Gf gains 

that cannot be explained in terms of strategic transfer? The remainder of this article outlines 

some methodological recommendations on how to investigate this question experimentally 

in the future.

The most informative experimental designs are characterized by two features: focused 

training interventions in several distinct groups, and pre- and post testing with a 

comprehensive suite of outcome measures. The study of Jaeggi et al. (2014) illustrates a 

well designed set of training interventions: one group practiced exclusively the auditory n-

back task, a second group practiced the dual (audio and visual) n-back task, and there was 

also an active control group. As for the outcome measures, it is necessary to assess three 

types of outcomes for each participant before and after training. First, Gf must be assessed 

with a battery of tests as discussed above. It is important to include both visual and non-

visual reasoning tests in this battery. The tacit assumption that Raven’s APM (or any other 

test, for that matter) equals Gf is too simplistic. Second, a battery of visual and non-visual 

WM measures is needed to assess near transfer (Shipstead et al., 2012). Third, the visual 

scanning strategies must also be assessed, and the tools developed here provide the means to 

do so. Our data demonstrated that strategy refinement can control a substantial portion of the 

variance and that, therefore, strategies must be monitored and taken into account in the 

analysis. We recommend to administer all visual tests with an eye tracker and to process the 

scanpath data with the SRSA algorithm (Hayes et al., 2011). The resulting successor 

representations (or, more parsimoniously, the first few principal components thereof) should 

be included to the suite of outcome measures and used as covariates in the main statistical 

analysis.

The statistical analysis must estimate latent variables and test whether Gf improves at the 

latent level (McArdle & Nesselroade, 1994; Schmiedek et al., 2010). We share Cronbach 

and Furby’s (1970) reservations about score gains as measures of change, particularly with 

respect to a variable that is defined at the latent level. Fortunately, quantitative psychologists 

have developed sophisticated methods for analyzing learning and change at the latent level.9 

A test of the training effect on Gf can be realized by using a bifactor model (Yung, Thissen, 

& McLeod, 1999) with Gf as the general dimension. The model must guarantee that the 

nature of the latent variable does not change from pretest to posttest and that the training 

9We thank Paul De Boeck for his expert advice on these methods.
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effect is an effect on this general dimension. One method that guarantees this is the 

Multiple-indicator multiple-cause (MIMIC) model (Goldberger, 1972) with pretest-versus-

posttest as an external covariate of the general dimension that is shared by pretest and 

posttest. The same modeling framework also makes it possible to estimate effects on more 

specific latent variables and to isolate a strategy-specific effect from a genuine effect on Gf. 

The Latent difference score model (McArdle & Nesselroade, 1994) is based on similar 

principles and has similar virtues. It has already been applied successfully to cognitive 

enhancement data (Schmiedek et al., 2010). A second approach to guarantee comparability 

between pretest and posttest is to analyze the data at the level of individual test items instead 

of aggregate scores. Item response theory (De Boeck & Wilson, 2004) can then be used to 

impose constraints on the item parameters at pretest and posttest. This approach is 

developed in Embretson’s (1991) model of learning and change.

Empirical research along these lines has the potential to identify which aspects of intelligent 

performance improve after what kind of practice via what mechanisms. We are aware of the 

logistical difficulties in collecting so much data per participant, including eye tracking, and 

latent-level modeling. However, no simpler methodology can overcome the interpretative 

difficulties inherent in demonstrating change in a latent variable in the presence of 

intercorrelated confounds, and pinpointing the causes for this change. Given the massive 

societal resources at stake and the enormous potential benefit, this research burden is clearly 

warranted.

Finally, we come full circle to our opening question: Can intelligence be improved with 

training? The issues are complex and much of the current disagreement stems from 

incompatible interpretations of the vague and ambiguous term “fluid intelligence.” One 

important piece of this large puzzle is the ability to flexibly deploy a judicious variety of 

cognitive strategies and to adaptively learn their utilities for various tasks. If this ability is 

taken to be part and parcel of Gf then the answer to the opening question may well be yes. If, 

however, Gf is interpreted in narrow neurobiological terms (e.g., Duncan et al., 2000; Gray 

& Thompson, 2004) then the answer remains elusive. So far we have seen no conclusive 

evidence that the brain can be trained like a muscle.

