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Maize (Zea mays) is an important C4 plant due to its widespread use as a cereal and energy crop. A second-generation genome-
scale metabolic model for the maize leaf was created to capture C4 carbon fixation and investigate nitrogen (N) assimilation
by modeling the interactions between the bundle sheath and mesophyll cells. The model contains gene-protein-reaction
relationships, elemental and charge-balanced reactions, and incorporates experimental evidence pertaining to the biomass
composition, compartmentalization, and flux constraints. Condition-specific biomass descriptions were introduced that
account for amino acids, fatty acids, soluble sugars, proteins, chlorophyll, lignocellulose, and nucleic acids as experimentally
measured biomass constituents. Compartmentalization of the model is based on proteomic/transcriptomic data and literature
evidence. With the incorporation of information from the MetaCrop and MaizeCyc databases, this updated model spans 5,824
genes, 8,525 reactions, and 9,153 metabolites, an increase of approximately 4 times the size of the earlier iRS1563 model.
Transcriptomic and proteomic data have also been used to introduce regulatory constraints in the model to simulate an
N-limited condition and mutants deficient in glutamine synthetase, gln1-3 and gln1-4. Model-predicted results achieved 90%
accuracy when comparing the wild type grown under an N-complete condition with the wild type grown under an N-deficient
condition.

Maize (Zea mays), also known as corn, is an essential
dual-use food and energy crop. Maize production is
increasing at the greatest rate among all cereals, with a
worldwide trend of 0.06 tons ha21 year21 (Leveau et al.,
2011) and a record 877 million tons produced in the 2011-
2012 fiscal year (International Grains Council, 2013).
With the recent completion of the maize genome in 2009
along with the creation and curation of databases such as
MaizeGDB in 2011 (Schaeffer et al., 2011), MaizeCyc in

2013 (Monaco et al., 2013), and MetaCrop 2.0 in 2012
(Schreiber et al., 2012), there is a need for an updated
genome-scale metabolic model (GSM; Saha et al., 2011)
that will integrate all newly available information from
diverse sources. The integration of this information with
experimental transcriptomic data, proteomic data, and
biomass composition measurements obtained with wild-
type plants grown under optimal nitrogen (N+ WT)
conditions and limited nitrogen (N2 WT) conditions
(Amiour et al., 2012), as well as two Gln synthetase (GS)
mutants grown under optimal nitrogen (N), gln1-3 and
gln1-4 (Martin et al., 2006), has provided a more accurate
assessment of N metabolism within the maize leaf.
Moreover, since integration of transcriptomic, proteomic,
and metabolomic data appeared not to be straightfor-
ward (Amiour et al., 2012, 2014), the development of a
model could help to identify putative candidate genes,
proteins, and metabolic pathways contributing to plant
growth and development.

Maize is a C4 plant that overcomes the inefficiencies
of Rubisco, to capture oxygen over the preferred CO2,
by separating the photosynthetic carbon fixation process
into two cell types: the bundle sheath and mesophyll cells.
In comparison with C3 plants, this separation allows C4
plants to have a lower rate of photorespiration, a higher
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rate of photosynthesis at high light intensities (under
standard air and temperature conditions), and a higher
photosynthetic nitrogen use efficiency (NUE; Christin
and Osborne, 2013; Driever and Kromdijk, 2013; Peter-
hansel et al., 2013; Sage, 2014; Wang et al., 2014). A
C4-specific maize GSM could provide insight into
N metabolism and provide cues for improving NUE (i.e.
the vegetative biomass or grain yield produced per unit
of N present in the soil). Since N is the major limiting
factor in agricultural production among mineral fertil-
izers (Vitousek et al., 1997; Hirel et al., 2007; Andrews
and Lea, 2013; Andrews et al., 2013) and NUE is esti-
mated to be far below 50% in cereal grains (Raun and
Johnson, 1999), improving NUE is essential for improv-
ing overall productivity in maize (Hirel and Gallais,
2011). Amiour et al. (2012) experimentally determined
150 gene transcripts, 40 proteins, and 89 metabolites that
are significantly different between the N+ WT and
N2 WT conditions during the vegetative stage of growth.
N utilization is strongly linked to the GS enzyme, as
all N, either in the form of nitrate or ammonium ions,
is channeled through the reaction catalyzed by the GS
enzyme (Martin et al., 2006; Cañas et al., 2010; Hirel and
Gallais, 2011; Andrews et al., 2013). The mesophyll cell-
specific GS1-3 isozyme is involved in synthesizing Gln
after nitrate reduction from the vegetative state until the
plant reaches maturity. Leaf aging induces the synthesis
of the bundle sheath-specific GS1-4 isozyme. Conse-
quently, Martin et al. (2006) hypothesized that the GS1-4
isoform is used in the reassimilation of ammonium dur-
ing protein degradation in senescing leaves. During
vegetative growth in the leaf tissue, DNA microarray
data revealed that 243 gene transcripts, 46 proteins, and
48 metabolites exhibited significant differences in the
gln1-3 mutants and 107 gene transcripts, 14 proteins,
and 18 metabolites displayed substantial differences in
the gln1-4 mutants (Amiour et al., 2014). In this second-
generation maize model, we explore the effect of the
computational knockout of genes encoding for GS1-3
and GS1-4 isozymes using flux balance analysis (FBA)
to elucidate the role of GS in N metabolism.

