
Role of Anisotropic Interactions for Proteins and Patchy
Nanoparticles
Christopher J. Roberts* and Marco A. Blanco

Department of Chemical and Biomolecular Engineering, and Center for Molecular and Engineering Thermodynamics, University of
Delaware, Newark, Delaware 19716, United States

ABSTRACT: Protein−protein interactions are inherently anisotropic to some
degree, with orientation-dependent interactions between repulsive and attractive
or complementary regions or “patches” on adjacent proteins. In some cases it has
been suggested that such patch−patch interactions dominate the thermodynamics
of dilute protein solutions, as captured by the osmotic second virial coefficient
(B22), but delineating when this will or will not be the case remains an open
question. A series of simplified but exactly solvable models are first used to
illustrate that a delicate balance exists between the strength of attractive patch−
patch interactions and the patch size, and that repulsive patch−patch interactions
contribute significantly to B22 for only those conditions where the repulsions are
long-ranged. Finally, B22 is reformulated, without approximations, in terms of the
density of states for a given interaction energy and particle−particle distance.
Doing so illustrates the inherent balance of entropic and energetic contributions
to B22. It highlights that simply having strong patch−patch interactions will only
cause anisotropic interactions to dominate B22 solution properties if the unavoidable entropic penalties are overcome, which
cannot occur if patches are too small. The results also indicate that the temperature dependence of B22 may be a simple
experimental means to assess whether a small number of strongly attractive configurations dominate the dilute solution behavior.

1. INTRODUCTION

Protein−protein interactions in aqueous solution are of long-
standing interest for those seeking to understand and control
liquid−liquid and liquid−solid phase separation of proteins,1−6

protein and peptide aggregation,7−10 and assembly of transient
or long-lived amorphous clusters of proteins in solution.11−15

In some cases, this involves interactions between partially or
fully unfolded proteins, and the resulting self-assembled or
aggregated states are often effectively irreversible under the
solution conditions that they form.16,17 For interactions
between native or folded proteins, assembly processes are
more easily reversible, and one of two limiting behaviors is
typically observed.
In one case, protein−protein interactions are highly specific,

and there is a “lock-and-key” binding step such as what occurs
with protein−ligand docking.18−21 The vast majority of other
possible configurations of the two proteins then result in
energetically and statistically negligible interactions compared
to the highly attractive interactions for protein configurations in
the “docked” or “bound” states. As a result, there is a well-
defined and experimentally measurable equilibrium constant for
association (or dissociation, Kd).

22,23 In this case, one can
experimentally quantify the strength or magnitude of the
interactions in terms of the equilibrium free energy of
dissociation, and the corresponding enthalpy and entropy of
dissociation or binding.24 Proteins in this category are natively
monomeric when the bulk protein concentration is below
approximately 1 order of magnitude below Kd, and they form

structurally well-defined dimers or oligomers of finite size at
concentrations near and above Kd.

25

In other systems, strong attractions between proteins instead
lead to bulk phase separation at sufficiently high protein
concentration, with the dense or concentrated phase being a
protein-rich liquid,1,26 amorphous solid,27 or crystal.1−3 If the
less dense phase is not highly concentrated then the dominant
protein species in solution is often monomeric, in that it does
not form long-lived complexes or “bound” states with
neighboring proteins. A similar situation holds if one is at
sufficiently dilute protein concentrations that deviations from
ideal solution behavior are small, independent of the proximity
to a phase transition. Interestingly, under some solution
conditions with relatively high protein concentrations, one
can form short- or long-lived clusters that may or may not be
under equilibrium control.11−14 It is not yet fully understood
how, if at all, these high-concentration intermediate states are
related to bulk phase separation and physical properties of
concentrated protein solutions such as viscosity and opales-
cence;28−31 however, recent models suggest that such clusters
can frustrate phase separation.32 A future report will focus on
concentrated protein solutions; the remainder of this report
focuses on dilute conditions, as these are historically where
most experimental measurements to quantify protein−protein
interactions have been conducted.
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Experimentally, when one is dealing with dilute, natively
monomeric solution conditions, there are a number of
techniques available to quantify the interactions in a statistical
mechanically well-defined way. These include small-angle light,
X-ray, or neutron scattering,33 equilibrium ultracentrifugation,34

and osmometry.35 Provided the solution is sufficiently dilute in
terms of protein concentration, and/or the interactions are
sufficiently weak such that the product of B22 and the protein
concentration is small,36 one obtains B22 as the measure of
protein−protein interactions. B22 is an ensemble-averaged
quantity, and is a Boltzmann-weighted average of the direct
and solvent-mediated interactions between all configurations
involving pairs of proteins in solution. It is defined from
statistical mechanics as37
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where T denotes absolute temperature, and k is Boltzmann’s
constant. The integrals are over all possible values of the
distance (R) between centers-of-mass (COM) for two proteins,
and all possible sets of relative orientations (Ω ≡ Ω1, Ω2) of
each protein. Ψ denotes the solvent-averaged potential of mean
force, and is a function of both R and the protein orientations
unless one is dealing with structurally isotropic nano particles
that are analogues to proteins.38 A single configuration of two
proteins is defined uniquely by R and Ω, with the latter
dictating where each amino acid, in each protein, lies relative to
its COM.
Ψ is a sum over the interactions between all amino acids on

both proteins, and includes the interactions due to steric
repulsions, van der Waals attractions, hydrophobic attractions,
preferential exclusion or attraction of cosolutes, hydrogen
bonding, and screened electrostatics. If one is working at
sufficiently high ionic strengths, then all of these interactions
are expected to be highly short-ranged compared to the
effective hard-sphere diameter (σ) of most proteins of practical
interesta notable exception is if the cosolute is large
compared to σ, such as when dealing with high molecular
weight, hydrophilic, polymer additives.39,40 The range of
interactions between uncharged amino acids is typically short
enough that interactions between two neighboring proteins is
dominated by interactions between those amino acids that are
presented at the solvent-accessible surface of the protein. In
addition, charged amino acids are typically present only at the
solvent-exposed surface of the protein, unless they exist as
paired charges of opposite sign (i.e., a salt bridge) within the
interior of a folded protein.
The arrangement of hydrophilic and hydrophobic amino

acids on the protein surface can vary widely among different
proteins, but what generally results is a heterogeneous mix of
apolar, uncharged polar, and net positively or negatively
charged “patches” on the protein surface. There is no unique
definition of how to delineate the boundaries between adjacent
“patches”, but there is clear evidence that clustering hydro-
phobic amino acids or charged amino acids can have a large
impact on protein solubility and binding.21,41 In addition, the
surface of a protein is not smooth at atomic or amino-acid level
resolution. This surface roughness can result in particular
configurations for a pair of proteins, in which there is a high or
low degree of shape complementarity, e.g., a convex region on

one protein complementing a concave region of similar radius
of curvature on the other protein.42,43 Such complementary
patches can potentially achieve very close contact between one
another, thereby accessing very low energy states.42,44,45

