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ABSTRACT: Patch clamping depends on a tight seal between the cell membrane and the
glass of the pipet. Why does the seal have such high electric resistance? Why does the patch
adhere so strongly to the glass? Even under the action of strong hydrostatic, adhesion, and
electrical forces, it creeps at a very low velocity. To explore possible explanations, we
examined two physical models for the structure of the seal zone and the adhesion forces and
two respective mechanisms of patch creep and electric conductivity. There is saline between
the membrane and glass in the seal, and the flow of this solution under hydrostatic pressure
or electroosmosis should drag a patch. There is a second possibility: the lipid core of the
membrane is liquid and should be able to flow, with the inner monolayer slipping over the
outer one. Both mechanisms predict the creep velocity as a function of the properties of the
seal and the membrane, the pipet geometry, and the driving force. These model predictions
are compared with experimental data for azolectin liposomes with added cholesterol or
proteins. It turns out that to obtain experimentally observed creep velocities, a simple
viscous flow in the seal zone requires ∼10 Pa·s viscosity; it is unclear what structure might provide that because that viscosity
alone severely constrains the electric resistance of the gigaseal. Possibly, it is the fluid bilayer that allows the motion. The two
models provide an estimate of the adhesion energy of the membrane to the glass and membrane’s electric characteristics through
the comparison between the velocities of pressure-, adhesion-, and voltage-driven creep.

1. INTRODUCTION

Patch clamp moved into its dominant role in electrophysiology
with the serendipitous occurrence of the gigaseal.1 Why a
membrane that is negatively charged and made of fluid lipids
stick to negatively charged glass remains unclear, although van
der Waals interactions seem to be the key.2−4 The mechanics of
the seal give an indication of why patches can be mechanically
stressed with suction without flying up the pipet. Patches do, in
fact, creep under pressure3 as well as spontaneously. Those
properties of patches that allow them to stick to glass are the
subject of this paper.
There are several general approaches to understanding the

physics of this interaction, but no matter what the model, it
must permit the creation of seals with a resistance of 1−100
GΩ. The simplest model is to assume that there is a highly
viscous medium between the membrane and the glass (Figure
1). In the case of lipid bilayers medium can only be saline plus
the headgroups of the lipids, including the water there, which is
likely to be ordered by its proximity to the glass and the
membrane.2,3 The creep rate of patches made of pure lipids is

affected by the presence of proteins; for example, data suggest
that some proteins might denature against the glass and thus
slow the creep by serving as immobile bridges in the bilayer.5,6

Pure lipid patches might actually have similar “stops” because
no lipids are pure, and a small quantity of contaminant might
alter the seal behavior drastically. A great deal of physical data is
available on adhesives because they play such an important role
in modern technology,7−9 but the mechanism of adhesion of
the patch to the glass remains unclear; our goal here is to
examine a few possibilities and use some of the ideas from the
known physical chemistry of adhesion. We begin by
considering patches made of pure lipids.
The resistance of the seal imposes powerful constraints on

any model. In what follows we use typical patch dimensions of
∼10 μm in length and a pipet radius of nominally 1 μm. If the
seal is viewed as a conductive annulus filled with normal saline,

Received: July 12, 2014
Revised: October 6, 2014
Published: October 8, 2014

Article

pubs.acs.org/JPCB

© 2014 American Chemical Society 12660 dx.doi.org/10.1021/jp506965v | J. Phys. Chem. B 2014, 118, 12660−12672

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/JPCB
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


the thickness would have to be on the order of angstroms to
create a multi GΩ seal. The first important question is whether
the seal region between the glass and the membrane (Figure 1)
is an electrostatically stabilized liquid film (i.e., a common black
film10 with a thickness on the order of 10 nm), or the glass and
membrane are in molecular contact (a Newton black film,10

where the saline solution is in an extremely narrow film
involving few hydration layers of the glass surface and the head
groups of the lipids). These two cases correspond to different
mechanisms of creep, different adhesion energies, and different
resistances depending on the membrane and glass potential. In
the case of a common black film, the motion and energy
dissipation are located in the saline layer. In the case of a
membrane in molecular contact with the glass, motion and
dissipation are located in the bilayer.

2. ELECTROMECHANICAL PROPERTIES OF THE SEAL
2.1. van der Waals Disjoining Pressure. To estimate the

adhesion energy of the membrane, we will first consider the van
der Waals force between the membrane and the glass.
Assuming that the seal is a flat glass−seal−membrane−cell
structure (Figure 1), the following formula11,12 can be used for
the van der Waals disjoining pressure, ΠvdW, and the respective
van der Waals energy, σvdW, in the seal film
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Here hS and hM are the thicknesses of the seal and the
hydrophobic core of the membrane, respectively; and hM is
assumed to be equal to two extended hydrocarbon chains of the
membrane lipid, ∼4 nm.13 The Hamaker constant AH

S is related
to the binary constants for water−water (AH

WW), glass−water
(AH

GW), water−membrane (AH
WM), and glass−membrane (AH
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van der Waals interaction:11,12
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For AH
WW and AH

GM, we use the values:4,12 AH
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The data for the Hamaker constants involved were:4,12 AH
MM =

4.5 × 10−20 J; AH
GG = 5 × 10−20 J; AH

WMW = 0.9 × 10−20 J; and
AH
WGW=0.83 × 10−20 J. (A list of symbols is provided in the

Supporting Information S1.) These values and eq 2 yield a
Hamaker constant of AH

S = 0.2 × 10−20 J. Because all constants
involved have a large uncertainty and AH

S is a small number
obtained as the difference between large numbers, not only its
value but also even the sign of AH

S is not reliable. We have
chosen values of the constants in such a way that the final result
for AH

S corresponds to attraction (AH
S > 0) because the presence

of attractive force is essential for the formation of a gigaseal.3

Equation 1 is approximate−it neglects various effects such as
electromagnetic retardation, the screening effect of the
electrolyte on the Hamaker constants, and so on;4,12 in
addition, eqs 2 and 3 are rough approximations, especially for
very thin films. Therefore, eq 1 and the value of AH

S = 0.2 ×
10−20 J can be used only for crude estimates of the van der
Waals energy of the seal.