FBA of GSMs is used to model organism-specific
metabolism by simulating the internal flow of metab-
olites. The number of GSMs for plants has increased
rapidly, with models available for Arabidopsis thaliana
(Poolman et al., 2009; de Oliveira Dal’Molin et al.,
2010a), barley (Hordeum vulgare) seed (Grafahrend-
Belau et al., 2009), maize (de Oliveira Dal’Molin
et al., 2010b; Saha et al., 2011), sorghum (Sorghum bi-
color; de Oliveira Dal’Molin et al., 2010b), sugarcane
(Saccharum officinarum; de Oliveira Dal’Molin et al.,
2010b), rapeseed (Brassica napus; Pilalis et al., 2011),
and rice (Oryza sativa; Poolman et al., 2013). These
models rely on annotation information to assemble
comprehensive compilations of all reactions and metab-
olites known to occur within the organism. Currently,
whole-genome sequencing has been completed for ap-
proximately 40 vascular plants, including A. thaliana
(Arabidopsis Genome Initiative, 2000), Arabidopsis lyrata
(Hu et al., 2011), soybean (Glycine max; Schmutz et al.,

2010), rice (Goff et al., 2002; Yu et al., 2002), Populus
trichocarpa (Tuskan et al., 2006), sorghum (Paterson et al.,
2009), Theobroma cacao (Tuskan et al., 2006), and maize
(Schnable et al., 2009). Gene annotations of the whole-
genome sequences have been used to determine the re-
actions within an organism and therefore build a GSM.
FBA calculates all reaction fluxes in a metabolic net-
work based on the optimization of an objective func-
tion (typically the maximization of the biomass yield).
A quasi-steady state is assumed, and flux constraints
are set based on the specific medium or the reversibility of
reactions derived from thermodynamics. Incorporation of
omics data into GSMs is achieved through appropriate
constraints on fluxes that restrict metabolic flows to only
condition-relevant phenotypes.

During the last few years, multiple methods have been
developed to integrate omics data into GSMs. Proteomic
and transcriptomic data have been used to apply flux con-
straints on corresponding reactions determined by gene-
protein-reaction (GPR) associations. The GIMME (Becker
and Palsson, 2008), iMAT (Shlomi et al., 2008), and MADE
(Jensen and Papin, 2011) algorithms use a switch ap-
proach to turn on/off reactions based on expression
levels. The GIMME algorithm turns off reactions based
on a user-specified threshold of the expression level.
The iMAT algorithm turns on a minimal set of reactions
associated with low expression data in order to achieve
a user-specified metabolic function. The MADE algo-
rithm incorporates related experimental data sets into the
model to activate or repress reactions based on the pro-
gression of the experimental conditions. A different class
of algorithms, known as the valve approach, was de-
veloped to incorporate proteomic and transcriptomic
data by constraining the allowable flux ranges of reac-
tions. The E-Flux method incorporates a user-specified
function to convert gene expression data to flux con-
straints (Colijn et al., 2009). Finally, the PROM algorithm
(Chandrasekaran and Price, 2010) uses multiple data sets
to constrain flux bounds (i.e. allowable flux ranges) based
on the probabilities associated with gene activity among
all data sets. Lee et al. (2012) integrated gene expression
data by minimizing the difference between the predicted
flux levels and gene expression data over all reactions
with corresponding expression levels. Using the Yeast
5 model (Heavner et al., 2012) for Saccharomyces cerevisiae,
Lee et al. (2012) compared the predicted fluxes with ex-
perimentally determined exometabolome fluxes using
the coefficient of determination r2. The authors achieved
r2 values of 0.87 and 0.96 at 75% and 85% of the maximal
biomass level, respectively. In comparison, the authors
generated a best FBA solution, which maximizes r2 over
all feasible solutions generated for FBA, and achieved
r2 values of 0.2 and 0.58 at 75% and 85% of the maximal
biomass level, respectively. These advancements per-
taining to the integration of omics data with GSMs has
enabled more accurate model predictions.

In this work, we describe the reconstruction of a
second-generation maize leaf model and the incorpo-
ration of omics data into the model with the goal of
improving the understanding of N metabolism. Both
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the primary and secondary metabolic pathways of
maize are included, by combining information from
MetaCrop (Schreiber et al., 2012), MaizeCyc (Monaco
et al., 2013), and the earlier iRS1563 (Saha et al., 2011)
models. In comparison with the iRS1563 model, this
second-generation model spans an additional 4,261
genes and 6,540 reactions. The increased number of
genes and reactions enables the inclusion of additional
pathways such as fructan biosynthesis, siroheme bio-
synthesis, and ubiquniol-9 biosynthesis. The model
accounts for the two major cell types in the leaf (i.e. the
bundle sheath and mesophyll cells). The bundle sheath
cell contains seven compartments: the cytosol, mito-
chondrion, peroxisome, chloroplast stroma, plasma
membrane, thylakoid membrane, and vacuole. The
mesophyll cell contains six compartments: the cytosol,
mitochondrion, chloroplast stroma, plasma mem-
brane, thylakoid membrane, and vacuole. Compart-
mentalization is based on maize-specific experimental
proteomic and transcriptomic measurements (Majeran
et al., 2005; Friso et al., 2010; Li et al., 2010; Chang
et al., 2012), as opposed to the A. thaliana-based
compartmentalization adopted in the previous iRS1563
maize model (Saha et al., 2011). Light reactions have
been expanded from an aggregate reaction (as de-
scribed in the iRS1563 model) to multiple reactions for
each complex with the inclusion of a thylakoid mem-
brane compartment. In contrast to the C4GEM maize
model (de Oliveira Dal’Molin et al., 2010b), which fo-
cuses exclusively on primary metabolism in maize,
the developed model also spans secondary metabo-
lism by including all reactions known to occur within
the maize leaf tissue. The model includes as many as
763 secondary metabolism reactions (without includ-
ing duplicate counting due to compartmentalization).
Through the incorporation of omics data, regulatory
restrictions are introduced in the model to switch-off/
on reactions under the N+ WT and N2 WT conditions
and two GS knockout mutants (gln1-3 and gln1-4) in
the vegetative stage, during which the plant absorbs
and assimilates N for root and leaf biomass produc-
tion (Amiour et al., 2012, 2014). Reactions linked to
genes or proteins with significantly different expres-
sion levels between the N+ WT and N2 WT condi-
tions, as well as the gln1-3 and gln1-4 mutants versus
the N+ WT condition, are conditionally turned on or
off accordingly. The metabolite pool is simulated by
maximizing the total flux through a metabolite (i.e.
flux sum) as a proxy for the metabolite turnover rate
(Chung and Lee, 2009). The directional changes of flux-
sum levels between the N2 WT condition and the N+