In each of the examples above, one anticipates that Ψ must
necessarily be sensitive to the choice of Ω to some extent,
although that dependence is difficult to succinctly codify in
mathematical terms without resorting to simpler models than
an all-atom force fields and exhaustive enumeration of all
distinguishable configurations in the (R, Ω) space. One way to
potentially overcome these computational limitations, yet
preserve the essential physics of the effects of anisotropic
interactions in Ψ and B22, is to adopt simple “patch” and
“patch/anti-patch” models to provide strongly anisotropic or
orientation-dependent, short-ranged interactions that are
relevant when one can neglect long-ranged electrostatic
interactions.43,44,46

Interaction models of “patchy” particles, where the range of
the patch−patch interactions is much shorter than the protein
or particle diameter, have been used in computer simulations
and theories of phase separation,43,44,47−52 and the effects of
patch size and interaction range on phase behavior and self-
assembly have been systematically tested for selected patch
placements such as the two-patch, “Janus” particle limiting
case,48−51,53,54 and the relation of patch number and type to a
generalized priniciple of correspononding states for highly
anistropic, short-ranged interactions.55,56 Kern and Frenkel
considered an arrangement of four identical patches placed in a
tetrahedral geometry relative to the center of a spherical
particle, and determined the liquid−liquid phase behavior32,46

as well as the relative stabilities of crystalline states.44 This
tetrahedral four-patch model is one of the simplest that
captures the “patchy” nature of protein surfaces while not
biasing the system toward ordering in one and two-dimensions,
such as one finds with the Janus particle systems. It is also of
interest as a network-forming fluid for its interesting phase
behavior and analogies to water and other molecular fluids that
form tetrahedral networks.50,51,57−59 This is the geometry
considered throughout the first part of the work presented here.
In contrast to the examples given above, simple isotropic

models for Ψ have been shown to capture liquid−liquid phase
separation and the existence of a metastable liquid−liquid
critical point for proteins,38,60,55 the small-angle scattering
profiles and thermodynamics of protein solutions,60−63 as well
the qualitative and semiquantitative clustering behavior of
proteins.14,60 As such, there is an outstanding question of
whether experimental quantities such as B22 are best interpreted
in terms of a highly anisotropic Ψ with a small number of
highly favorable interactions that dominate the Boltzmann-
weighted integral in eq 1. That is, if the size of highly attractive
patches becomes small, but the attraction is sufficiently strong,
will only those select patch−patch interactions dominate the
net value of B22 that is measured? Or will the thermal averaging
over many different configurations within eq 1 cause the
measured B22 to be dominated by many weaker interactions,
such that the orientationally averaged potential of mean force
can be well approximated by a weaker, but effectively isotropic
interaction when predicting and interpreting B22 and the
thermodynamics of protein solutions?
This question is first examined here using simple patchy

models that can be solved exactly. The results motivate a simple
but exact reformulation of the statistical mechanical represen-
tation of eq 1 to allow this question to be answered more
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quantitatively and unambiguously for real proteins where one
cannot easily know or define the exact location and “type” of
patches to use in defining the patch−patch interactions, or
more generally in quantifying the orientation-dependent
potential of mean force between proteins. The results also
suggest a simple experimental means to assess whether B22 and
Ψ are dominated by a small number of strong attractions.

2. METHODS
This section is organized as follows. The first subsection
describes a lattice model for proteins interacting through
patches that are placed in a tetrahedral arrangement on the
protein surface, while assuming that all attractions or repulsions
between patches are highly short ranged, e.g., such as might be
expected when otherwise long-ranged electrostatic interactions
are screened by added salt. The lattice model is solved for
different scenarios that depend on which patch−patch pairs
between proteins are attractive or repulsive, a well as the size of
the patches. The next subsection describes an off-lattice version
of the tetrahedral patch model with all attractive patches, akin
to that of Kern and Frenkel,46 again with all patch−patch
interactions being highly short ranged. The results of those first
two subsections illustrate a pattern that motivates the final
subsection, in which the statistical mechanical expression for
B22 is reformulated into an exact expression in terms of the
distance- and orientation-dependent density of states that is
useful in later analysis to assess when a small number of very
low energy configurations can reasonably dominate the
observed values of B22.
2.1. Lattice Model for “Tetrahedral Patchy” Proteins

with Highly Short-Ranged Attractions. Figure 1 shows a

schematic depiction of the anisotropic arrangement of different
“faces” or “patches” on a sphere. These are simplified depictions
of what is otherwise a rugged surface for a protein, separated
into a set of nonabutting faces or patches that have a simple
geometry to allow for analytical evaluation of the model in what
follows below. While the faces in Figure 1 appear identical in

how they are drawn, each one should be treated as
distinguishable when solving the model, as no two faces or
patches are chemically and structurally identical for a typical
protein.
The interactions between proteins are defined as follows.

The translational degrees of freedom of the center of mass of
each protein are accounted for by discretizing the overall
volume of the system (V) into a body-centered cubic (bcc)
lattice composed of Ns identical sites, with the volume per site
denoted as v0. Therefore, the total volume of the system is V =
Nsv0. To account for disallowed steric overlaps among
neighboring proteins, each site of the lattice can be occupied
by only protein at a time, or it can be vacant. The protein
volume fraction ϕ is therefore equal to N/Ns, and is equivalent
to the number density in treatments of one-component lattice
systems.58,59,64

The solvent is implicit, and therefore all attractions or
repulsions between neighboring proteins are on an energy scale
that is relative to the average protein−solvent interaction.
Proteins only interact with one another if they occupy nearest
neighbor (NN) sites: for a bcc lattice, each site has 8 NN sites
surrounding it. Any pair of NN proteins interacts via a
nonspecific attraction (-ε, with units of kT) to account for
favorable, nonspecific interactions between NN proteins. In
addition, contacts between certain kinds of faces or patches are
treated as attractive or repulsive, with interaction energy −γa or
γr, respectively (units of kT). Each face may point toward at
most one NN site at a time (i.e., one corner of the bcc unit cell
in Figure 1).
Physically, the scenarios enumerated below are intended to

correspond in a simple way to (i) a set of hydrophobic patches
on an otherwise hydrophilic surface, or, by analogy, a set of
similarly charged patches on an otherwise uncharged surface
(Case 1); (ii) a set of patches in which some have charge of one
sign, some are oppositely charged, and some are uncharged
(Cases 2 and 3). In addition, the effect of changing the surface
area of the patches for Case 1 is tested in Case 4.
One can begin37,65 with the definition of B22 for a protein

solution with implicit solvent, independent of whether one is
dealing with a lattice or continuous-space system,