Acknowledgments

We thank Paul De Boeck for his expert advice on latent-variable models of learning and change.

References

Anderson JR. Skill acquisition: Compilation of weak-method problem solutions. Psychological 
Review. 1987; 94(2):192–210.

Anderson, JR. Learning and memory: An integrated approach. 2. New York: John Wiley and Sons; 
2000. 

Anderson, JR. How can the human mind occur in the physical universe?. New York: Oxford 
University Press; 2007. 

Anderson JR, Betts S, Ferris JL, Fincham JM. Neural imaging to track mental states while using an 
intelligent tutoring system. Proceedings of the National Academy of Sciences, USA. 2010; 107(15):
7018–7023.

Hayes et al. Page 19

Intelligence. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y. An integrated theory of the mind. 
Psychological Review. 2004; 111(4):1036–1060. [PubMed: 15482072] 

Anderson M. Cortex forum on the concept of general intelligence in neuropsychology. Cortex. 2005; 
41(2):99–100. [PubMed: 15714892] 

Bethell-Fox CE, Lohman DF, Snow RE. Adaptive reasoning: Componential and eye movement 
analysis of geometric analogy performance. Intelligence. 1984; 8(3):205–238.

Bond, L.; Harman, AE. Test-taking strategies. In: Sternberg, RJ., editor. Encyclopedia of human 
intelligence. Vol. 2. New York: MacMillan; 1994. p. 1073-1077.

Bors DA, Forrin B. Age, speed of information processing, recall, and fluid intelligence. Intelligence. 
1995; 20(3):229–248.

Bors DA, Vigneau F. The effect of practice on Raven’s advanced progressive matrices. Learning and 
Individual Differences. 2003; 13(4):291–312.

Brain sells: Commercialising neuroscience. The Economist. 2013 Aug 10.:56.

Buschkuehl M, Jaeggi SM. Improving intelligence: A literature review. Swiss Medical Weekly. 2010; 
140(19–20):266–272. [PubMed: 20349365] 

Carpenter PA, Just MA, Shell P. What one intelligence test measures: A theoretical account of the 
processing in the Raven Progressive Matrices test. Psychological Review. 1990; 97(3):404–431. 
[PubMed: 2381998] 

Carroll, JB. Human cognitive abilities: A survey of factor-analytic studies. New York, NY: Cambridge 
University Press; 1993. 

Cattell RB. Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational 
Psychology. 1963; 54(1):1–22.

Chooi WT, Thompson LA. Working memory training does not improve intelligence in healthy young 
adults. Intelligence. 2012; 40:531–542.

Colom R, Román FJ, Abad FJ, Shih PC, Privado J, Froufe M, Jaeggi SM. Adaptive n-back training 
does not improve fluid intelligence at the construct level: Gains on individual tests suggest that 
training may enhance visuospatial processing. Intelligence. 2013; 41:712–727.

Cronbach LJ. The two disciplines of scientific psychology. American Psychologist. 1957; 12:671–684.

Cronbach LJ, Furby L. How should we measure “change”—or should we? Psychological Bulletin. 
1970; 74(1):68–80.

Dayan P. The convergence of TD(λ) for general λ. Machine Learning. 1992; 8(3/4):341–362.

Dayan P. Improving generalization for temporal difference learning: The successor representation. 
Neural Computation. 1993; 5(4):613–624.

Dayan, P.; Sejnowski, TJ. TD(λ) converges with probability 1 (Tech Rep). San Diego, CA: CNL, The 
Salk Institute; 1993. 

De Boeck, P.; Wilson, M., editors. Explanatory item response models: A generalized linear and 
nonlinear approach. New York: Springer-Verlag; 2004. 

Denney NW, Heidrich SM. Training effects on Raven’s progressive matrices in young, middle-aged, 
and elderly adults. Psychology and Aging. 1990; 5(1):144–145. [PubMed: 2317294] 

Detterman, DK.; Sternberg, RJ., editors. How and how much can intelligence be increased?. Mahwah, 
NJ: Erlbaum; 1982. 