2.2. Electrostatic Disjoining Pressure: Variation of the
Surface Potential with Seal Thickness, hS. We will
investigate in this section the electrostatic characteristics of
the seal film14 in Figure 1. There is a strong repulsive
electrostatic contribution to the adhesion.15 Let the surface
potential of the glass in contact with 150 mM NaCl be ϕ∞

G (we
assume the value3,16 ϕ∞

G = −20 mV) and the surface potential
of the outer monolayer of a free-standing bilayer be ϕ∞

M (ϕ∞
M ≈

−50 mV17,18). Using Gouy electroneutrality condition16 (eq
A12 in the Supporting Information S2), one can calculate the
respective surface charge densities: ρe

G = 0.018 C/m2 and ρe
M =

0.052 C/m2. When the membrane adheres to the glass and
forms a thin liquid film (the seal), the potentials of both
surfaces, ϕG and ϕM, will increase due to the interaction
between the negatively charged surfaces. The effect is negligible
if the Debye length is smaller than seal thickness, LD ≪ hS, but
is strong for thin seals, where LD > hS. (LD is defined with LD

2 =
kBTε

S/2e2C, where kB is Boltzmann constant, T is temperature,
εS is the absolute dielectric permittivity of the seal, e is
elementary charge, and C is electrolyte concentration [m−3]).
For 150 mM 1:1 electrolyte solution, the Debye length is LD ≈
1 nm. The thickness hS of the seal region depends on the
magnitude of the van der Waals, electrostatic, and other surface
forces acting within the seal. In Section 2.4, we will consider the
relation between the electric resistance of the seal, Res, and hS

to estimate the thickness from experimental data for Res.
The relation between the surface potentials and hS for the

case where the surface charge densities ρe
G and ρe

M are
independent of hS is derived in the Supporting Information
S2 following Derjaguin.19 The final results for ϕM and ϕG are
shown in Figure 2, together with the minimal potential ϕm in
the seal film (the minimum of the potential ϕ(z) in the film;
this quantity plays a central role in the theory of electrostatic
interactions in films19). As seen in the Figure, for thick seals
(e.g., hS > 4 nm), the surface potentials are almost equal to
those of free-standing membrane and glass surfaces. In such
case, the known19 asymptotic formulas for the electrostatic
disjoining pressure, Πel, and the electrostatic energy, σel, of thick
films can be used (cf. the Supporting Information S2)

Figure 1. Diagram of the seal zone−multilayer model. The region
labeled “cell” would be saline when patching lipid vesicles.
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Here the electrostatic factor γel is given by
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For the values of the parameters cited above, γel = 0.087.
Equations 4 and 5 are not correct for extremely thin films (hS

< LD), where the surface potentials are very different from those
of the free glass and membrane surface. It is seen from Figure 2
that ϕM, ϕG, and ϕm become equal for such thin films. The
physical reason for this is that the electrostatic potential
gradient has characteristic length, LD, so if the film is thinner
than LD the potential is unable to change significantly across the
film. Indeed, the difference Δϕ between the two surface
potentials decreases linearly with the decrease in hS in the limit
hS/LD →0 (cf. Supporting Information S2 for derivation)
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For the values of the parameters cited above, γϕ = 1.47. We will
use this expression when dealing with the electroosmotic creep
in Section 3.1.5.
Equation 7 is approximate but perhaps predicts a qualitatively

correct picture. A number of effects will significantly modify the
electrostatics of very thin films, among them: charge regulation
(both surface charge density and surface potential change with
hS, while the chemical potentials of ions remain constant16),
charge discreteness,20 effects related to the presence of lipid
headgroups in the seal region such as ion expulsion and
dielectric permittivity decrement, structural effects related to
the state of water in film less than one nanometer thick, and so
on. Because these effects can change disjoining pressure, Πel ,
by an order of magnitude, we will not consider Πel in this
limiting case; we will only assume that its value is on the order
of the van der Waals disjoining pressure.
Another significant simplification we are making is to neglect

the presence of divalent ions in the seal. Divalent Ca2+ and
Mg2+ ions assist the formation of the gigaseal.15,21 This is either
due to their specific effect on the surface potentials of the glass
and the membrane (they decrease both ϕM and ϕG, which
suppresses the electrostatic repulsion in the seal) or due to the
formation of salt bridges connecting a negative charge at the
glass surface with a negative charge at the membrane21 (the
latter obviously favors the formation of Newton black film
rather than a common black film). However, double layer made
of a mixture of monovalent and divalent ions has a rather
complicated structure.19 In fact, the validity of the Poisson−
Boltzmann and Gouy equations for double layer containing
divalent ions is doubtful because divalent ions are subject of
strong image and hydration forces, which these equations
neglect.22 We leave aside also the question for the ion-specific
effects on the adhesion,23 but KCl is expected to decrease the
electrostatic disjoining pressure in the seal in comparison with
NaCl at the same concentration due to the higher specific
adsorption energy24 of K+. These complications are not going
to change the estimated orders of magnitude in what follows,
but at this level of simplification, our model is unable to
account for the ever-present ion-specific effects.

2.3. Adhesion Energy in the Film. Considering first the
thick film limit (hS > 4 nm), we assume that the disjoining
pressure in the seal is the sum of Πel and ΠvdW according to eqs
1 and 4. The respective sum corresponds to the DLVO25,26

theory for Π. The sum of van der Waals and electrostatic
energies in eqs 1 and 5 has a minimum at hS = 7 nm. This
equilibrium thickness of the film (electrostatically stabilized
common black film10) will correspond to relatively high
conductivity and high creep rates of the seal. The respective
adhesion energy σadh = −(σvdW + σel) at h

S = 7 nm is 0.5 × 10−3

mJ/m2. The same order of σadh was obtained by Smith et al.,27

who studied the pulling of tethers in vesicles adhered to rigid
substrates.
If a common black film breaks, the lipid and the glass surface

will come into close contact, keeping few hydration layers of
water (Newton black film will be formed10). The respective
film thickness will be on the order of few angstroms. The
adhesion energy is hard to predict, first because non-DLVO
forces will be present (steric, hydration, and perhaps specific
interactions such as hydrogen bonding between the lipid
headgroups and the glass surface19,28,10), and second, because
of the inapplicability of eqs 1 and 5 for very thin films.29 The
adhesive van der Waals energy for hS = 0.5−1 nm thick seal film
is, according to eq 1, on the order of σvdW = −0.1 to −0.2 mJ/

Figure 2. Dependence of the potentials ϕM, ϕG, and ϕm [mV] on seal
thickness, hS, in the constant charge regime. For hS > 4 nm, the surface
potentials ϕM and ϕG are about the same as those of free surfaces, ϕ∞

M

and ϕ∞
G . The minimal potential ϕm in the seal decreases roughly

exponentially at large hS, while for thin seal films, it is about equal to
both ϕS and ϕG. For a very thin seal, the potentials increase
significantly in absolute value. The graphs are obtained by plotting the
parametric solution ϕ(ϕm) versus h(ϕm) following eqs A5, A6, and
A11 in the Supporting Information S2.
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m2. Steric and electrostatic disjoining pressure will decrease the
absolute value of the total adhesion energy, σadh, so we can
assume that σadh is ∼50% from −σvdW; that is, it is on the order
of σadh = 0.05 mJ/m2. Justification for this assumption is given
in the Supporting Information S4. Estimates for the thickness
and the adhesion energies of common black and Newton black
films are summarized in Table 1. The order of the values

calculated here is lower than previous experimental estimates
yielding σadh ≈ 1 mJ/m2 by us3 and others.30,31 The difference
can be due to specific protein interactions (although Smith et
al.32 found a much lower value, 10−5 mJ/m2, for the protein
adhesion energy). It might be also due to an inaccurate force
balance at the dome rim due to finite thickness, curvature of the
membrane, and dynamic effects.
2.4. Seal Conductivity. Typically,3 patches have seal

resistances Res on the order of 1−100 GΩ. More specifically,
for patches made of cells and liposomes in contact with 150
mM NaCl and a few millimolar CaCl2, or with 200 mM KCl
and 40 mM MgCl2, we measured seal conductivities that are in
the range 3−15 GΩ (with liposomes being at the higher end).
These values represent the parallel combination of the pipet
spanning dome and the seal. For simplicity, we will refer to seal
resistance as the seal alone; that is, we neglect dome
conductivity. To estimate the conductivity of the seal, we use
the Stokes−Einstein relationship between the drift velocity vi of
the ith ion (of charge ei and Stokes radius Ri) and the tangential
electric field E in the seal33