WT condition, as well as the GS mutant conditions and
the N+ WT condition, are qualitatively compared with
the directional change in experimentally measured
concentration levels. These analyses reveal similar
trends to the recently developed flux imbalance anal-
ysis (Reznik et al., 2013), which makes use of dual
variable values associated with metabolite balances to
infer the effect of concentration changes on the objec-
tive function value.

RESULTS AND DISCUSSION

Effect of N Conditions on Biomass Components

Biomass components were measured in the N+ WT
condition as well as for each N background (N2 WT,
gln1-3, and gln1-4). Table I and Figure 1 display the
composition of the classes of biomass metabolites, and
Supplemental Table S1 indicates the specific biomass
measurements in all modeled conditions. As expected, in
the majority of cases, the N2 WT condition produced a
smaller concentration of biomass components than the
N+ WT, gln1-3, and gln1-4 conditions. However, the
concentration of amino acids produced was about 5 times
higher in the gln1-4 mutant than the gln1-3 mutant,
resulting in comparable amino acid concentrations be-
tween the gln1-4 mutant and N+ WT as well as between
the gln1-3 mutant and N2 WT. The similar amino acid
concentrations between the gln1-4mutant and the N+ WT
condition in the vegetative stage help to confirm that the
GS1-4 isozyme is essential in plant maturity and has a
smaller effect compared with the GS1-3 isozyme at the
vegetative stage. As expected, the concentration of starch
was higher in the N2 WT condition than in the N+ WT
condition. Under the N2WT condition, the breakdown of
starch is limited by the amount of N available (Tercé-
Laforgue et al., 2004; Amiour et al., 2012). Due to the
limited N available, the starch is stored rather than bro-
ken down to produce other biomass components. The
stained micrographs depicting the starch visible in the
N+ WT, gln1-3 mutant, and gln1-4 mutant conditions are
available in Supplemental Figure S1. The condition-
specific biomass concentrations have been incorporated
in the maize leaf model to more accurately represent
metabolism under each condition.

Development of the Second-Generation Maize Leaf Model

The second-generation maize leaf model was devel-
oped using a combination of gene, protein, and reaction
information from the previously developed maize model
iRS1563 (Saha et al., 2011), biological databases such as the
Kyoto Encyclopedia of Genes and Genomes (Kanehisa
et al., 2014), MaizeCyc (Monaco et al., 2013), and Meta-
Crop (Schreiber et al., 2012), as well as published litera-
ture sources. The model contains 5,824 genes and 8,525
reactions, a significant increase from the iRS1563 model,
which contained 1,563 genes and 1,985 reactions. The
second-generation maize model is split into two cell types
(i.e. the bundle sheath and mesophyll cells). The bundle
sheath cell is further divided into seven compartments,
while the mesophyll cell contains six compartments
(Fig. 2). Of the 8,525 reactions in the model, 3,892 reactions
are unique, as duplicated counts due to compartmentali-
zation have been disregarded. Of these 3,892 unique
reactions, 1,012 reactions were assigned localization in-
formation based on transcriptomic and proteomic data
(Majeran et al., 2005; Friso et al., 2010; Li et al., 2010;
Chang et al., 2012). Light reactions were adjusted to
model the flow of protons across the thylakoidmembrane
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to the chloroplast stroma, to represent the pH differential
between compartments, and to describe the conversion of
light to ATP (Nelson and Cox, 2009). The mitochondrial
electron transport chain was similarly updated to include
the proton exchange of ATP synthase between the inter-
membrane space and the mitochondrial matrix (Taiz,
2010). Finally, 303 specific reactions were added to model
glycerolipid synthesis, as shown in Supplemental Figure
S2 and Supplemental Table S2 (Moore, 1982; Murata,
1983; Murata and Tasaka, 1997; Mekhedov et al., 2000;
Bachlava et al., 2009; Li-Beisson et al., 2010; Rolland et al.,
2012). To the best of our knowledge, this is the first plant
model to include detailed glycerolipid synthesis. Aggre-
gate reactions were included to link specific two-tailed
glycerolipids to the experimentally measured single

lipids (Supplemental Table S2). Compiling transcriptomic
and proteomic compartmentalization data with literature-
based pathways yielded a model of 4,103 reactions,
leaving 2,880 unique reactions, still with their locali-
zations unknown.