Dickens WT, Flynn JR. Heritability estimates versus large environmental effects: The IQ paradox 
resolved. Psychological Review. 2001; 108(2):346–369. [PubMed: 11381833] 

Duncan J, Seitz RJ, Kolodny J, Bor D, Herzog H, Ahmed A, Emslie H. A neural basis for general 
intelligence. Science. 2000; 289(5478):457–460.10.1126/science.289.5478.457 [PubMed: 
10903207] 

Embretson SE. A multidimensional latent trait model for measuring learning and change. 
Psychometrika. 1991; 56(3):495–515.

Everitt, BS.; Dunn, G. Applied multivariate analysis. New York: Oxford University Press; 2001. 

Frank MJ, Loughry B, O’Reilly RC. Interactions between frontal cortex and basal ganglia in working 
memory: A computational model. Cognitive, Affective, & Behavioral Neuroscience. 2001; 1(2):
137–160.

Hayes et al. Page 20

Intelligence. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fry AF, Hale S. Relationships among processing speed, working memory, and fluid intelligence in 
children. Biological Psychology. 2000; 54:1–34. [PubMed: 11035218] 

Gershman SJ, Moore CD, Todd MT, Norman KA, Sederberg PB. The successor representation and 
temporal context. Neural Computation. 2012; 24:1553–1568. [PubMed: 22364500] 

Goldberger AS. Structural equation methods in the social sciences. Econometrica. 1972; 40:979–1001.

Gottfredson LS. Why g matters: The complexity of everyday life. Intelligence. 1997; 24:79–132.

Gray JR, Thompson PM. Neurobiology of intelligence: Science and ethics. Nature Reviews 
Neuroscience. 2004; 5(6):471–482.

Halford GS, Cowan N, Andrews G. Separating cognitive capacity from knowledge: A new hypothesis. 
Trends in Cognitive Sciences. 2007; 11(6):236–242. [PubMed: 17475538] 

Harrison TL, Shipstead Z, Hicks KL, Hambrick DZ, Redick TS, Engle RW. Working memory training 
may increase working memory capacity but not fluid intelligence. Psychological Science. 2013; 
24(12):2409–2419. [PubMed: 24091548] 

Hatze, H. Biomedical aspects of a successful motion optimization. In: Komi, PV., editor. 
Biomechanics V-B. Baltimore, MD: University Park Press; 1976. p. 7-17.

Hayes TR, Petrov AA, Sederberg PB. A novel method for analyzing sequential eye movements reveals 
strategic influence on Raven’s Advanced Progressive Matrices. Journal of Vision. 2011; 11(10):1–
11.

Horn, W. Leistungsprüfsystem [Performance test system]. 2. Göttingen: Hogrefe; 1983. 

Hossiep, R.; Turck, D.; Hasella, M. Bochumer Matrizentest: BOMAT advanced-short version. Boston, 
MA: Hogrefe Publishing; 1999. 

Howard MW, Kahana MJ. A distributed representation of temporal context. Journal of Mathematical 
Psychology. 2002; 46(3):269–299.

Hurley D. Can you make yourself smarter? The New York Times Magazine. 2012 Apr 22.:38.

Jaakkola T, Jordan MI, Singh SP. On the convergence of stochastic iterative dynamic programming 
algorithms. Neural Computation. 1994; 6(6):1185–1201.

Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ. Improving fluid intelligence with training on working 
memory. Proceedings of the National Academy of Sciences, USA. 2008; 105(19):6829–6833.

Jaeggi SM, Buschkuehl M, Jonides J, Shah P. Short- and long-term benefits of cognitive training. 
Proceedings of the National Academy of Sciences, USA. 2011; 108:10081–10086.

Jaeggi SM, Buschkuehl M, Shah P, Jonides J. The role of individual differences in cognitive training 
and transfer. Memory & Cognition. 2014; 42:464–480. [PubMed: 24081919] 

Jaeggi SM, Studer-Luethi B, Buschkuehl M, Su YF, Jonides J, Perrig WJ. The relationship between n-
back performance and matrix reasoning – implications for training and transfer. Intelligence. 2010; 
38:625–635.