πη=v e E R/6i i i
S

(9)

ηS is seal viscosity. The corresponding ion current densities, ji,
and electric current density, j = Σeiji, are
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In the first approximation, we neglect the surface conductiv-
ity34,35 due to the double layers at both surfaces (equivalent to
setting Ci(z) ≈ Ci∞). In that case, the integral current J in the
seal (of cross-section 2πRch

S, where Rc is the radius of the
capillary) is
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where we used E = −Δϕout/L, whereΔϕout is applied voltage
and L is seal length. Because we aim only at an estimate, let us

assume that both the cation and the anion have the same radius
Ri. The resistance Res = −Δϕout/J is then
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However, surface conductivity is likely to make a significant
contribution to J. The expression of Res is corrected for this
effect in the Supporting Information S3; the final result for Res
is
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The equation is valid only for the case where hS > LD; for the
values of the potentials above, we obtain γRes = 0.46. Taking Ri
= 4 Å, ηS = 0.001 Pa·s, C = 150 mM, L = 10 μm, Rc = 1 μm, and
hS = 7 nm as for a common black film, we obtain Res = 0.17
GΩ, a low value in comparison with experimental data.
Let us consider now the other limiting case, where the film is

extremely thin. In this case, the double layers of the two
surfaces overlap significantly, and the seal resistance is
dominated by surface conductivity. We will use the result
from Section 2.2 that the electrostatic potential in a very thin
film is nearly constant (ϕM ≈ ϕG ≈ ϕm ≈ −70 mV; cf. Figure 2
and Supporting Information S2). Such a high negative value of
ϕ in the seal zone means that the concentration of cations there
will be much higher than the concentration of anions (this is
the reason for the high cation-selectivity observed with typical
gigaseals36); therefore, we can neglect the conductivity due to
the anions. Taking the counterion concentration as C+ ≈ C
exp(−eϕm/kBT) and assuming it is about constant, we can write
for the local and the integral current
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The seal resistance is
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Using the values ϕm = −70 mV, hS = 0.5 nm, and ηS = 0.001 Pa·
s, we obtain Res = 1.2 GΩ. This is about seven times higher
than the resistivity of the common black film obtained from eq
13 and in much better agreement but still lower than the
average experimental values, 3−15 GΩ. An even better
agreement will be obtained if one accounts for the effect
from the proximity of the membrane and the glass on the
mobility of the ions. The seal thickness 0.5 nm is on the order
of the typical diameter of a hydrated ion,33 0.8 nm, so the ions
might roll over the glass surface, half-dipped into the
membrane. Therefore, one must use not the water viscosity

Table 1. Estimates for the Basic Characteristics of the Seal
Film: Thickness, hS, Adhesion Energy, σadh, and Resistivity,
Res

film is hS [nm] σadh [mJ/m
2] Res [GΩ]

common black filma 5−10 0.5 × 10−3 0.17
Newton black filmb 0.5−1 ∼0.05 1.2−12
experimental ∼10−5 (ref 32) 1−100

∼10−3 (ref 27)
0.16 (Section 4)
∼1 (refs 3, 30, and 31)

aValues for common black films refer to the minimum of σel + σvdW,
eqs 1 and 4. Electrolyte concentration is assumed to be C = 150 mM.
bValues for Newton black films are estimations, cf. the text.
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but something between the viscosity of water and of the
membrane.37 To estimate the membrane’s effective viscosity,
we can use the data for the diffusion coefficient of a lipid in the
membrane,2 D ≈ 10−12 m2/s, which is ∼10 times lower than
the typical diffusion coefficient of a lipid in water38 (10−11 m2/
s). From this result and Einstein−Stokes relation between D
and ηS, one concludes that the membrane viscosity is about 10
times higher than that of water. Therefore, the effective
viscosity felt by the ion must be between 0.001 and 0.01 Pa·s,
the upper limit corresponding to Res = 12 GΩ.
The results for the resistivity again suggest that the seal is

probably a Newton black film (cf. Table 1). We remind the
reader that the calculations above concern lipid/water/glass
seal, whereas biological membranes are much more compli-
cated.3 We shall return to the effects of heterogeneity,
polyvalent ions, and the ion-specific effects in a future paper.

3. CREEP RATE OF PATCHES

One way to explore the properties of the seal is to examine the
rate at which the patch can creep up the pipet under the
influence of a driving force. Creep can occur due to various
driving forces: the adhesion energy σadh, sucking pressure Δp,
or voltage Δϕout. In addition, the two configurations of the seal
zone correspond to two different mechanisms of creep, with
different friction forces, respectively. As previously discussed,
the mechanism of motion depends on whether the seal film is a
common black, highly fluid film of thickness ∼7 nm or is a
stagnated Newton black film. In the first case, slippage is
located entirely in the seal (of thickness hS) and that is where
the dissipation occurs. In the second case, slippage and
dissipation occur in the membrane. Mixed transport using
both mechanisms is also possible.
We first investigate the case where motion occurs through a

shear flow in the seal film (Section 3.1). We discuss the other
possibility (shear occurs between the two monolayers of the
membrane) in Section 3.2.
3.1. Creep through Motion in the Seal Zone.

3.1.1. Adhesion-Driven Creep. Consider the case where the
driving force of creep is membrane adhesion and there is an
infinite supply of lipid available from the cell (Figure 3). The
adhesion energy of the membrane at the glass pulls more
membrane into the capillary. The membrane is moving with
velocity vL = dL/dt, where L is the length of the seal, that is, the
membrane-wetted pipet (height of the cylinder). The free
energy gained from adhesion is

σ= −F Aadh adh adh

where Aadh = 2πRcL is the contact area between membrane and
glass and Rc is the radius of the pipet. The power (work per
unit time) of the energy source is therefore

π σ= = −W F t R vd /d 2 Ladh adh c adh (17)

In this section, we assume that this energy is dissipated
mainly through hydrodynamic friction in the seal zone. The
velocity profile in the seal zone is that of a simple shear flow

=v z v z h( ) /x L
S

(18)

At z = 0 (the glass surface), velocity is zero, and at z = hS (the
membrane outer surface), the liquid is moving with velocity vL.
The corresponding local and integral dissipation rates are,
respectively (cf. e.g., Batchelor39),