= −− ⎜ ⎟
⎛
⎝

⎞
⎠B VQ Q Q

1
222 1

2
1
2

2 (2)

where Qi is the canonical partition function for i proteins, and V
is the total volume of the system. For a lattice system composed
of proteins with distinguishable orientations and either
unoccupied or singly occupied lattice sites, the partition
function for i = 1 is simply

= = = =Q W N E V N q( 1, 0, )1 s (3)

with q denoting the total number of distinguishable orientations
for a given protein on a lattice site, and W(N,E,V) denoting the
density of states, i.e., the number of distinguishable ways of
having N proteins with an overall energy E for a system with
volume V. In eq 3 and what follows, factors of v0 that
accompany each term with a factor of Ns are understood, as
they cancel when all terms are combined in eq 3. Similarly,
kinetic energy contributions to E are neglected since they
necessarily cancel in the final expression for B22.

37 In all
examples below, the total energy E is zero for N = 1 because the
solvent is implicit; independent of what one chooses for the

Figure 1. (A) Schematic representation of the available orientations
for two NN particles that have an aligned pair of patches or faces. For
Cases 1−3 in Section 2, patches are much larger than how they are
shown here; the smaller patch areas correspond to Case 4 in Section 2,
to illustrate the situations where many of the possible orientations are
ones in which patches or faces do not point toward the corners of the
bcc cell surrounding a central molecule. Arrows are unit normals,
shown only for easier visualization of the possible orientations. (B)
Enumerated bcc sites around a central (gray) site, to illustrate that
tetrahedrally placed pactches on a central molecule can point
simultaneously to only one sublattice (sites 1,2,3,4) or the other
(sites 5,6,7,8).
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spatial arrangement of hydrophobic, hydrophilic, and/or
charged patches or faces on the protein surface.
For Cases 1 to 3, we consider situations where the patches

are as large as they possibly can be while still maintaining
tetrahedral symmetry and not having neighboring patches
overlap. If one considers a case where two patches are aligned
with each other between the central site and a NN site, then in
order to maintain that patch−patch alignment or “bond’”, the
central molecule and the NN molecule may each rotate only
around the axis connecting the COM of central and NN
molecules. For concreteness, consider a central molecule that
aligns one of its patches with the NN site labeled 1 in Figure
1B. In order to maintain the patch−patch contact between the
central molecule and a molecule on site 1, the remaining
tetrahedral patches on the central site can only point to sites 2,
3, and 4; and with all patches being distinguishable, there are 3
distinguishable ways to do this. Case 4 will consider the more
general case where the patches are much smaller, and the
number of distinguishable orientations is then much greater.
Case 1: All Attractive or All Repulsive Large Patches.

Consider first the case where all patches have attractive short-
ranged interactions with one another, and the magnitude of the
attraction is denoted γa. As noted above, each NN pair of
molecules has a nonspecific attractive energy with magnitude ε
(independent of the relative orientation of NN faces or
patches). The partition function for i = 2 in this case consists of
three terms, as there are three energy levels: E = -ε - γa for the
states where two proteins are NN and also align their attractive
patches; E = −ε for the states where two proteins are NN but
do not align their attractive patches; and E = 0 for states where
the proteins are not nearest neighbors.
For E = −ε − γa, there are Ns choices of where to place the

first protein. For this geometry of patches, with all patches
considered distinguishable and pointing toward corners of the
bcc cell, q = 24. In addition, for this tetrahedral arrangement of
attractive patches on the surface, it is only possible to point
attractive patches to four of the NN sites at the same time. As
such, there are q/2 distinguishable orientations in which
attractive patches are pointing at sites 1, 2, 3, and 4 in Figure
1B. The second protein can sit on any of these 4 sites.
However, it must also align one of its attractive patches toward
the central site in Figure 1B. There are q/2 distinguishable ways
to accomplish this. There is an identical term for the case in
which the attractive patches of the central molecule instead face
sites 5, 6, 7, and 8. Finally, one must divide the entire
expression by 2 because the two proteins are interchangeable.
Together, this gives the degeneracy or density of states for this
energy level as,

ε γ= = − − = · · + · · =⎜ ⎟
⎛
⎝
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By similar reasoning, the degeneracy for E = −ε is given by
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In this case, the factor of Ns/2 is the same as before, and the
factors of q/2 before each square bracket account for the ways
of orienting the central molecules patches toward sites 1−4 or
5−8, respectively. The terms inside the brackets account for the
two ways in which there can be NN sites without also aligning

the attractive patches favorably. If one sits on one of the four
NN sites that face the attractive patches of the central molecule,
then one must take on one of the q/2 orientations that do not
align with the central molecule. Alternatively, if one sits on one
of the other four NN sites (that do not point toward the
attractive faces of the central molecule), then one can adopt any
of the possible q orientations for that corner molecule.
Finally, the degeneracy for the E = 0 state is simply

= = = −W N E V
N

N q( 2, 0, )
2

( 9)s
s

2
(6)

This follows because there are Ns sites for the first molecule,
and the second molecule cannot sit on the same site as the first
molecule, nor can it sit on any of the eight NN sites or it would
experience an attractive interaction. As there are no NN pairs in
this case, the two molecules may adopt any of their respective q
orientations and still have E = 0.
As a check on the derivation and reasoning above, note that

the sum of the three degeneracies listed above must add to (Ns/
2)(Ns − 1)q2, as that is the total number of distinguishable
ways of placing two interchangeable molecules on the lattice,
irrespective of the value of E. Summing the degeneracies from
eqs 4, 5, and 6 gives this required result (not shown). For Q2
one sums the products of each degeneracy with its Boltzmann
factor. Using that sum for Q2, and eq 3 for Q1, eq 2 gives

βε βε βλ= − − − +

−

B B [1 6(exp( ) 1) 2(exp( )

1)]

22 22,S a

(7)

with β = kT, and using the substitution B22,S = v0/2, with
subscript S denoting the purely steric (hard sphere) or athermal
value of B22 for a lattice fluid of molecules.64,65