Once reactions were compartmentalized based on
transcriptomic data, proteomic data, and published lit-
erature, the reactions were divided into two groups. The
first group (core set) includes reactions with known lo-
calizations, while the second group (noncore set) spans
reactions known to occur within the maize leaf but with
no localization evidence. Whenever possible, core reac-
tions were unblocked by first adding reaction(s) from the
noncore set to one or multiple compartment(s) and sec-
ond appending intercellular or intracellular transporters

Table I. Experimental content of classes of metabolites in different conditions

The biomass components were determined experimentally for each of the conditions (N+ WT, N2 WT, gln1-3 mutant, and gln1-4 mutant). Values
are means of three replicates unless indicated by the asterisk, indicating that two replicate measurements were taken. Biomass measurements for the
specific metabolites within each class are displayed in Supplemental Table S1.

Biomass Components N+ WT N2 WT gln1-3 Mutant gln1-4 Mutant

Biomass yield (g dry wt) 61 6 3.5 15 6 2 64 6 4.5 65 6 1.5
Soluble amino acid content (mmol g21 dry wt) 0.0732 6 0.0170 0.0261 6 0.0040 0.02124 6 0.00100 0.09303 6 0.00640
Protein content (mg g21 dry wt) 132.6 6 0.7 58 6 3 125.25 6 1.7 140.39 6 5.72
Fatty acid content (mg g21 dry wt) 43.3 6 4.4 16.6 6 2.2 45.1* 16.3 6 1.1
Starch content (mmol g21 dry wt) 0.152 6 0.005 0.199 6 0.007 0.085 6 0.011 0.107 6 0.006
RNA content (mg g21 dry wt) 3.78 6 0.19 0.92 6 0.10 1.05 6 0.09 1.77 6 0.11
DNA content (mg g21 dry wt) 8.315 6 0.270 2.53 6 0.10 9.62 6 0.22 5.48 6 0.13
Soluble carbohydrate content (mmol g21 dry wt) 0.235 6 0.012 0.112 6 0.013 0.198 6 0.041 0.193 6 0.023
Cell wall carbohydrate content (mg g21 dry wt) 0.32 6 0.03 0.26 6 0.09 0.187 6 0.017 0.29 6 0.07
Chlorophyll content (mg g21 dry wt) 1.87 6 0.16 0.69 6 0.06 1.71 6 0.14 1.85 6 0.08
Total N (% g dry wt) 4.36 6 0.08 1.80 6 0.15 4.28 6 0.10 4.31 6 0.12

Figure 1. Weight percentage of biomass compo-
nents. The weight percentage for each class of
metabolites experimentally measured contributing
to biomass synthesis is displayed. The composition
is displayed for the N+ WT (A), N2 WT (B), gln1-3
mutant (C), and gln1-4 mutant (D) conditions. The
measurements for specific components within each
class of metabolites are shown in Supplemental
Table S1. [See online article for color version of this
figure.]
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(see “Materials and Methods”). By following this ap-
proach, 1,032 unique reactions with previously un-
known localizations were assigned to compartments
and 729 transporters were added. The remaining 1,848
unique reactions were assigned to compartments based
on available pathway information or assigned to the
cytosol of both the bundle sheath and mesophyll cells.
With all the reactions assigned to specific compart-

ments, thermodynamically infeasible cycles that were
generated due to the overly permissive inclusion of re-
actions in the model, as well as lack of reaction direc-
tionality information, were subsequently identified and
eliminated. By first restricting the directionality of reac-
tions and second removing reactions, it was possible to
eliminate all thermodynamically infeasible cycles in the
model. By this process, we restricted the directionality of
36 reactions and removed 2,055 reactions from the model
(Table II). Upon the resolution of thermodynamically
infeasible cycles, attempts were made to unblock the

remaining blocked core reactions and biomass formation
by adding reactions from similar organisms (Krumholz
et al., 2012) and model organisms (i.e. rice ssp. japonica,
Brachypodium distachyon, sorghum, and A. thaliana). By
adding five unique reactions from similar organisms, the
flux through three additional reactions known to be in
maize was resolved. These reactions were all involved in
the formation of Glu from His through urocanic acid.
The model is provided in a Microsoft Excel format in
Supplemental Table S3 and in Systems Biology Markup
Language format in Supplemental Table S4.

Incorporation of Transcriptomic and Proteomic Data in
the Model

In order to more accurately model the N+ WT, N2WT,
and GS mutant conditions in maize, GPR associations
mapped the gene transcripts and proteins that were

Figure 2. Number of metabolic and transport
reactions distributed between compartments in
the bundle sheath and mesophyll cell types. The
numbers of metabolic and transport reactions are
shown for each compartment. Integral membrane
proteins are counted for the compartment in
which the main biotransformation occurs. For
example, the ATP synthase associated with the
mitochondrial electron transport chain is counted
as a metabolic reaction in the mitochondrion, not
the inner mitochondrial membrane (IMM). [See
online article for color version of this figure.]