η η η= ∂ ∂ = =w v z v h W A v h( / ) ( / ) ; /x L Ldiss
S 2 S S 2

diss adh
S 2 S

(19)

where ηS is viscosity of the seal fluid. Creep velocity, vL, can be
found from the energy balance Wdiss + Wadh = 0 (e.g., de
Gennes40), which yields

σ η=v h L/L
S

adh
S

(20)

A typical creep rate for biological patches is3 vL ≈ 8−16 nm/s.
If one takes L ≈ 10 μm, ηS = 0.001 Pa·s as for water, hS ≈ 7 nm,
and σadh = 0.5 μJ/m2 as for a common black film (Table 1), one
can estimate from eq 20 that vL = 350 nm/s, two orders higher
than the experimental value! In the case of Newton black film,
the velocity will be even higher due to the larger value of σadh; if
hS = 0.5 nm and σadh = 50 μJ/m2, then vL ≈ 2500 nm/s. This
suggests either that we are using incorrect parameters (say, it is
possible that ηS is orders of magnitude higher than the viscosity
of water due to the proximity of the glass and the membrane)
or that the mechanism of motion is different.
Note that eq 20 is a differential equation for L(t) (since vL =

dL/dt), and its solution is

σ
η

σ
η

= = −L
h

t v
h

t
2

;
2L

S
adh

S
1/2

S
adh
S

1/2

(21)

This parabolic dependence (velocity decreases with time ≈
t−1/2) is in fact a version of the well-known Lucas−Washburn
law.41,42 The observed L(t) dependence for cell-attached
patches seems to be quite linear3,43 rather than following the
square root formula 21; in the case of cell membranes, that may
reflect the influence of cytoskeletal forces normal to the
membrane and their viscoelasticity. Dome bulging seems also
to be a factor (cf. Section 4).
In the patch clamp technique, pipettes usually have conical

shapes rather than cylindrical. The case of adhesion driven
creep in conical capillary is analyzed in the Supporting
Information S5. Here we cite only the final result

σ
η

= =
+ +

v
L
t

h
L L L L

d
d ( )ln(1 / )L

S
adh

S
0 0 (22)

compared with eq 20. The lengths L and L0 are defined in
Figure 4. The integral of this equation, the dependence of L on
t, yields a transcendental equation

Figure 3. Cartoon of a “cell-attached” patch of bilayer. The cell
(vesicle) is located at the left and serves as an effectively infinite supply
of lipid relative to the area of the patch dome shown at the right.
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This can be compared with the inverse function of eq 21 for L, t
= ηSL2/2hSσadh. We will use eq 23 for the interpretation of
experimental data in Section 4.
3.1.2. Pressure-Driven Creep. Consider a vesicle or a cell-

attached patch with an infinite supply of material, creeping
under the action of an applied hydrostatic pressure, that is, the
driving force is the pressure gradient Δp/L in the seal region.
The flow is now more complex: it is superposition of the
parabolic flat-channel Poiseuille flow and linear shear flow39
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The energy that drives the process is the mechanical work done
on the system. It has two components: the work done on the
“liquid” in the seal (of area 2πRch

S, moving with velocity, vx̅)
and the work done for moving the dome patch (of area πRc

2,
moving with velocity, vL). Written as work per unit time, these
are

π π π
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where eq 24 was used; evidently, Wpatch ≫ Wflow. The
dissipation is concentrated in the seal, and the integral
dissipation rate corresponding to the velocity profile (eq 24)
is given by the expression
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Creep velocity can be found again from the energy balance,
which is Wdiss + Wflow + Wpatch = 0 and which yields in first
approximation (neglecting terms of the order of hS/Rc)

η
≈ − Δv

h R
L

p
2L

S
c

S (27)

This result is similar to eq 20, with −ΔpRc/2 instead of σadh. A
“typical value” for the suction factor, −ΔpRc/2, is on the order
of 0.05 to 0.5 mJ/m2 (Rc = 1 μm and Δp is between −100 and
−1000 Pa). A comparison between adhesion-driven creep
velocity and pressure-driven creep yields an estimate of σadh,
even if ηS is unknown. This is demonstrated in Section 4.

The case of pressure-driven creep in conical capillary (Figure
4) is investigated in the Supporting Information S6; the result
for vL is

η
= ≈ −

Δ
+ +

v
L
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d
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S

S
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c

0 (28)

The result is similar to eq 22 for adhesion-driven creep, again
with −ΔpRc/2 instead of σadh, as it was with cylindrical
capillary. However, the pressure-driven creep of the patch will
follow different L(t) dependence from the adhesion driven
creep because Rc depends on L in the case of conical pipet, cf.
Figure 4 and eq A36 in Supporting Information S5. In addition,
the applied suction pressure Δp may be time-dependent; for
example, it can be44 a linear function of t.

3.1.3. Creep-Driven Simultaneously by Pressure and
Adhesion. In the experimental case, both adhesive force and
pressure gradient are usually present. The difference compared
with pressure-driven creep (investigated in Section 3.1.2) is that
Wadh, eq 17, should be added in the power balance so that it
reads Wadh + Wdiss + Wflow + Wpatch = 0. The respective result
for the creep velocity, vL, in a cylindrical capillary is

η
σ
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= − Δ =
− Δ

v h
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2 ( /2)

L

S

S adh c

S
adh c
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1/2

(29)

Again, this can be used to estimate hS/ηS and σadh. Equation 29
suggests that if Δp = 2σadh/Rc (positive pressure, acting toward
pushing the patch out of the capillary), the creep velocity will
be zero. This can be used as a technique for measuring σadh by
changing Δp until vL = 0. The result for the conical capillary is
similar (Supporting Information S6)
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The conical capillary has the additional advantage that Rc
increases with L: Rc = (L0 + L) sin(α/2). For positive Δp,
there exists a value of L such that Rc = 2σadh/Δp, at which patch
dome will stand still, once again allowing for a fine
determination of σadh.