In the case of all patches instead being repulsive, all four of
the attractive patches from the preceding example are simply
switched to being repulsive, with a repulsive energy γr. To a first
approximation, this may arise by each of the patches having the
same charge, and with sufficient charge screening that only one
pair of patches on opposing molecules can interact significantly
at the same time. In this case, the derivation above is exactly the
same, except that one switches −γa with γr. The result is

βε βε βλ= − − − −

−

B B [1 6(exp( ) 1) 2(exp( )

1)]

22 22,S r

(8)

In this case, it is possible to have B22/B22,S > 1, if γr ≫ ε. The
maximum B22/B22,S value in this case is 3.
If one instead considered the more extreme case where all

NN interactions are repulsive−akin to a colloidal particle with a
uniform charge on the surface, and a high net charge (still with
screened NN interactions), the largest value of B22/B22,S is 9,
corresponding to a completely vacant NN shell around a
central molecule. That is, this is the case where it is statistically
impossible for a NN pair to form. As such, it places a useful
semiquantitative upper bound on what might be considered as
a physically realistic value for B22/B22,S under net repulsive
conditions when charge−charge interactions are screened to
length scales on the order of the protein diameter.

Case 2: One Negative and Three Positive Large Patches.
Based on a similar line of reasoning as used for Case 1, it is
clear that the degeneracies for E = 0 and for E = −ε are
identical to those in eq 5 and 6, respectively. However, the
configurations that provided patch−patch interactions in Case
1 must now be segregated into those that yield E = −ε − γa and
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those that yield E = −ε + γr. The former (latter) occurs when
patches with opposite (the same) charge state align with each
other. The particular example here is for three positive patches
and one negative patch (same magnitude of charge on each
patch), corresponding semiquantitatively to a case where the
pH is significantly below the pI of the protein, but not so low of
a pH value that all acidic groups become protonated. By
symmetry, one would obtain identical results for the case of
three negative patches and one positive patch. Based on
reasoning analogous to that for deriving eq 4, the degeneracy
for E = −ε − γa is

ε γ= = − − = ⎜ ⎟
⎛
⎝

⎞
⎠W N E V N q( 2, , )

3
8a s

2

(9)

and that for E = −ε + γr is

ε γ= = − − = ⎜ ⎟
⎛
⎝

⎞
⎠W N E V N q( 2, , )

5
8a s

2
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These results can also be obtained by the following
argument. Label each of the charged faces of a given molecule
A, B, C, and D. Let A be negatively charged, and the others be
positively charged. For a given pair of NN sites (one at the
center and one on a corner in Figure 1B), there are 16 possible
pairings (AA, AB, AC, AD, BA, BB, BC, BD, etc.). Simply
enumerating those pairings shows that 10 out 16 result in a
positive-positive or negative-negative pairing (thus repulsive
interactions), with a positive−negative pairing for the other 6
out 16 possibilities. Using the same basic steps for deriving B22
as used in the preceding subsection, the result for the present
case is

βε βε βλ

βε βλ

= − − − +

− − − −

{
}

B B 1 6(exp( ) 1)
3
4

(exp( )

1)
5
4

(exp( ) 1)

22 22,S a

r
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Case 3: Two Positive and Two Negative Patches. Extension
of the reasoning in the preceding subsection shows that there
are an equal number of attractive pairings and repulsive pairings
for faces on two NN sites. Therefore, the degeneracies for E =
−ε − γa and for E = −ε + γr are the same, and equal (1/2)Ns q

2.
The resulting expression for B22 is

βε βε βλ

βε βλ

= − − − + −

− − −

B B {1 6(exp( ) 1) (exp( ) 1)

(exp( ) 1)}

22 22,S a

r (12)

Case 4: Shrinking the Surface Area of the Patches. In all of
the preceding examples, the interacting patches constituted a
relatively large fraction (approximately one-half) of the total
surface area. As a result, each patch was always aligned with a
corner of the cell in Figure 1B. If we instead shrink the patch
size, then orientations are possible such that the patches do not
point to a neighboring corner, and thus cannot interact with a
patch on an NN site even if that site is occupied by a protein
with a properly oriented patch. One way to formulate this
problem is analogous to what was done previously for a lattice
model of network-forming molecular fluids in which the
molecules had “bond arms” that pointed in a tetrahedral
geometry.57

In order to use this approach, one must first specify how
many distinguishable orientations there are when one patch is
facing a corner of the cell in Figure 1B. This will be denoted as
n. For all of the cases above, n = 3. For example, when one fixes

one patch of the central molecule to face site 1 in Figure 1, then
this creates an axis between those two sites, along the unit
normal vector for that patch. The minimum number of
distinguishable ways of rotating about this axis is 3, as this
corresponds to rotating in 120 degree increments -- after each
rotation a different set of patches point toward sites 2, 3, and 4,
respectively. The next largest value of n is 6, as this corresponds
to shrinking the area of the patches by a factor of 2, and then
rotating in 60 degree increments in the example above. By
analogy, the subsequent values of n occur in increments of 3. As
shown in Figure 1A, when a patch on the central molecule is
aligned with a patch on an NN molecule, there are then n
distinct ways to rotate by the angle (Δθ) about the axis created
by the two unit normals that are aligned. In Figure 1A, the
arrows are included simply to show the unit normal for each
patch so as to make the geometry and possible orientations
easier to visualize. The relationship between n and Δθ is simply
Δθ = 2π/n.
The Appendix extends an earlier result57,66 and shows the

relationship between n and q in the case of four distinguishable
tetrahedrally placed patches is

= + − + −

= + − −

q n n

n n

24 32( 3) 32( 3)

24 32( 3)( 2)

2

(13)

This result is independent whether the patches are attractive or
repulsive, as it simply counts the number of distinguishable
ways of orienting a single molecule with tetrahedrally arranged
patches.
The degeneracies for N = 1 and for E = 0 with N = 2 are

identical to those derived in preceding subsections, with q now
taking on larger values. However, the degeneracies for E ≠ 0
with N = 2 must be rederived for n > 3. This is explained in
detail in the Appendix. The results are
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Finally, combining the Boltzmann factors with their corre-
sponding degeneracies in the expression for B22, as done in the
preceding subsections, gives

= − − − + −βε βε βγ+B B f e f e/ 1 8{(1 )( 1) ( 1)}22 22,S

(16)

with f = (4n/q)2. Physically, f is the fraction of the orientational
configuration space for two proteins that allows two faces or
patches to align. If the face−face interactions are repulsive, γa is
replaced with −γr. Inserting n = 3 in the above expression, and
rearranging, one recovers eq 7 or eq 8 for the case of attractive
or repulsive faces, respectively.