Table II. Number of reactions after each model creation and curation step

The original two data sets are the core set and the noncore set, which combine to form the final model statistics. The total number of metabolic,
transport, exchange, and biomass reactions are displayed after each process during model curation. Metabolic reaction totals include duplication
from compartmentalization.

Data Processing Metabolic Reactions Transport Reactions Exchange Reactions Biomass Reactions

Initial data
Core set 3,002 418 82 85
Core set plus manually created pathways 3,264 469 285 85
Noncore set 18,951 0 0 0

Processes performed
Compartmentalization algorithm 3,971 1,198 285 85
Manually determined compartmentalization 9,005 1,198 285 85
Thermodynamically infeasible cycles 7,033 1,115 285 85
Similar organism GapFill 7,040 1,115 285 85

Final model
Second-generation GSM 7,040 1,115 285 85
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statistically expressed at a low level to reactions that were
turned off in the model. However, no essential reactions
to the model, which are required for biomass formation,
were altered. For example, the d-aminolevulinic acid de-
hydratase reaction was experimentally determined to be
higher in the N+ WT condition, suggesting that it should
be restricted in the N2WT condition. However, when the
flux through the d-aminolevulinic acid dehydratase re-
action is restricted to zero, biomass cannot be formed, as
this reaction produces porphobilinogen, a precursor to
chlorophyll (Gupta et al., 2013). Due to the incomplete
information available in published literature or
databases regarding possible alternative routes of the
production and degradation of a specific metabolite,
regulating reactions that are essential to the model will
restrict biomass synthesis. Based on experimental ev-
idence, the fluxes through 83 reactions in the N+ WT
condition, 20 in the N2 WT condition, 100 in the gln1-3
mutant, and nine in the gln1-4 mutant were restricted.
The reactions regulated in the N+ WT condition mainly
correspond to reactions known to occur only under stress
and are expressed at a low level in comparison with the
N2 WT and mutant conditions. Reactions that have been
down-regulated based on omics data are indicated in the
model file (Supplemental Table S3). N perturbations
within the leaf tissue were modeled by combining the
incorporation of transcriptomic and proteomic data with
the unique biomass composition for each condition.

The minimal set of reactions, whose elimination
causes a decrease in biomass yield, was determined for
the N+ WT, N2 WT, gln1-3 mutant, and gln1-4 mutant
conditions. There are six reactions across the conditions
that encompass the minimal set of reactions, as sum-
marized in Table III. Of the 83 reactions with restricted
flux in the N+ WT condition, only two reactions were
identified to affect biomass yield. These two reactions
are the conversion of ethanol to acetaldehyde through
either ethanol oxidoreductase involving NAD+ or a
hydrogen peroxide-dependent oxidation of ethanol

catalyzed by catalase (Boamfa et al., 2005). These two
reactions have a very slight effect on biomass formation,
as biomass yield drops by less than 1%. As expected, we
find that many of the reactions that correspond to genes
that are significantly down-regulated in the N+ WT con-
dition do not hinder biomass formation. In the N2 WT
condition, none of the reactions have an effect on the
biomass yield, suggesting, as expected, that the decreased
amount of N is the main limiting factor in biomass yield.
In the gln1-3 mutant condition, three of the 100 reac-
tions, which are switched off based on omics data,
affect the biomass yield. These three reactions are the
glyceraldehyde-3-phosphate dehydrogenase, Fru-bisP
aldolase, and Fru-bisphosphatase reactions. The ca-
pacity of glyceraldehyde-3-phosphate dehydrogenase
to form a multienzyme complex in the chloroplasts for a
range of plants is regulated by environmental condi-
tions such as the light/dark transitions (Howard et al.,
2011). Glyceraldehyde-3-phosphate is synthesized dur-
ing carbon fixation in photosynthesis, and 1,3-bisphos-
pho-D-gycerate (i.e. 3-phospho-D-glyceroyl phosphate)
can be synthesized from 3-phospho-D-glycerate. ATP is
required for the conversion of 3-phospho-D-glycerate to
1,3-bisphospho-D-glycerate catalyzed by 3-phospho-D-
glycerate kinase in the bundle sheath chloroplast. This
reaction is an important energy-requiring reaction in the
Calvin-Benson cycle, as it is essential that the enzyme
immediately metabolizes 3-phospho-D-glycerate, the
product of the Rubisco reaction. This conclusion is also
consistent with the findings that 3-phospho-D-glycerate
1-phosphotransferase is sensitive to changes in energy
state (Nakamoto and Edwards, 1987). The Fru-bisP al-
dolase reaction, which is involved in the Calvin-Benson-
Bassham cycle and the glycolysis pathway, can be
bypassed using the sedoheptulose 1,7-bisphosphate/
D-glyceraldehyde-3-phosphate-lyase reaction, which
catalyzes the synthesis of sedoheptulose 1,7-bisphos-
phate using dihydroxyacetone phosphate (i.e. glycerone
phosphate) and D-erythrose 4-phosphate (Lakshmanan

Table III. Summary of reactions that affect biomass synthesis

The minimum set of reactions that are down-regulated as a result of the inclusion of proteomic and transcriptomic data and affect biomass synthesis
is displayed. The corresponding condition is displayed for each reaction as well as the role of the reaction.