3.1.4. Pressure-Driven Creep Motion of an Excised Patch.
In the case of an excised patch of fixed area 2πRcLseal + Apatch
(the whole patch is inside the pipet), no contribution of
adhesion will be present because, in a cylindrical pipet, creep
does not involve a change in the area of adhesion. Equation 29
then simplifies to

η= − Δv h R p L/2L
S

c
S

seal (31)

where vL = dL/dt (L is the position of the patch rim) and Lseal is
the length of the seal (the glass surface covered by the excised
membrane). Because the right-hand side of the equation is
independent of L or t, the velocity vL is constant. The solution
for L(t) is

η= − ΔL t h R pt L( ) /2S
c

S
seal (32)

The position L of the patch is now linear function of t.
3.1.5. Voltage-Driven Creep: Electroosmotic Smoluchow-

ski Flow. For electrocapillary flow (flow under an applied
voltage Δϕout), the Navier−Stokes equation balances viscous
friction and electrostatic forces:

Figure 4. Diagram of a conical capillary.
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where the tangential electric field Ex = −Δϕout/L acts on the
ions of bulk charge density ρe = ∑eiCi, with ion concentration
profiles Ci = Ci∞ exp(−eiϕ/T) according to the Boltzmann
distribution; ϕ(z) is the potential distribution in the double
layer (we assume that Δϕout ≪ ϕG). The Poisson equation of
electrostatics states that εS∇2ϕ = −ρe, so eq 33 yields
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After two integrations of this equation one obtains
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The two integration constants k0 and k1 are determined by two
boundary conditions:
(i) The electric force acting at the liquid surface (Maxwell

tensor εSExEz) is equal to the viscous force (Stokes tensor
ηSdvx/dz):
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z h
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which means that k1 = 0, cf. eq 35.
(ii) At the glass surface (z = 0) where the potential is ϕ = ϕG,

velocity is zero and therefore from eq 35

ε ϕ− =E kx
G

0 (37)

With these values of k0 and k1, for the velocity profile, we
obtain the well-known general result from Smoluchowski’s
approach;16,34 the velocity profile of a flat flow is proportional
to the double-layer potential profile
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Note that the fluid velocity is equal to zero at all points, with z
having the same potential ϕ(z) as the glass surface.
The creep velocity coincides with the velocity of the

membrane (z = hS); it is obtained from eq 38 by setting ϕ = ϕM
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(39)

where ϕM is the surface potential of the outer monolayer of the
membrane. From eq 39, it follows that if the membrane has a
negative charge (and potential), this does not require that the
membrane moves in negative direction. Actually, there are three
possibilities according to eq 39: (i) If the membrane surface
potential is more negative than the glass (ϕM < ϕG), then
indeed it will move toward the anode. (ii) If the membrane is
more positive than the glass (ϕM > ϕG), it will move toward the
cathode, even though it is negatively charged; viscous drag due
to counterion movement inside the seal film is stronger than
the directly acting electric force, (iii) If ϕM = ϕG, then although
membrane is negatively charged, it will not move; the electric
force at the surface (toward the anode) is precisely
compensated by the viscous force due to counterions moving
toward the cathode dragging the membrane. From eq 39, we
can conclude that the membrane will stop moving at a salinity
and pH at which ϕM = ϕG. For example, we found3 that patches

change creep direction between pH 5 and 7, which means that
at pH 5 membrane has ϕM > ϕG (membrane is more “positive”
than glass), but at pH 7, the situation is reversed and ϕM < ϕG.
Equation 39 is of the same form as eqs 20 and 27, but this

time the “adhesion force” resulting from the outer potential is

σ ε ϕ ϕ ϕ= − ΔϕΔ h( ) /adh,
S G M

out
S

(40)

Using ε of water, ϕG − ϕM ≈ 30 mV, Δϕout ≈ 50 mV, and hS =
5 nm, one obtains “adhesion force” of ∼0.2 mJ/m2. This is of
the same order as the mechanical creep.
Note that Smoluchowski’s result is valid for unperturbed

double layer only,34 that is, Δϕout ≪ ϕG, while experimental
Δϕout is on the same order as ϕG. This is probably the reason
why eq 39 does not suggest the voltage asymmetry that was
observed in patches;3 the high potential drop Δϕout disturbs the
double layer. In such conditions, a nonlinear and probably
asymmetric relation between vL and Δϕout will be valid instead
of eq 39. Another complication34 is the possible dependences
of η and ε on z, but we will not deal with that given the absence
of data.
Consider now the effect of hS on the electroosmotic creep

rate.39 If the film is thick (hS > LD as in the case of a common
black film), ϕS and ϕM are almost independent of hS (cf. Figure
2) and so is vL according to eq 39. For a thin film (hS ≈ LD, as
in the case of a Newton black film) at constant surface charge
density, the potential difference ϕG − ϕM depends on seal
thickness through eq 7; substituting it into eq 39 of
Smoluchowski, we obtain how the electroosmotic creep
velocity of the membrane depends on the seal thickness hS in
the case that hS ≈ LD and surface charge densities are fixed
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(41)

Two features are interesting. First, vL depends linearly on hS

(no electroosmotic creep if hS = 0). Second, there is a
multiplying effect of the “film thinness” on the potential
difference; the creep velocity is very sensitive to small
differences between the potential of the (freestanding)
membrane and the glass surface. (Notice the difference of
exponents in eq 8 for γϕ instead of the Smoluchowski formula,
which is linear with respect to ϕG − ϕM.) This suggests that if
one could control ϕG, one could create a very fine method for
the determination of the surface potential of a cell by varying
ϕG until the patch ceases to creep.

3.2. Creep with Flow in the Lipid Bilayer. Consider the
other limiting case of a cell- or vesicle-attached patch where the
relevant flow occurs in the membrane itself (in contrast with
Section 3.1, where dissipation was located entirely into the seal
fluid). We assume at first that the pipet is cylindrical and we
seek the velocity profile vx

M(z) in the membrane and vx
C(z) in

the cell. The outer monolayer sticks to the glass, while the inner
monolayer moves across the outer. The boundary conditions
for such problem are, at first glance

= = = =v z v z h v( 0) 0; ( )x x L
M M M

(42)

where z = 0 is positioned at the outer wall of the membrane
(considered fixed by the adjacent glass). This would be the
simple shear flow with a profile vx

M = vLz/h
M. There is a

conceptual difficulty with these boundary conditions, howe-
ver−the flow vx

M = vLz/h
M will have total discharge of lipid

material QM of
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π=Q R h vL
M

c
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(43)

This amount of lipid is insufficient to coat the newly wetted
pipet near the patch rim with 2πRcvL square meters of bilayer
per second because the volume of lipid needed is obviously

π=Q R h v2 L
M

c
M

(44)

that is, two times larger than eq 43. If the real discharge is
smaller than the one given by eq 44, the flow will accumulate
elastic strain in the dome region (through dilution of the lipid
adsorption in the two monolayers), which will bring along a
restoring Marangoni effect that will immediately “draw” the
missing lipid from the adhered membrane toward the patch.
There are two ways, at least, to compensate for the difference
between the discharge (eq 44) needed to supply the lipid for
the newly formed surface and the simple shear discharge (eq
43):
(i) The membrane can set the seal boundary into motion,

until both its walls move with the same velocity, vL, through
Marangoni effect at the outer monolayer of the membrane.
This case will coincide with the models in Section 3.1.
(ii) If the outer monolayer sticks tightly to the glass, the

Marangoni flow will occur at the inner monolayer (the
membrane−cell interface), which will result in the geometry
of the flow in the membrane and in the cell shown in Figure 5.