2.2. Off-Lattice “Tetrahedral Patchy” Proteins with
Highly Short-Ranged Attractions. The derivation of eq 16
and those for earlier Cases can be generalized to an off-lattice
system in the following way. Consider the interactions between
two spherical particles that have their surfaces divided into Np
nonoverlapping patches with s types; e.g., a natural choice for s
is 4 (1 = hydrophilic, 2 = hydrophobic, 3 = positively charged, 4
= negatively charged). The shape and placement of the patches
is somewhat arbitrary, provided the interactions are short
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ranged compared to the particle or protein diameter (σ), and
patches are not so large that one patch can interact appreciably
with more than one patch on a neighboring particle at the same
time. (e.g., as depicted in Figure 2 with different colored

patches indicating different patch “types”). In addition, the
magnitude and sign of a given patch−patch interaction energy
can be different for different patches. For simplicity and just to
illustrate the major conceptual results, only three interaction
energy levels are considered here: −ε (polar interactions), −γa
(hydrophobic or van der Waals interactions with high shape
complementarity42), and −μ (attraction between oppositely
charged patches). As shown in Section 3, repulsive patch−patch
interactions do not contribute significantly to B22 if there are
strong attractions unless one considers longer-ranged repul-
sions such as at low ionic strength.
Therefore, each of the possible patch−patch pairs have either

zero, −ε, −μ, or −γ for its characteristic energy value (all in
units of kT). One could of course generalize to a large,
eventually continuous, set of energy values, or treat ε, μ, and γ
being a function of the patch surface area. Only these three
attractive patch−patch interaction energy levels are used below,
for simplicity in illustrating the concepts and similarities to
section 2.1. Section 2.3 considers the more general case of an
arbitrary chemically heterogeneous protein surface.
In the present case, the value of W(N = 1, E = 0, V) is qV,

with q and V defined as in previous sections. For N = 2, there
are V possible positions to place the first particle, and the
second particle cannot overlap the exclusion volume (vexcl) of
the first particle (see also Figure 2). In addition, the center of
the second particle must lie sufficiently close to the first particle
in order for the short-ranged attraction to be non-negligible.
For simplicity, the attraction is treated as being appreciable only
if the center-to-center distance lies within a narrow annulus or
shell with volume vsh around the first particle, such as depicted
in Figure 2. If the interaction is sufficiently short ranged then
the value of γa or μ can be treated as independent of protein−
protein COM distance for the second protein that lies within
vsh.
The possible energy states for N = 2 are now: E = 0, −ε, −γ,

−μ. The total configuration space for two particles in V is V(V
− vexcl)q

2/2, with q2 representing the total orientational
configuration space for two particles once their COM positions

have been specified. The degeneracy for E = 0 is simply W(N =
2, E = 0, V) = V(V − vsh − vexcl)q

2/2 + V·vsh(1 − fε − fγ − fμ).
That for E = −ε is W(N = 2, E= −ε, V) = V·vsh·q

2·fε/2; that for
E = −γ is W(N = 2, E = −γ, V) = V·vsh·q

2·fγ/2, that for E = −μ
is W(N = 2, E= −μ, V) = V·vsh·q

2·fμ/2. Here, fε, fγ, and fμ are
defined as the fraction of the q2 distinguishable ways of
orientating two particles that results in a patch−patch
interaction with energy −ε, −γ, or −μ, respectively. This is
an extension of the definition of f in eq 16, except now it can
take on any value between 0 and 1, provided that all fractions
sum to 1. As noted earlier, the present case is not restricted to
the earlier simpler geometries or placement of patches.
Following an analogous procedure to what was done for

Cases 1 to 4 to obtain B22 from eq 2, one obtains after some
rearrangement,

βε βγ

βμ

= + − − −

− − − −

− −

ε γ μ

ε γ

μ

B B
v

v
f f f

f f

f

/ 1 {(1 )

(exp( ) 1) (exp( ) 1)

(exp( ) 1)}

22 22,S
sh

excl

(17a)

or

βε

βγ βμ

= + − +

− + − +

ε

γ μ

B B
v

v
kT f

kT f kT f

/ 1 {1 exp( ln )

exp( ln ) exp( ln )}

22 22,S
sh

excl

(17b)

where B22,S = vexcl/2. Equation 17a is functionally similar to eq
16 except for the factors of 8 and vsh/vexcl, because lattice
models underestimate the correct value of B22,S for an off-lattice
system. Equation 17b illustrates that there is a balance between
the favorable energetics of having patch−patch attractions
(with ε, γ, μ > 0) and unfavorable entropic penalty for
constraining the patches to contact each other; i.e., the terms
ln fε, ln fγ, and ln fμ are all negative since fε, fγ, and fμ are each
necessarily less than 1.
Finally, if one uses vexcl = (4/3)πσ3 and vsh = (4/3) πσ3 (1 −

λ)3 − (4/3)πσ3 as in Figure 2, their ratio in eq 17 can be
replaced with simply (1+λ)3̂−1, similar to a result derived by
Kern and Frenkel for a patch−patch model that is analogous to
the model above if ε = μ = 0 and one considers very small λ. fγ
is then equivalent to χ2 in the nomenclature of ref 45, with χ
denoting the fraction of a single-sphere surface area that is
occupied by all patches combined, and χ ≪ 1.

2.3. Generalized B22 Expression for Short- and Long-
Ranged Anisotropic Interactions. To generalize the
preceding examples further, consider the following derivation
of an alternative but equivalent form to eq 2. This derivation is
general, and does make assumptions about the range of the
interactions, the type or even the existence of definable
“patches”, or the magnitude of different interactions. It can also
be generalized to the case of an explicit solvent, but that is
unnecessary if Ψ properly accounts for the solvent contribu-
tions to protein−protein interactions for a given configuration
(R, Ω1, Ω2).
The total set of distinguishable orientations (q) for one

particle or protein is defined as q∫ Ω dΩ with Ω denoting the
orientation space, i.e., 8π2 radian3 for a single particle or protein
with no axis of symmetry. The partition function for one
particle is then Q1 = Vq, and eq 2 can be expressed as

Figure 2. Schematic of an off-lattice model for patchy particles or
proteins interacting via short-ranged “patchy” attractions with a variety
of different patch “types” (different colors); the center of the second
particle cannot lie within vexcl (white annulus and particle at its center),
and the particles have no interactions if the second particle lies further
away than within vsh (yellow annulus).
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∫ ∫ ∫π= − Ω Ωβ
∞