Reaction Condition Affected Affect of the Reaction

Ethanol oxidoreductase and ethanol catalase N+ WT Produces acetaldehyde, alleviating flux through
pyruvate decarboxylase

Glyceraldehyde-3-phosphate dehydrogenase gln1-3 mutant Participates in glycolysis and carbon fixation but
is not required, as 3-phospho-D-glycerate
kinase can restore flux to 1,3-bisphospho-D-glycerate

Fru-bisP aldolase gln1-3 mutant Participates in the Calvin-Benson-Bassham cycle
but can be bypassed through the sedoheptulose
1,7-bisphosphate/D-glyceraldehyde-3-phosphate
lyase reaction

Fru-bisphosphatase gln1-3 mutant Decreases ATP-ADP ratio, switches metabolism
from Suc to starch synthesis, and inhibits
photosynthesis at high CO2 levels in
A. thaliana

Rib-5-P isomerase gln1-4 mutant Affects cellulose synthesis in A. thaliana
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et al., 2013). The decreased expression of the cytosolic
Fru-bisphosphatase reaction has been shown to decrease
the ATP-ADP ratio, lead to the switch from Suc to
starch synthesis, and inhibit photosynthesis at high CO2
levels in A. thaliana, resulting in the inhibition of plant
growth (Strand et al., 2000). Finally, the regulatory
restrictions for the gln1-4 mutant involve only nine
reactions, of which one affected the biomass drain
(i.e. Rib-5-P isomerase reaction). The lack of the Rib-5-P
isomerase reaction has been experimentally shown to
cause premature death and affect cellulose synthesis
in A. thaliana (Howles et al., 2006; Xiong et al., 2009). A
comparison of the number of reactions that affect the
GS mutants suggests that at the vegetative stage, the
impact of the gln1-4 mutation is less severe than that
occurring in the gln1-3 mutant. Such a finding is not
surprising, since it has been shown that the gene en-
coding the GS1-3 isozyme is constitutively expressed
irrespective of the leaf development stage and that the
expression of the gene encoding the GS1-4 isozyme is
much lower and only enhanced at later stages of leaf
development (Hirel et al., 2005). Although only a subset
of reactions affect the biomass production in the N+ WT,
gln1-3 mutant, and gln1-4 mutant conditions, the addi-
tional regulation will have an effect on the flux pre-
dictions within the model.

Flux Range Variations among Conditions

The flux range of each reaction was determined in the
N+ WT, N2 WT, gln1-3 mutant, and gln1-4 mutant
conditions under the assumption that biomass is maxi-
mized. The flux range of a reaction in the N2 WT, gln1-3
mutant, and gln1-4 mutant conditions was compared
with the flux range in the N+ WT reference condition to
determine reactions with flux ranges that must deviate
from the N+ WT flux range. This indicates that the flux
through the reaction must change as a result of the
limited N or mutation. Overall, the flux through 202
reactions in the N2 WT condition is not contained within
the flux range of the N+ WT condition, 765 reaction
fluxes in the gln1-3 mutant diverge from the N+ WT flux
range, and 678 reaction fluxes in the gln1-4 mutant
must change from the N+ WT flux range (Supplemental
Table S5). In all three N backgrounds (i.e. the N2 WT,
gln1-3 mutant, and gln1-4 mutant conditions), the flux
compared with the N+ WT reference condition decreases
under maximum biomass through the chlorophyll cycle,
chlorophyllide a biosynthesis, farnesyl diphosphate bio-
synthesis, methylerythritol phosphate pathway, and
tetrapyrrole biosynthesis. Tetrapyrrole biosynthesis,
chlorophyllide a biosynthesis, and the chlorophyll cycle
link the production of chlorophyll from Glu (Tanaka and
Tanaka, 2007; Kim et al., 2013). The methylerythritol
phosphate pathway and farnesyl diphosphate biosyn-
thesis lead to a reactant required for the production
of chlorophyll a from chlorophyllide a (Lange and
Ghassemian, 2003). In both of the GS mutant conditions,
the flux through chorismate biosynthesis (Tzin and Galili,

2010), Ser biosynthesis (Ho and Saito, 2001), and the urea
cycle (Mérigout et al., 2008) must decrease compared
with the N+ WT condition. Choline biosynthesis (McNeil
et al., 2001) is decreased in the N2 WT condition, in-
creased in the gln1-3 mutant, and decreased in the gln1-4
mutant condition. Flux through Ile and Leu biosynthesis
(McCourt and Duggleby, 2006) is lower in the N2 WT
condition, higher in the gln1-3 mutant condition, and
lower in the gln1-4 mutant condition compared with the
N+ WT condition, as expected by the proportion of these
biomass components in the various conditions. The flux
through the glyoxylate cycle (Schnarrenberger and
Martin, 2002), stearate biosynthesis (Li-Beisson et al.,
2010), and urate degradation (Ramazzina et al., 2006) is
higher in the gln1-3 mutant condition compared with
the N+ WT condition. Val biosynthesis (McCourt and
Duggleby, 2006) is lower in the gln1-3 mutant condition
compared with the N+ WT condition. Flux through
glutathione biosynthesis/degradation, Trp biosynthesis
(Tzin and Galili, 2010), uracil degradation (Zrenner et al.,
2006), and Xyl degradation (Penna et al., 2002) is higher
in the gln1-4 mutant compared with the N+ WT condi-
tion. Glu is converted to glutathione through two ATP-
dependent steps requiring the addition of Cys and then
Gly. Glutathione is a vitally essential protectant against
oxidative stress, heavy metals, and xenobiotics (Noctor
et al., 2012; Rahantaniaina et al., 2013). Several routes of
glutathione breakdown have been proposed, including
the formation of Cys and Gly through cysteinyl-Gly. The
Cys is then degraded to form pyruvate, helping to alle-
viate the gln1-4mutation. The increased fluxes associated
with Xyl (from 1,4-b-D-xylan) and uracil degradation
generate a larger pool of xylulose-5-phosphate and
b-Ala, respectively. Finally, phenylpropanoid biosyn-
thesis (Vogt, 2010) is lower in the gln1-4 mutant condi-
tion compared with the N+ WT condition. The majority
of the changes in these pathways are directly related to
differences in the proportion of the biomass components
between the modeled conditions.