The flow in the cell will be a superposition of the simple
homogeneous flow, vx

C = 2vL, and a backward Poiseuille flow. In
this way, the inner membrane wall can move with velocity, vx

M =
2vL, while the outer monolayer stays immobile.45,46 Addition-
ally, in the rim region there must exist a mechanism of transfer
of lipid from the inner monolayer to the outer.
We will now consider the second possibility in more detail

for various driving forces. The membrane consists of two plates
of lipids, the outer one immovably bound to the pipet surface
and the inner one moving with velocity 2vL. Instead of the
boundary conditions (eq 42), we assume that (using cylindrical
coordinates this time)

= = = − =v r R v r R h v( ) 0; ( ) 2x x L
M

c
M

c
M

(45)

This choice of the velocity vx
M means that the shortage of lipid

due to the difference between the discharges in eqs 44 and 43
soon creates a strong gradient ∇σM in the inner monolayer
(through a gradient of the surface density ∇Γ of lipid), yielding

an additional flow of surfactant toward the patch. We assume
that the lipid transfer is located entirely at the inner monolayer.
Such mechanism requires two other processes to occur
simultaneously. First, transfer of lipid from the inner monolayer
to the outer one at the patch rim and the dome by, for example,
a flip-flop mechanism, and second, if the inner monolayer
moves with velocity 2vL, then it sets into motion the adjacent
cell fluid and the additional quantity of transported liquid must
have a path back through the center of the pipet (cf. Figure 5).
This happens in the following sequence of events: (i)
Marangoni effect transports cytoplasmic fluid toward the
patch; (ii) this strains the membrane and yields an increased
pressure in the cell right next to the patch dome; and (iii) this
increased pressure yields a backward restoring Poiseuille flow.
The velocity profiles corresponding to this mechanism are vx

M =
2vL(Rc − r)/hM in the membrane and

η
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v v

R r p
L

2
4
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C c

2 2

C
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Here ΔpC is the pressure rise due to the strained patch; small
terms of the order of hM/Rc are neglected in these equations.
The total discharge of lipid through the membrane is now
correct (eq 44). The total discharge of cytoplasmic fluid must
be πRc

2vL. We can calculate the cytoplasmic discharge by
integrating eq 46 over the cell region, which yields the balance
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π
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This balance determines the sought pressure rise ΔpC

ηΔ =p Lv R8 /L
C C

c
2

(48)

The rise of the pressure is very small; if ηC = 0.001 Pa·s and vL
= 10 nm/s, then ΔpC = 5 × 10−4 Pa is enough to restore the
increased discharge of cytoplasmic fluid to the correct value
πRc

2vL. We can calculate now the velocity of the fluid at r = 0 by
substituting eq 48 into eq 46. The result is vx

C(r = 0) = 0; that is,
the fluid in the pipet axis is immobile (cf. Figure 5). The
Poiseuille flow induced by the Marangoni effect is not really
important for the dissipation; the dissipation rate in the
cytoplasmic fluid corresponding to the velocity profile (eq 46)
is
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while the dissipation in the membrane is

πη=W LR v h8 /Ldiss
M M

c
2 M

(50)

which is higher by many orders of magnitude compared with
Wdiss

C according to eq 49.
The viscous tensors acting on both sides of the inner

monolayer of the membrane are given by
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(51)

The first force is higher than the second by a factor of Rc/h
M;

that is, the viscous force due to the intracellular fluid motion
can be neglected in the force balance at the inner wall of the
membrane. The mechanical balance at the inner monolayer

Figure 5. Diagram of the flow in the case of shear flow with dissipation
in the membrane. The outer monolayer is fixed to the glass (the seal is
a Newton black film), while the inner monolayer moves with velocity
2vL. The lipid transported from the inner monolayer flip-flops in the
region of the patch dome. The membrane flow excites Marangoni flow
in the intracellular fluid, resulting in the profile shown (see eq 46).
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equates the tangential Marangoni gradient ∇σM to the friction
forces (eq 51)
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From here, the tension drop from the edge of the pipet to the
patch rim follows

σ ηΔ = ≈ μ
v

h
L

2
0.5 J/mLM M

M
2

(53)

where we used the value ηM = 0.01 Pa·s (which follows from
the value2 of D = 10−12 m2/s; see above). As seen, the
Marangoni increase in σM needed to produce the increased
velocity vx

M(r = Rc − hM) = 2vL is rather small. The difference
ΔσM is due to a slight decrease in the surface density Γ in the
patch region, accumulated in the initial period of the creep
(when the discharge is closer to eq 43). The shortage of lipid
ΔΓ is related to ΔσM through the Gibbs elasticity, EG:

σΔΓ
Γ

= − Δ ≈ −
E

0.0005%
M

G (54)

The value was calculated by assuming the order EG ≈ 100 mJ/
m2. Thus, a decrease in the lipid adsorption by 0.0005% in the
patch is enough to produce a very significant Marangoni flow of
the inner monolayer of the membrane.
Let us investigate another point here. There are generally

two mechanisms of transfer of surfactant tangentially to the
membrane. First, the main convective flux 2vLΓ, and second, a
smaller diffusive flux due to ΔΓ. The latter is given
approximately by DΔΓ/L; the ratio between the two fluxes is
DΔΓ/2vLΓL ≈ 10−5. That is, the diffusive flux is negligible
compared with the convective, which confirm the applicability
of the approximations made in our derivation. A more intricate
question is whether a bilayer can be modeled as a continual
Newtonian liquid, and what precisely is the meaning of the
quantity ηM. To avoid complications, we simply consider ηM to
be an effective characteristic of the adhesion force between the
two bilayers of the membrane. According to Amontons’ laws of
friction, the larger this adhesion, the harder the slippage
between the two monolayers and the higher the effective
viscosity ηM.
The dissipation rate (eq 50) in the membrane determines the

creep velocity; depending on the driving force, we can derive
various expressions for vL, analogously to those in Section 3.1.
For example, for adhesion-driven creep where the power of the
driving force is given by eq 17, from the balance Wdiss + Wadh =
0 we get

σ η=v h L/4L
M

adh
M

(55)

Inserting the values ηM = 0.01 Pa·s, L = 10 μm, hM = 4 nm, and
vL = 10 nm/s, we obtain σadh = 0.001 mJ/m2. Compared with
our Laplace-type calculations that give3 for the adhesion energy
σadh = 1 mJ/m2, this value is small. It is, however, in acceptable
agreement with the estimated order of the adhesion energy in
Section 2.3.
Equation 55 is easily generalized to the case of conical

capillary by analogy to the derivation of eq 22
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Formally, it differs from eq 22 for dissipation occurring in the
seal only with the factor of 1/4. The same factor appears in the
expression for the pressure-driven creep velocity
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The final element of the considered mechanism of creep
motion is the flip-flop transfer of the lipid molecules from the
inner monolayer of the membrane to the outer one in the
region of the patch dome. The influx of lipid through the inner
membrane is QM = 2πRch

MvL. Half of it, πRch
MvL, must be

transferred to the outer wall. The driving force for this transfer
is the strain of the outer monolayer. In the initial period of the
creep, the outer wall of the patch accumulates shortage of lipid,
resulting in increased interfacial tension. The difference Δσ⊥M in
the tension of the two monolayers is inducing a flip-flop
transfer. Assuming that the flip-flop flux is linear function of
Δσ⊥M, we can write