Ω Ω

−B
q

Vq r r e
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( d 4 d d )E
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2

0
12 12

2
1 2

1 2

(18)

where the subscripts denote particles 1 and 2, and r12 is the
center-to-center distance between the two particles. The triple
integral in eq 18 is equivalent to an integration over the space
represented by Vq2. Equation 18 can therefore be expressed as

∫ ∫ ∫π= − − Ω Ωβ−
∞

Ω Ω

−B q r r e
1
2

d 4 ( 1) d dE
22

2

0
12 12

2
1 2

1 2

(19)

Using the definition of q, and defining fΩ(E | r12) dE as the
fraction of the two-particle orientation space (q2) for which the
interaction energy lies between E and E + dE when two
particles are at a separation distance r12, gives

∫ ∫π= − | −β

≠ Ω
−B v r r f E r e E1

2
1
2

d 4 ( )( 1) d
V v

E
22 excl 12 12

2
12

excl

(20)

with vexcl defined as the excluded volume of one particle, and
with the integral including only configurations where the
particles or proteins do not overlap. In the above expression,
fΩ(E | r12) is normalized for a given r12 such that it does not
include contributions from orientations that have particle−
particle overlaps.
Calculating fΩ(E | r12) is equivalent to the following exercise.

Take the two-particle density of states W(N = 2, V, E) and first
divide out the factor of V for the number of ways of placing the
first particle, then partition it into “slices” W(N = 2,E, r12 → r12
+ dr) for a given volume annulus (bounded by r12 and r12 + dr)
where the second particle can be placed, and finally keep only
configurations without particle overlap. Normalizing this
function gives fΩ(E | r12), such that

∫ | =f E r E( ( ) d ) 1r12 12 (21)

for any annulus r12 → r12 + dr.
Using eq 21 in eq 20, and defining B22,S = vexcl/2 gives

∫ ∫π= − −β

≠ Ω
−B B r f e E r2 [( d ) 1] d

V v

E
r22 22,S 12

2
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12
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This expression is general, and applies for nonspherical particles
that may or may not be “patchy”. It highlights again that the
contribution to B22 from configurations with a given energy E is
a balance of both the Boltzmann factor for that energy state,
and the entropic contribution due to the fraction of
configuration space that it constitutes. Very energetically
favorable states will contribute significantly to B22 only in
situations where their density of states is sufficiently large. In
addition, once longer-ranged interactions exist, the fact that the
contributions to B22 are weighted by a factor of r12

2 will make it
difficult for a small number of highly attractive configurations to
dominate B22.

3. RESULTS AND DISCUSSION

Figure 3 shows the dependence of B22/B22,S on the magnitude
of the attractive or repulsive interaction parameter (ε, γa, or γr)
for the simplest cases for the lattice model: panel A is for an
isotropic interaction (no patches); panel B and panel C are for
four attractive or repulsive large patches (both Case 1), without
including a nonspecific attraction (i.e., ε = 0) with eq 7 and 8,
respectively. The curves in panels A and B show a gradual
decrease in B22/B22,S as the strength of the interaction increases.
Typical experimental values of B22/B22,S fall between 1 and −10
if one does not have long-ranged electrostatic repulsions. At
significantly lower B22/B22,S values, proteins typically undergo
phase separation.1,8,67,68

Qualitatively similar results occur (not shown) for the cases
with a mix of attractive and repulsive patches, as expected by
inspection of eq 7, 11, and 12, except that B22 does not have
strong contributions from the nonsteric repulsions once
significant attractions are present (see also discussion below
regarding interactions with smaller patches). If one considers
purely repulsive patches (panel C), then there is an analogous
increase in B22/B22,S as one increases γr. In all cases, the values
of ε, γa, or γr that provide experimentally reasonable values of
B22/B22,S are of the order of 1 kT. If one also includes a
nonspecific nearest neighbor attraction (ε ≠ 0 in eqs 7, 11, and
12), it simply shifts the B22 curves down slightly (see panels B
and C), but does not impact the qualitative behavior or any of
the conclusions below. As such, ε = 0 is used throughout the
remainder of the results and discussion below.
Figure 4 shows the change in B22/B22,S as a function of γa

(panel A) or γr for Case 4 (eq 16) where the size of the patches
is reduced (with four tetrahedral patches of equal size or value
of n or Δθ). Panel A shows that, at first, B22/B22,S has little
dependence on the strength of the attraction up until a certain
point, after which there is a dramatic decrease of B22/B22,S with
a small increase in γa, and this ultimately drops B22/B22,S to
unphysically large negative values. Conversely, if one considers
purely repulsive short-ranged interactions between patches,
then panel B shows that those repulsive interactions have
negligible contributions to B22/B22,S once the patches become
even slightly smaller than the largest patch size that could be
accommodated in the model. This highlights that when
interactions are all very short ranged, repulsions other steric
clashes are likely to contribute negligibly to B22, due the nature
of the Boltzmann factor biasing toward attractive energies, as
noted previously.42 In what follows, only attractive interactions
are included until the end of the report, when the question of
how longer-ranged interactions influence B22/B22,S is revisited.
Figure 5 illustrates the results from the off-lattice model of

very short-ranged attractions for the case of ε = μ = 0, as a
function of γ, for the case where γ is a function of the size of the
patch. This is akin to the known dependence of hydrophobic
attractions as being linearly proportional to the solvent-
accessible surface area. While there is debate on the exact
number one should use for that dependence, a value of the
order of magnitude of 2.5 kcal nm−2 mol−1 is typical and is used
here. The results below do not change significantly if one uses
alternative values proposed in the literature.
The results show that while the strength of patch−patch

interactions scales linearly with patch size (area), the entropic
penalty one pays for aligning patches, i.e., based on the fraction
of the two protein orientation space (q2) that allows such
patch−patch contacts, scales logarithmically with the patch size.
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In addition, eqs 16, 17, and the definitions of f show that f1/2

scales as the total patch surface area divided by the total protein
surface area. As a result, larger proteins (larger σ) will pay a
higher entropic penalty (−kT ln f) than will smaller proteins,

for having equivalently sized patches interacting with one
another.
In panel A, if the solid curve lies far above the dashed curve,

then B22/B22,S will not be appreciably negative. If the solid curve
lies far below the dashed curve, then B22/B22,S will be so large as
to be unphysical, and one would expect low solubility for the
protein in those solution conditions. This suggests that for
proteins that remain soluble but have net attractive B22/B22,S
values, the protein surface must be engineered or evolved to
have a delicate balance between the size and number of
attractive patches, with a larger number needed for larger
proteins unless B22/B22,S is not largely negative. This conclusion
is in keeping with the observation that large proteins such as
monoclonal antibodies tend to not display the same
quantitative patterns in terms of typical B22/B22,S values, when
compared to their much smaller, globular protein counter-
parts.4,8,68

Panel B illustrates this further by showing how B22/B22,S is
essentially unaffected by the average patch size until a threshold

Figure 3. B22/B22,S for the lattice model for: (A) isotropic case, no
patches; (B) large patches (Δθ =120°) with four attractive patches
arranged tetrahedrally; (C) same as panel B but with repulsive patches.