Jensen, AR. The g factor: The science of mental ability. London: Praeger; 1998. 

Jensen, AR. Clocking the mind: Mental chronometry and individual differences. Amsterdam, The 
Netherlands: Elsevier; 2006. 

Jilk D, Lebiere C, O’Reilly RC, Anderson JR. SAL: An explicitly pluralistic cognitive architecture. 
Journal of Experimental & Theoretical Artificial Intelligence. 2008; 20(3):197–218.

Juvina, I.; Taatgen, NA. Modeling control strategies in the N-back task. In: Lewis, RL.; Polk, TA.; 
Laird, JE., editors. Proceedings of the Eighth International Conference on Cognitive Modeling. 
Ann Arbor, MI: 2007. p. 73-78.

Kane MJ, Engle RW. The role of prefrontal cortex in working-memory capacity, executive attention 
and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & 
Review. 2002; 9:637–671. [PubMed: 12613671] 

Kane MJ, Hambrick DZ, Tuhoski SW, Wilhelm O, Payne TW, Engle RW. The generality of working 
memory capacity: a latent-variable approach to verbal and visuospatial memory span and 
reasoning. Journal of Experimental Psychology: General. 2004; 133:189–217. [PubMed: 
15149250] 

Kemeny, JG.; Snell, JL. Finite Markov chains. New York: Springer; 1976. 

Hayes et al. Page 21

Intelligence. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Kottlors, J.; Brand, D.; Ragni, M. Modeling behavior of attention-deficit-disorder patients in a N-back 
task. In: Ruswinkel, N.; Drewitz, U.; van Rijn, H., editors. Proceedings of the Eleventh 
International Conference on Cognitive Modeling. Berlin: Universitaetsverlag der TU Berlin; 2012. 

Lee FJ, Anderson JR. Does learning a complex task have to be complex?: A study in learning 
decomposition. Cognitive Psychology. 2001; 42(3):267–36. [PubMed: 11305884] 

Lovett A, Tomai E, Forbus K, Usher J. Solving geometric analogy problems through two-stage 
analogical mapping. Cognitive Science. 2009; 33(7):1192–1231. [PubMed: 21585502] 

Lovett, MC. Choice. In: Anderson, JR.; Lebiere, C., editors. The atomic components of thought. 
Mahwah, NJ: Lawrence Erlbaum Associates; 1998. p. 255-296.

Lovett MC. A strategy-based interpretation of Stroop. Cognitive Science. 2005; 29:493–524. 
[PubMed: 21702782] 

Lovett MC, Daily LZ, Reder LM. A source activation theory of working memory: Cross-task 
prediction of performance in ACT-R. Journal of Cognitive Systems Research. 2000; 1(2):99–118.

Martínez K, Burgaleta M, Román FJ, Escorial S, Shih PC, Quiroga MA, Colom R. Can fluid 
intelligence be reduced to ‘simple’ short-term storage? Intelligence. 2011; 39:473–480.

Matzen LE, Benz ZO, Dixon KR, Posey J, Kroger JK, Speed AE. Recreating Raven’s: Software for 
systematically generating large numbers of Raven-like matrix problems with normed properties. 
Behavioral Research Methods. 2010; 42(2):525–541.

McArdle, JJ.; Nesselroade, JR. Using multivariate data to structure developmental change. In: Cohen, 
SH.; Reese, HW., editors. Life-span developmental psychology: Methodological contributions. 
Hillsdale, NJ: Erlbaum; 1994. p. 223-267.

McCormick, CB.; Miller, GE.; Pressley, M., editors. Cognitive strategy research: From basic research 
to educational applications. Springer; 1989. 

Melby-Lervåg M, Hulme C. Is working memory training effective? A meta-analytic review. 
Developmental Psychology. 2013; 49(2):270–291. [PubMed: 22612437] 

Moody DE. Can intelligence be increased by training on a task of working memory? Intelligence. 
2009; 37(4):327–328.