Comparison of Model Predictions with Metabolomic Data

The metabolomic data were compared with flux pre-
dictions within the model in each of the various N back-
ground conditions. The increasing or decreasing trend of
the metabolite concentration, displayed in Figure 3, was
qualitatively compared with the change in the flux-sum
range determined by the model, as displayed in Figure 4.
The flux sum is a measure of the amount of flow through
the reactions associated with either the production or
consumption of the metabolite. A variability analysis of
the flux sum was performed, and flux-sum ranges, nor-
malized by the biomass rate, that do not overlap between
the N background condition and the N+ WT condition
were analyzed. An increase/decrease in the flux sum (i.e.
used as a proxy for the metabolite pool) of a metabolite
between the N2 WT condition and the N+ WT condition
and between the two GS mutants and the N+ WT con-
dition was compared with the metabolite concentration
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changes. Figure 4 demonstrates the importance of
restricting fluxes based on transcriptomic and proteomic
data. In the N2 WT condition, the accuracy changes from
13% to 90% when the flux constraints based on omics data
are incorporated. Without the incorporation of these con-
straints, all flux-sum ranges normalized by the biomass
rate are predicted higher in the N2 WT condition. The
identified flux-sum levels are included in Supplemental
Table S6. The flux-sum variability approach is able to
predict the change inmetabolite pool sizes more accurately

when the flux ranges are similar to the wild-type condi-
tion, as in the N2 WT condition. Between the N2 WT and
N+ WT conditions, only approximately 7% of the reactions
active in either condition have flux ranges at the maximum
biomass that do not overlap. In the gln1-3 and gln1-4
mutant conditions, the fluxes are significantly perturbed,
with 49% and 45% of the active reactions at maximum
biomass resulting in nonoverlapping ranges compared
with the N+ WT condition, respectively. The accuracy of
flux sum in the gln1-3 mutant and gln1-4 mutant condi-
tions with omics-based constraints incorporated reaches
53% and 25%, with eight of 15 metabolites predicted cor-
rectly and one of four metabolites predicted correctly in the
gln1-3 and gln1-4 mutant conditions, respectively. This
level of prediction accuracy is far below what was seen for
N2 WT, suggesting a tenuous connection between con-
centration changes and gene expression levels when the
genetic background changes.

We explored the efficacy of the flux-sum method un-
der different genetic backgrounds for a much more well-
studied and data-rich organism (i.e. Escherichia coli) to
explore whether the dissonance between gene expression
levels and concentrations was maize specific or applied
broadly. We applied flux-sum variability to the Ishii et al.
(2007) fluxomic and metabolomic data using the
iAF1260 (Feist et al., 2007) E. coli model. Two single-
gene knockout mutants (i.e. ppsA and glk) were com-
pared with the wild-type condition, and predicting the
directional change of the metabolite pool size was met
with less than 50% accuracy in each condition. This
implies that changes in the genetic background seem to
cause concentration changes that are not predictable by

Figure 3. Number of metabolites in each condition that statistically
varied from the N+ WT condition at the vegetative stage. The numbers of
metabolites that experimentally significantly increased (up arrows) or
decreased (down arrows) in comparison with the N+ WT condition are
displayed for each of the N conditions tested (i.e. N2 WT, gln1-3 mutant,
and gln1-4 mutant conditions). The metabolites are shaded based on
whether they are involved in carbon (C), N, or other metabolism. [See
online article for color version of this figure.]

Figure 4. Effect of omics-based regulation on the flux-sum prediction compared with the experimental trend in metabolite concen-
tration. The accuracy in predicting the increasing (up arrows) or decreasing (down arrows) trend in metabolite change between the N
background condition and the N+WT condition is displayed. By restricting the reaction flux based on the transcriptomic and proteomic
data, the accuracy of the qualitative trend in metabolite pool size between the N2WTand N+ WT conditions increases. Before adding
omics-based constraints, the model was able to correctly predict the direction of change in 13% of the metabolites measured in the
N2 WT condition compared with the N+ WT condition. The accuracy increases to 90% when omics-based constraints are included.
The flux-sum method is not able to accurately represent the gln1-3 and gln1-4 mutant conditions, suggesting that the genetic back-
ground affects the ability of the flux-sum method to predict metabolite changes. [See online article for color version of this figure.]
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gene expression changes alone. In contrast, changes in
nutrient availability, as in the N2 WT condition, can be
captured with 90% accuracy.
We also decided to explore whether the dissonance