σ
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E
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(58)

where jflip‑flop [m/s] is the transverse volumic flux of surfactant
across the membrane, ΔΓ⊥ is the respective difference of the
surface concentrations, and Res⊥ is the friction coefficient for
flip-flop motion. The total flip-flop flux must be

π=‐A j R h vLpatch flip flop c
M

(59)

Assuming for simplicity that the dome is a hemisphere (which
is not always correct47) so that Apatch = 2πRc

2, we get for the
flux, jflip‑flop , the value hMvL/2Rc ≈ 2 × 10−11 m/s. If the
molecular volume is Vm ≈ 1 nm3 and the area per molecule is
1/Γ ≈ 1 nm2, then a lipid molecule at the inner monolayer of
the dome flip-flops once in τ = VmΓ/jflip‑flop ≈ 100 s on the
average.
Unfortunately, we cannot yet estimate the values of the

driving force Δσ⊥M and the resistivity Res⊥, because both are
unknown. The knowledge of the value of both parameters is
required for estimating the local and the total dissipation rates,
wflip‑flop and Wflip‑flop, related to flip-flopping process; these are
given by the expressions
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(60)

where we used eqs 58 and 59 and the relation Apatch = 2πRc
2

(valid for hemispherical dome only) as well as the assumption
that the adsorptions, Γ, in the inner and the outer monolayers
are not too different (ΔΓ⊥ ≪ Γ). If Res⊥ (and, respectively,
Δσ⊥M) is very large, the order of Wflip‑flop will be comparable to
Wdiss

M so that the dissipation due to flip-flopping must be
accounted for in the energetic balance. Wflip‑flop is smaller than
Wdiss

M when Δσ⊥M < 8ΓVmη
MLvL/(h

M)2; for the expected order
of the magnitude of the involved parameters, this inequality
yields Δσ⊥M < 0.1 mN/m. The following argument can be
given for the validity of this inequality. If Δσ⊥M ≈ 0.1 mN/m, it
will be comparable to the order of magnitude of the adhesion
energy; in such case, the adhesion will probably be unable to
hold the outer monolayer against the Marangoni effect and it
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will creep until Δσ⊥M is relaxed, that is, until Δσ⊥M ≪ σadh.
Nevertheless, from the inequality above, it follows that it is
possible that at certain geometry of the patch (small L, large Rc)
Wflip‑flop and Wdiss

M are comparable, which can be used for the
experimental determination of the flip-flop resistance coef-
ficient, Res⊥. As a simple example, in the limiting case where
Wflip‑flop ≫ Wdiss

M , the adhesion-driven creep velocity will be
determined by the balance between Wflip‑flop and Wadh, eq 17,
which yields

σ= Γ ⊥v R V Res h4 / ( )L c m adh
M 2

(61)

Thus, in the case where the flip-flop controls the dissipation
and the dome remains a hemisphere during creep, the
adhesion-driven creep velocity is a constant reversely propor-
tional to Res⊥. An additional point here is that flip-flopping
dissipation may be stronger in the excised patch configuration.
It was recently reported47 that the difference Δσ⊥M between the
tensions of the two monolayers of a liposome patch is
significantly increased in the excised patch configuration (up to
30% of the monolayer tension!) compared with the cell-
attached configuration. Flip-flopping may allow Δσ⊥M to relax
to a much lower value; nevertheless, the result is indicating that
lipid-flipping should occur at a higher rate and with higher
dissipation in excised patches. The question for the flip-flopping
dissipation will be studied in more detail in future.

4. COMPARISON WITH EXPERIMENT

We analyzed data for pressure-driven creep of several patches of
different composition based on liposomes made of azolectin:
(i) pure azolectin liposomes (Azo 100%); (ii) azolectin
liposomes made of 70 wt % azolectin and 30% cholesterol
(Azo 70%+Chol 30%); (iii) azolectin liposomes with
incorporated mechanosensitive channels of small conductivity
(MscS), in weight ratio 1:100 azolectin/protein; and (iv)
azolectin liposomes with incorporated two types of mechano-
sensitive channels of small and of large conductance (MscL
+MscS) in weight ratio 1:10:1000 MscL/MscS/Azo. The bath
and pipet recording solution consisted of 200 mM KCl, 40 mM
MgCl2, and 5 mM Hepes (pH 7.2 adjusted with KOH). WT-
MscL-GST and WT-MscS-His6 were prepared according to
published procedures.48,49 MscS or MscS and MscL were
incorporated into liposomes using either a dehydration/
rehydration48 (D/R) or sucrose50 reconstitution method
(Supporting Information S7).
Pipettes used were cones with L0 = 10 μm and α = 10° (cf.

Figure 4). All measurements were done at 24−26 °C. Details of
the experimental procedure are given in the Supporting
Information S7 and in ref 44. During the creep experiment,
the suction pressure Δp was increased linearly with time, Δp =
ptt, until the lytic pressure was reached, at which the membrane
broke (cf. the supporting information of ref 44). Pressure Δp
and displacement (defined as ΔL = L(t) − L(0), where L(0)
was on the order of 5−15 μm) were monitored as a function of
time (cf. Supporting Information S7, Figure S3).
In the initial period of the experiment, creep motion was

accompanied by bloating of the dome as new intracellular fluid
and lipid were drawn into the dome (cf. Supporting
Information S7, Figure S4). We take into account only data
where the dome has relaxed to a stationary shape. From the
data for the displacement, ΔL, as a function of time, the creep
velocity was determined through numerical differentiation
using the quadratic interpolating polynomial formula
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where indices i−1, i, and i+1 refer to three subsequent
measurements.
We first assumed that the dissipation is concentrated in the

seal region. We represented eq 28 in the form

η = −
Δ
+ +h
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L L

R
L L v2 ln(1 / )
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L

S

S
0

c
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On the right-hand side of this equation, there are only known
quantities; this allows the determination of ηS/hS. Ideally, the
calculated ratio ηS/hS should be independent of time and
pressure. However, because of the dome bulging in the initial
moments of the experiment, ηS/hS is an apparent function of
Δp and it relaxes to a constant value only after a relaxation time
of several seconds, as illustrated in Figure 6 and in the

Supporting Information S7. We calculated the relaxed value ηS/
hS for all four membranes (Azo 100%, Azo 70%+Chol 30%,
MscS, and MscS+MscL) using several runs for each membrane.
The deviation from the average is reasonably small. The results
are given in Table 2. Assuming first that the seal thickness
corresponds to a common black film in equilibrium, hS ≈ 7 nm
(cf. Section 2.3), we obtain a viscosity on the order of 10−20
Pa·s, which is four orders of magnitude higher than the viscosity
of water. Such a high value in a relatively thick film is hard to
explain. Viscosity of 10−20 Pa·s will yield also too high
resistivity; from eq 13, one can estimate that Res would be on
the order of 2000−4000 GΩ, which is incompatible with the
experiment.
We therefore turn to the other possible mechanism, where

the creep motion occurs through flow in the membrane so that
eq 57 is correct. Obviously, the result for ηM/hM is precisely
four times smaller than the one for ηS/hS from eq 63. Because
the thickness of the membrane is known,∼4 nm, we can
calculate the effective membrane viscosity (Table 2). The
results ranges from 1 to 3 Pa·s, which is about two orders