Morrison AB, Chein JM. Does working memory training work? The promise and challenges of 
enhancing cognition by training working memory. Psychonomic Bulletin & Review. 2011; 18(1):
46–60. [PubMed: 21327348] 

Neisser U, Boodoo G, Bouchard TJ, Boykin AW, Brody N, Ceci SJ, Urbina S. Intelligence: Knowns 
and unknowns. American Psychologist. 1996; 51(2):77–101.

Owen AM, Hampshire A, Grahn JA, Stenton R, Dajani S, Burns AS, Ballard CG. Putting brain 
training to the test. Nature. 2010; 465(7299):775–778. [PubMed: 20407435] 

Pressley M, Woloshyn V, Lysynchuk LM, Martin V, Wood E, Willoughby T. A primer of research on 
cognitive strategy instruction: The important issues and how to address them. Educational 
Psychology Review. 1990; 2(1):1–58.

Raven, JC.; Raven, J.; Court, JH. Manual for Raven’s progressive matrices and vocabulary scales. 
Section 4: Advanced progressive matrices. San Antonio, TX: Pearson; 1998. 

Redick TS, Shipstead Z, Harrison TL, Hicks KL, Fried DE, Hambrick DZ, Engle RW. No evidence of 
intelligence improvement after working memory training: A randomized, placebo-controlled 
study. Journal of Experimental Psychology: General. 2012; 142(2):359–379. [PubMed: 22708717] 

Ritter S, Anderson JR, Koedinger KR, Corbett A. Cognitive Tutor: Applied research in mathematics 
education. Psychonomic Bulletin & Review. 2007; 14(2):249–255. [PubMed: 17694909] 

Salvucci DD, Taatgen NA. Threaded cognition: An integrated theory of concurrent multitasking. 
Psychological Review. 2008; 115(1):101–130. [PubMed: 18211187] 

Schmiedek F, Lövden M, Lindenberger U. Hundred days of cognitive training enhance broad cognitive 
abilities in adulthood: findings from the COGITO study. Frontiers in Aging Neuroscience. 2010; 
2:27, 1–10. [PubMed: 20725526] 

Schweizer K, Goldhammer F, Rauch W, Moosbrugger H. On the validity of Raven’s matrices test: 
Does spatial ability contribute to performance? Personality and Individual Differences. 2007; 
43(8):1998–2010.

Hayes et al. Page 22

Intelligence. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Sederberg PB, Howard MW, Kahana MJ. A context-based theory of recency and contiguity in free 
recall. Psychological Review. 2008; 115(4):893–912. [PubMed: 18954208] 

Sheppard LD, Vernon PA. Intelligence and speed of information-processing: A review of 50 years of 
research. Personality and Individual Differences. 2008; 44:535–551.

Shipstead Z, Redick TS, Engle RW. Is working memory training effective? Psychological Bulletin. 
2012; 138(4):628–654. [PubMed: 22409508] 

Spearman, C. The abilities of man. New York: Macmillan; 1927. 

SR Research. Eyelink 1000 user’s manual. Mississauga, ON: SR Research Ltd; 2006. 

Stepankova H, Lukavsky J, Buschkuehl M, Kopecek M, Ripova D, Jaeggi SM. The malleability of 
working memory and visuospatial skills: A randomized controlled study in older adults. 
Developmental Psychology. 2014; 50(4):1049–1059. [PubMed: 24219314] 

Stephenson CL, Halpern DF. Improved matrix reasoning is limited to training on tasks with a 
visuospatial component. Intelligence. 2013; 41(5):341–357.

Sternberg RJ, Weil EM. An aptitude x strategy interaction in linear syllogistic reasoning. Journal of 
Educational Psychology. 1980; 72:226–239.

Stocco A, Lebiere C, Anderson JR. Conditional routing of information to the cortex: A model of the 
basal ganglia’s role in cognitive coordination. Psychological Review. 2010; 117(2):541–574. 
[PubMed: 20438237] 

Sutton RS. Learning to predict by the methods of temporal differences. Machine Learning. 1988; 3(1):
9–44.