Figure 4. B22/B22,S for case 4 as a function of patch size: (A) four
attractive patches or (B) four repulsive patches arranged tetrahedrally
as in Figure 1. Curves are labeled with the value of Δθ, with smaller
Δθ corresponding to smaller patch sizes. All curves are for ε/kT = 0.
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range where the values of E and −kT ln f switch from
entropically to energetically dominating contributions to B22/
B22,S. Note that these results use ε = 0, so if one included the
weaker, nonspecific interactions (ε ≠ 0) such as in Figure 3A,
then those would dominate the value of B22/B22,S under
conditions where the patch−patch entropic penalties preclude
significant patch−patch contributions to B22/B22,S. The
precipitous drop for each curve in Figure 3B shows that there
is only a small range of magnitudes for the patch−patch
attraction energy to effectively dominate B22/B22,S before the
effect becomes so pronounced that the protein would either
dimerize/oligomerize via specific patch−patch binding, or the
protein would become insoluble if the arrangement of patches
allowed for a space-filling (crystalline or amorphous) network

of patch−patch contacts to form. If one considers the results in
Figure 4A within the same context, a similar conclusion is
reached, and this is in keeping with recent results elsewhere.32

In practice, there are currently no unambiguous ways to take
a known three-dimensional structure for a protein and
transform it to a simple “patchy” model such as those used
for conceptual illustrations above. Rather, one must consider
the more realistic case where one does not have well-defined
and discrete patches, and take a more structurally detailed and
realistic depiction of the protein surface and its chemical
heterogeneity. In this case, the patchy models are difficult to
generalize in any quantitative or rigorous detail, but one can
instead rely on the reformulation of B22 in terms of the 2-body,
distance-dependent fractional density of states fΩ(E|r12) and eq
22. This allows one to consider not just interactions that are
extremely short ranged compared to σ, but also different
protein−protein COM distances, r12. Inspection of eq 22 and
comparison to eqs 7, 11, 12, 16, and 17 shows that they all
share a similar pattern, with a balance occurring between the
low-energy, low entropy (small f) portions of Q2, and vice
versa. Therefore, the same qualitative conclusions and behavior
of B22 as a function of the size and strength of attractive
“patches” will hold for this more general case. However, it is
untenable to generally map out B22 as a function of all or even a
reasonably large number of the possible protein surface
topologies one can imagine. It is also not clear what the
minimum number of energetic parameters to describe the
protein surface would be, akin to how ε, γ, and μ were used in
Section 2.2. Therefore, it is not realistic to construct
quantitative plots that are analogous to Figures 3, 4, and 5.
However, eq 22 can be used directly if one can estimate or

calculate fΩ(E|r12) from molecular models. This is particularly
useful if one employs biased sampling methods that effectively
supply the density of states for a given system,69 as fΩ(E|r12)dE
is readily obtainable simply by adding a bookkeeping step to
partition Ω for different “bins” of r12. Using the methods
described elsewhere,15 such calculations were performed with
replica-exchange molecular dynamics (REMD) simulations69 of
γ-D Crystallin; an eye lens protein that is of interest for its role
in cataract formation70−72 and as a model for non-native
aggregation of proteins.73−75 The model treats each amino acid
explicitly, while coarse graining the interactions and treating the
solvent implicitly so as to make the detailed enumeration of
fΩ(E|r12) computationally tractable.
The results are shown in Figure 6 for the case when all

electrostatic interactions are highly screened and therefore are
effectively negligible, akin to what was approximated previously
in both molecularly detailed and approximate model calcu-
lations.42,46 fΩ(E|r12) is plotted as a function of E for a given r12.
Each solid curve is for a different bin of protein−protein COM
distances. The dashed curve is E/kT vs E with T = 300 K; the
corresponding value of B22/B22,S is approximately −1.5, as that
is the largest negative value γD-Crys shows at high salt
concentrations and room temperature for this pH.15

Colder (warmer) temperatures give a different solid line with
the same intercept at (0,0), but with a steeper (shallower)
slope. For a given choice of temperature, eq 22 shows that any
values of E for which the dashed curve lies significantly above a
given portion of a solid curve corresponds to configurations
that contribute negligibly to B22. The basic shape of fΩ(E|r12) is
expected to hold for other proteins, and is akin to what one
must recover for macroscopic systems at thermodynamic
equilibrium.37 Therefore, Figure 6 shows that for any protein,

Figure 5. Illustrative results for an off-lattice case, assuming attractive
hydrophobic patches with the strength of patch−patch attractions
scaling with the surface area of a patch (∼0.25 cal mol−1 nm−2). (A)
comparison of the contributions to B22 from the magnitude of the
attraction γa (dashed line) and the entropic penalty for aligning
patches, −kT ln f (solid curves) for a tetrahedral patch geometry akin
to that in ref 46. (B) Effects of changing the number of patches Np
(main panel) and protein diameter σ (inset) for the dependence of
B22/B22,S on the area of a patch for the off-lattice model, assuming λ is
based on an annulus width of 0.5 nm in Figure 2. The inset is for Np =
4, with axis labels identical to the main panel.
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one expects there to be low E states that are too entropically
penalized (i.e., poorly populated) to contribute to B22, and high
E states that are also too poorly populated or are too close to E
= 0 to contribute significantly. States with extremely large
negative E/kT values will necessarily have extremely low ln fΩ
values if one is to recover physically realistic values for B22.
Rather, the configurations that will dominate B22 are those that
provide a balance in terms the magnitude of E and the number
of configurations with that E (or more accurately, E dE unless E
is discretized or quantized). One must also realize in
considering Figure 6 that the contributions to B22 for a given
r12 must then be multiplied by the square of r12 within eq 22.
Therefore, configurations from larger distances are weighted
more heavily than shorter distances. Eventually, all contribu-
tions are negligible for sufficiently large r12 values.
For the particular example in Figure 6, ultimately many of the