Figure 6. Ratio ηS/hS, calculated from eq 63 versus Δp. In the initial
period of the experiment, the apparent value of ηS/hS decreases steeply
until it reaches a constant value, due to the bulging of the dome (cf.
also the Supporting Information S7). Data for a liposome with
incorporated MscS.
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higher than the value predicted through Stokes−Einstein
relationship from the diffusive coefficient (0.01 Pa·s). This
may be partly due to the fact that the geometrical factor 6π in
the equation of Stokes−Einstein is smaller for 2-D diffusion.37

(If DM = kBT/gη
MR in the membrane and D = kBT/6πηR in

water, we obtain ηM ≈ 6πηD/gDM; if g is smaller than 6π, then
ηM > 0.01 Pa·s.) In general, one must not expect that our
“effective viscosity”, ηM, which is a measure of the friction
between the two monolayers upon slip, has a value similar to
the viscosity following from the equation of Stokes−Einstein
for the lateral diffusion in the membrane.
The membrane viscosity obtained in Table 2 shows an

interesting and expected correlation to the lytic pressure; the
more “viscous” the membrane (more precisely, the larger the
adhesion between the two monolayers; cf. the discussion below
eq 54), the larger the lytic pressure (i.e., the membrane is more
robust). The correlation is illustrated in Figure 7. The data

demonstrate that the addition of cholesterol to the azolectin
liposome makes it less robust, decreasing both lytic pressure
and ηM. The presence of proteins has a more complex effect.
The addition of MscS has a similar but stronger effect
compared with cholesterol: the membrane containing MscS is
of decreased lytic pressure and is even more mobile than Azo
70%+Chol 30%. However, the addition of MscL to a bilayer
already containing MscS does not change the lytic pressure, yet
it decreases the mobility of the membrane. The contrasting
effects of the two proteins on ηM can be explained with their
structure. There is a prevalence51 of polar and positively
charged amino groups in the loop region of MscL, which are
probably interacting with the negatively charged glass wall.
Therefore, MscL remains electrostatically attached to the glass
and serves as an obstacle for the slippage between the two

monolayers of the membrane, slowing the creep (without
affecting significantly lytic pressure). On the opposite, the
relevant amino acid residues of MscS are polar and negatively
charged,52 so that it is repelled by the glass; thus, this protein
unsticks the membrane from the glass, making the patch more
mobile.
The knowledge of the friction coefficient ηS/hS (or

equivalently, ηM/hM) allows us to determine the adhesion
energy from data for the adhesion driven creep from the
supporting information of ref 44. We use eq 23 in the form
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where t0 is added because the initial moment of contact
between the pipet and the cell is unknown. The creep data for
MscS+MscL are given in Figure 8 in the appropriate
coordinates, t versus (1 + L/L0)

2 ln(1 + L/L0) − L2/2L0
2 −

L/L0. The line is a fit, and from its slope we calculated the
quantity ηS/hSσadh = 1.20 × 1013 s/m2. Since ηS/hS is already
known from the pressure-driven creep data, ηS/hS = 1.96 Pa·s/
nm (cf. Table 2); from the known value of ηS/hSσadh, we can
determine the adhesion energy: σadh = 0.16 ± 0.02 mJ/m2. The
same result will be obtained if the flow is in the membrane,
because changing ηS/hS to 4ηM/hM does not alter the final
result for σadh. This is due to the fact that we determine σadh by
comparing the creep velocities of adhesion-driven and pressure-
driven creep. The nature of the friction force is unimportant for
this comparison as far as it is the same for both driving forces.
The obtained value for σadh is in good agreement with the
estimation of the adhesion energy of the seal when it is a
Newton black film (cf. Table 1).

5. CONCLUSIONS
The two possible mechanisms of creep motion depend on
whether the seal forms a Newton black film (i.e., membrane is
in molecular contact with the glass) or it remains electrostati-
cally stabilized common black film.
The assumption for common black film yields: (i) Seal of

large thickness (7 nm) and very low adhesion energy (0.5 μJ/
m2) according to DLVO theory, Table 1. (ii) The large seal
thickness goes with resistance 0.2 GΩ (Table 1), much lower
than the experimental one. (iii) The mechanism of creep
motion occurs through dissipation in the seal zone. The thick
seal film provides little friction, and the calculated creep velocity
is larger than the experimentally observed value.
The assumption for a Newton black film (membrane sticks

to the glass) yields: (i) Seal is a few angstroms thick (∼5 Å)
and adhesion energy is on the order of 0.5 mJ/m2, Table 1. (ii)
The small hS brings high resistance (1.2−12 GΩ, Table 1), in
agreement with the experimentally observed one. (iii) The

Table 2. Value of Ratios ηS/hS and ηM/hM Calculated from Pressure-Driven Creep Velocity Data for Four Different
Compositions of the Membrane

ηS/hS [Pa·s/nm] sd. dev. [Pa·s/nm] ηM/hM [Pa·s/nm] ηM [Pa·s]a lytic pressure [kPa]b

Azo 100% 3.36 0.73 0.84 3.36 32.6
Azo 70%+Chol 30% 2.26 0.29 0.57 2.26 24.9
MscS 1.06 0.19 0.27 1.06 18.5
MscS+MscL 1.96 0.12 0.49 1.96 18.5

aEffective viscosity of the membrane is calculated by using the value of the membrane thickness hM = 4 nm. bData from ref 44.; results for ηM are
correlated to the lytic pressure in Figure 7.

Figure 7. Correlation between membrane viscosities calculated from
pressure-driven creep velocities and lytic pressures of the bilayers in
Table 2.
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mechanism of creep motion occurs through dissipation inside
the membrane and involves Marangoni flow at the inner
monolayer of the membrane and flip-flop transfer of lipid at the
patch dome. The creep velocity is determined by the effective
viscosity ηM of the membrane (which is, in fact, a characteristic
of the strength of adhesion between the two monolayers).
The analysis of the creep data points to the fact that the

second hypothesis is far more plausible. The creep data allow us
to determine the effective viscosity ηM (∼1 Pa·s, as it follows
from pressure-driven creep data) and the adhesion energy of
the bilayer to the glass (σadh ≈ 0.2 mJ/m2, as it follows from the
adhesion-driven creep data) for azolectin-based liposomes. In
general, the values of the adhesion energy reported in the
literature vary by many orders of magnitude (Table 1), which
may reflect neglected dynamic effects at the dome rim (e.g.,
Young balance at the dome rim may involve significant dynamic
contributions40), finite thickness, or curvature effects. The value
0.2 mJ/m2 obtained by our method from creep data compares
well with the theoretical estimation for the van der Waals
energy of a Newton black film.
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