Taatgen, NA. Learning rules and productions. In: Nadel, L., editor. Encyclopedia of cognitive science. 
Vol. 2. London: MacMillan; 2003. p. 822-830.

Taatgen NA. Modeling parallelization and flexibility improvements in skill acquisition: From dual 
tasks to complex dynamic skills. Cognitive Science. 2005; 29(3):421–455. [PubMed: 21702780] 

Taatgen NA, Huss D, Dickison D, Anderson JR. The acquisition of robust and flexible cognitive skills. 
Journal of Experimental Psychology: General. 2008; 137(3):548–565. [PubMed: 18729715] 

te Nijenhuis J, van Vianen AEM, van der Flier H. Score gains on g-loaded tests: No g. Intelligence. 
2007; 35:283–300.

Thompson TW, Waskom ML, Garel KA, Cardenas-Iniguez C, Reynolds GO, Winter R, Gabrieli JDE. 
Failure of working memory training to enhance cognition or intelligence. PLoS ONE. 2013; 8(5):
1–15.

Vigneau F, Caissie AF, Bors DA. Eye-movement analysis demonstrates strategic influences on 
intelligence. Intelligence. 2006; 34(3):261–272.

von Bastian CC, Oberauer K. Distinct transfer effects of training different facets of working memory 
capacity. Journal of Memory and Language. 2013; 69:36–58.

White, LM. Unpublished Master’s Thesis. Canada: Department of Computer Science, University of 
Toronto; 1995. Temporal difference learning: Eligibility traces and the successor representation 
for actions. 

Yung Y, Thissen D, McLeod LD. On the relationship between the higher-order factor model and the 
hierarchical factor model. Psychometrika. 1999; 64:113–128.

Appendix A. Relational scoring details

Raven’s Advanced Progressive Matrices (APM) is traditionally scored as the total number 

of items correct. Preliminary SRSA analysis that used SR differences to predict total number 

of APM items correct showed an overall trend for an increase in systematicity on session 2 

(Hayes et al., 2011). To explore this finding in more detail, we needed to increase our 

overall power to resolve individual differences. The APM at its core tests the ability to 

extract relational information from complex, novel visual environments. Therefore, given 

that most APM items contain multiple distinct relations and an assortment of these relations 

are found within the 8 possible responses, we were able to increase our power to resolve 
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individual differences by inferring the number of relations extracted for both correct and 

incorrect responses based on how many correct relations the chosen response contained.

When it was possible to tie the relation to a single feature, the feature to which the relational 

rule is applied is shown in parentheses (e.g., shape, shading, orientation, position, figure/

ground, length). Finally, each of the eight possible responses were scored as either capturing 

(indicated by a 1) or failing to capture (indicated by a 0) each relation within an item. Four 

items (11, 14, 18, 27) had relations where partial credit was awarded for relational capture. 

For instance on item 11, response 1 was credited with .8 instead of 0 because it captured the 

addition relation but lacked a thin outside border around the figural item. For the other 24 

remaining items, each response either clearly contained or lacked the relation(s). Table A1 

lists the relational score of each response for each item.
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Figure A1. Raven Relational Scoring By Item
Items are identified by their standard numbers in Raven’s Advanced Progressive Matrices. 

The Relations column lists which rules are present in the problem matrix and the feature to 

which that relational rule is applied in parentheses. The last eight columns represent the 

eight possible responses (moving left to right, top row is 1 2 3 4 and bottom row is 5 6 7 8) 

and whether or not they contain the corresponding relation.

Appendix B. SRSA technical details

The successor representation was introduced to the reinforcement-learning literature by 

Dayan (1993) and was developed by White (1995). The SR is essentially identical to the 

fundamental matrix in the theory of Markov chains (Kemeny & Snell, 1976). More recently, 

Gershman, Moore, Todd, Norman, and Sederberg (2012) identified a formal connection 

between the SR and an influential model of episodic and semantic memory, the Temporal 

Context Model (e.g. Howard & Kahana, 2002; Sederberg, Howard, & Kahana, 2008).