configurations with E values falling between zero and
approximately 12 kT (0 and −7 kcal/mol), with most between
3 and 10 kT, contribute significantly to B22. Based on the broad
peak in ln fΩ that lies well above the dashed lines for the
smallest r12 values, it is clear that E values in the middle of that
range are most important for determining B22, rather than the
configurations that correspond to the lowest energy states one
can sample.42 The values on the y axis in Figure 6 (and the
cumulative distribution, not shown) highlight that the overall
fraction of the possible orientations that contribute to B22 at
short protein−protein distances is of the order of 0.1 or higher.
It remains to be tested whether significantly different results
will hold for proteins that exhibit much larger negative B22
values, using free energy sampling techniques such REMD to
ensure that the density of states are being accurately sampled at
large negative E values.
Taken together, all of the results considered here are

consistent with an interpretation of negative B22 values as being
dominated by one of the following: (i) a relatively large fraction
(∼0.01 to 0.1 or larger) of all the possible orientations that give
rise to “intermediate” strength attractions (∼ a few kT); (ii) a
significantly smaller fraction (≪ 103) of all possible
orientations, which have very large attractive energies. If (ii)
occurs, the results and analysis here indicate that one should

expect one of two experimental observations. Either the
proteins have such strong specific interactions that they form
stable dimers or other molecular complexes that are easily
detectable with scattering methods, or the proteins remain
effectively monomeric but a small change in temperature will
cause B22 to change dramatically (e.g., as observed via dramatic
downturns in Figures 4A and 5B). If (i) occurs, then one would
not expect a small change in temperature to have a dramatic
change in B22 because it would just cause a small shift in the
otherwise broad distribution of energies and configurations that
were being sampled to provide the experimental B22 value(s),
e.g., a small change in slope of the dashed line in Figure 6.
It is currently common practice to measure B22 at only a

single temperature except when one is in the vicinity of the
critical temperature for a phase transition, but in that case it is
questionable whether one can actually measure B22 accurately
since its magnitude becomes so large as to require unrealisti-
cally low protein concentrations to accurately determine B22.

36

It would be interesting in future work to assess whether the
temperature dependence of B22 is a pragmatic means to assess
when a small number of configurations with very strong
attractions is dominating the behavior. One hypothesis is that
such conditions will also be those that are most prone to
forming transient clusters that are implicated in causing
problems with high viscosities of more concentrated protein
solutions,28−30 and possibly serve as precursors to phase
transitions or metastable clustered states of protein solu-
tions.11,12,14,32

■ APPENDIX
The particular form of eq 13 arises in the following way. There
are 24 distinguishable ways of orientating a molecule such that
all patches face sites in the bcc geometry. There are 32 (n − 3)
distinguishable ways to point only one patch to a corner, i.e.,
eight corners to choose from, four different patches to select
from to face that corner, and based on the definition of n, there
are n − 3 ways of orientating the other patches such that they
do not face a corner. Finally one takes each configuration with
one patch facing a corner and creates an imaginary axis along
the unit normal for one of the patches not facing the corner.
Rotating about this axis gives n − 3 additional orientations that
do not point to any corners. Doing this for each of the 32 (n −
3) configurations that start with one patch facing a corner gives
32 (n − 3)2 distinguishable configurations that have no patches
facing corners. Additional rotations about other axes normal to
different faces do not produce new configurations that are
distinguishable from others that have already been enumerated;
this was also confirmed via by-hand enumeration of all
distinguishable orientations of an analogous model in earlier
work.57,66 Equation 13 differs from the previous result by a
factor of 2, simply because in the present case all four patches
are distinguishable. By inspection, choosing n = 3 in eq 13 gives
the required result of q = 24 for the case where all orientations
only point all faces or patches toward corners of the bcc cell.
To proceed, we separate the degeneracy for E = −ε, N = 2

into three terms that account for three different possibilities for
the orientation state of the molecule occupying the central site
in Figure 1: (a) all faces of the central molecule point toward
corners; (b) only one face points toward a corner; (c) no faces
point toward corners. For (a), there are 12 possible
configurations for the central molecule where it points to the
first sublattice (e.g., sites 1−4 in Figure 1). There are eight
corners where the second molecule could possibly sit. If it sits

Figure 6. Density of states (ln f vs E, given as solid lines) as a function
of r12 for two human γ-D Crystallin molecules, based on replica-
exchange molecular dynamics, using the methods in ref 15. The
dashed line is E/kT vs E for T = 300 K.
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on a site that has a face of the central molecule pointed toward
it, then it can only adopt one of q − 4n of its possible q
orientations, as the other 4n would point a face at the central
site, and therefore gain an additional interaction. If the second
molecule instead lies on the other sublattice then it is
impossible for it to face an attractive/repulsive face of the
central molecule, and so it may adopt any of its q orientations.
Finally, the same reasoning applies if the central molecule
adopts one of the 12 orientations where it points all of its
interactive faces toward sites 5 to 8 in Figure 1. Taking these
terms together gives 12 [4(q − 4) + 4q] × 2 distinguishable
configurations for case (a).
For (b), one first enumerates for the case of one face

pointing toward the first sublattice. There are four possible
corners toward which the central molecule may point a face,
and for each corner that face may be any of the four
distinguishable interacting faces on the central molecule. With
any one face fixed toward a corner, there are n − 3 ways of
orientating the central molecule such that none of the other
faces are pointing at a corner. For each of the configurations
just enumerated, the second molecule can sit either on the site
that is aligned with a face of the central molecule, or on one of
the seven other NN sites. If the former, then it can adopt only q
− 4n orientations to avoid having two faces aligned with each
other. Otherwise, it may take on all q distinguishable
orientations. Finally, one simply doubles this term to account
for the case of pointing toward the second sublattice.
Combining these terms together gives 4 × 4(n − 3) [(q −
4n) + 7q] × 2 distinguishable configurations for case (b).
For (c), there are 32(n − 3)(n − 3) ways of having the

central molecule point none of its interactive faces toward a
corner (see also the derivation of eq 13, above). The second
molecule can occupy any of the eight corners, and may take on
any of its q orientations since it cannot possibly align with an
interactive face of the central molecule in this case. Taking
these terms together gives 32(n − 3)2 × 8q configurations for
case (c). The overall degeneracy for E = −ε is obtained by
summing (a), (b), and (c), multiplying by Ns since the choice
of the location for the central site is arbitrary, and dividing by 2
since the two molecules are not distinguishable. Doing so gives
eq 14 after some algebra. Using a similar path of reasoning, one
obtains eq 15 for the degeneracy when the interactive faces of
two NN molecules are aligned.
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