We use a version of the successor representation that differs slightly from the standard 

definition (Dayan, 1993; White, 1995). The difference is that, when visiting a state i, our 

version does not include this same visit in the total (temporally discounted) number of visits 

to i. Assuming a first-order Markov chain with transition probability matrix T, our SR 

matrix M is based on the power series:

(2)

The standard definition (Dayan, 1993; White, 1995) is based on the power series I + γT + 

γ2T2 + … = (I − γT)−1. To revert to the standard formulation of the SR learning algorithm, 

the term Ij in our Equation 1 must be replaced by Ii. In the special case when γ = 0, our 

algorithm tracks the transition matrix T instead of the identity matrix I.
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The proof that the temporal-difference learning algorithm in Equation 1 converges to the 

true successor representation M (White, 1995) is a direct application of more general 

convergence proofs about TD(λ) learning in the reinforcement-learning literature (Dayan, 

1992; Jaakkola, Jordan, & Singh, 1994; Sutton, 1988). To ensure convergence, it is 

necessary to decrease the learning rate α as the data accumulate. The technical conditions 

include:

(3)

where n is the number of observations (Dayan & Sejnowski, 1993, cited in White, 1995).
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Hayes-Petrov-Sederberg-INTEL-14 Highlights

• We use eye data to examine the role of strategy in improvements in matrix 

reasoning

• We explain why control groups do not necessarily rule out strategic confounds

• We show how eye movements can be used to quantify and remove strategic 

contaminants

• One-third of the variance of score gains could be attributed to strategy 

refinement

• Test score gains are logically questionable as measures of intelligence 

enhancement
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Figure 1. Example of the Raven’s problem format, relational coding, and trial sequence
Left: The problem matrix and the 8 response alternatives are shown with solid lines. The 

height of the rectangular box around the matrix subtended 9 degrees of visual angle. Eye 

fixations were assigned to 10 areas of interest (AOIs): nine for the matrix cells (top row = 1–

3, middle = 4–6, bottom = 7–9) and one for the entire response area. This example item 

(generated by the authors) requires the extraction of three relations: distribution of three 

shapes (diamond, triangle, parallelogram), distribution of three line orientations (0°, 45°, 

90°), and quantitative pairwise progression of line numbers (3→2→1). The vectors above 

each response were not shown to participants but illustrate the respective relations captured 

in each possible response. Right: Each trial had three phases: fixation, solution, and 

response. Eye movements and verbal protocols were collected during the solution phase. 

Moving the mouse cursor out of the fixation box triggered the response phase, during which 

the problem matrix was masked and the participant clicked on their chosen answer. The 

inter-trial interval (ITI) was 200 ms.
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Figure 2. Weight matrices, relational score gain predictions for the full cross-validated model, 
and Simulated SR differences
The cross-validated model prediction weight matrix across 35 leave-one-out fits (a) revealed 

a strong relationship between systematic scanning and relational score gains across sessions. 

The relational score gain was predicted by a separate model that had no access to the data 

for the respective individual. Panel b plots the predicted versus observed relational score 

gain for all 35 participants ( ). Panel c and d were generated using simulated 

scanpath sequences to highlight important structure. Panel c shows an idealized difference 

SR resulting from simulated sequences with a 90% increase in row-systematicity on session 

2. Panel d shows an idealized difference SR resulting from simulated sequences with a 20% 
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boost in answer checking on session 2. The x- and y-axes represent the sender and receiver 

areas of interest, respectively. R = response area of interest. SR = successor representation 

of the regularities in scanpath sequences.
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Figure 3. Comparison of cross-validated prediction weights for high- and low-improvement 
groups
Relational score gains were predicted separately for the eleven highest and eleven lowest 

improvement participants across 11 leave-one-out fits ( ). Each 

value was predicted by a separate model that had no access to the data for the corresponding 

individual. Panel (a) shows the average prediction weight matrix for the low-improvement 

group and panel (b) for the high-improvement group. A comparison of the prediction weight 

matrices shows markedly more diffuse scanning in the low-improvement group (panel a) 

and a gain in systematicity in the high-improvement group (panel b).
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