between gene expression levels and concentration ranges
was caused by a deficiency in the proposed flux-sum
method. As an alternative, we used flux imbalance anal-
ysis (Reznik et al., 2013), which measures the effect of the
deviation of a metabolite’s concentration from steady state
on the maximum biomass by applying the concept of
duality. Flux imbalance analysis examines how the model
responds to a deviation from steady state by measuring
the effect on biomass when a metabolite is allowed to
accumulate or deplete. By determining the change in bio-
mass formation due to the accumulation or depletion of
the metabolite, a prediction can be made regarding the
change in metabolite levels. Flux imbalance analysis was
applied to the model, and the deviation in the maximum
biomass was qualitatively compared with the experi-
mental data for the metabolite in each compartment. Only
nonoverlapping ranges of the marginal value associated
with each compartment-specific metabolite were ana-
lyzed. If all compartment-specific metabolites have mar-
ginal values that indicate the same trend compared with
the N+ WT condition, a prediction was made for the
tissue-specific metabolite. The flux imbalance analysis is
66%, 33%, and 78% accurate in the N2WT, gln1-3mutant,
and gln1-4 mutant conditions, respectively, as compared
with the N+ WT condition. While flux imbalance analysis

makes a prediction for every metabolite in the model, the
flux-sum analysis only predicts a direction of change for
metabolites whose associated reactions can carry flux.
Flux imbalance analysis allows for the prediction of
compartment-specific metabolites whose associated reac-
tions do not carry flux under maximum biomass forma-
tion. Comparable results between the flux imbalance
analysis and flux-sum analysis in the N2 WT condition
provide independent backing regarding the validity of the
flux-sum concept.

CONCLUSION

We have introduced a second-generation model that is
specific for the leaf tissue of maize and differentiates be-
tween the bundle sheath and mesophyll cell types. By

Figure 5. Model development and
curation schematic. The work flow for
the second-generation genome-scale
metabolic model of the maize leaf is
displayed. The data sources give three
types of retrieved data (i.e. raw reac-
tion data, reaction directionality, and
compartmentalization) that are then
manipulated as shown to create the
final model. [See online article for
color version of this figure.]

Table IV. Number of gene transcripts, proteins, and metabolites that
vary significantly

The wild-type condition for each study was combined to create one
uniform N1 WT condition. The numbers of gene transcripts, proteins,
and metabolites that statistically vary are displayed.

Type of Data
N1 WT

Condition

N2 WT

Condition

gln1-3

Mutant

gln1-4

Mutant

Transcriptomic 256 76 102 53
Proteomic 38 14 29 –
Metabolomic 83 20 31 13
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incorporating transcriptomic and proteomic data into the
model, we were able to reproduce the metabolomic data
with up to 90% accuracy when comparing the N2 WT
and N+ WT conditions. Ethanol oxidoreductase/catalase,
glyceraldehyde-3-phosphate dehydrogenase, Fru-bisP
aldolase, Fru-bisphosphatase, and Rib-5-P isomerase
were shown to be important genes related to the decrease
in biomass formation in the modeled conditions. In order
to study the impact of these genes on plant biomass pro-
duction when optimal N is provided, their functional
validation can be undertaken using transgenic technolo-
gies, mutagenesis, or association genetics, either at the
single-gene or genome-wide level (Simons et al., 2014). The
model also predicted a modification of the flux of metab-
olites formed during glutathione catabolism in the gln1-4
mutant condition compared with the N+ WT condition.
This modification is predicted to compensate for the lack of
GS1-4 by using the Glu and pyruvate derived from glu-
tathione to produce Ala. Thus, it will be interesting to
determine whether the increase in Ala is related to the
importance of the enzyme Ala aminotransferase in the
improvement of plant productivity in general and NUE in
particular (Good and Beatty, 2011; McAllister et al., 2013).
In all N background conditions (i.e. N2WT, gln1-3mutant,
and gln1-4 mutant conditions), we find that the flux
through chlorophyll biosynthesis, and those pathways di-
rectly related to chlorophyll biosynthesis, decrease, con-
firming the important link between N metabolism and
chlorophyll synthesis through the use of its precursor Glu
(Forde and Lea, 2007). The leaf model, with the addition of
other maize tissue-specific models, can be integrated into a
whole-plant genome-scale model for maize. By determin-
ing a required metabolic function that is specific to each
tissue, tissue-specific models can be created, ensuring that
only relevant reactions are included in each tissue.

Future efforts will focus on tissue-specific models for
the kernel, stalk, tassel, and root tissues. These tissue-
specific models will follow community (Zomorrodi and
Maranas, 2012; Zomorrodi et al., 2014) and multitissue
human model (Duarte et al., 2007; Bordbar et al., 2011;
Thiele et al., 2013) reconstruction principles. The tissues
can be linked using intertissue transport reactions, with
the stalk tissue acting as the central transporter among
the various tissues and particularly to the developing ear
(Cañas et al., 2012). A whole-plant genome-scale model of
maize will help to elucidate the flow of N from the root to
the other tissues in the plant, from the shoot to the ear,
and within the developing ear (Cañas et al., 2010). By
modeling the entire plant, nonintuitive bottlenecks in
Nmetabolism can be determined, which then can be used
to suggest genetic interventions through mutagenesis,
transgenic technology, or maker-assisted selection to in-
crease the NUE in maize. In addition, the flow of sugars
to the kernel tissue can be analyzed to guide the increase
of carbohydrate/sugar content of maize kernel by
breaking the inverse relationship existing between car-
bohydrates and proteins (Feil et al., 1990). Apart from its
crucial role as a food crop, maize is also used for cellulosic
biofuels. To this end, the amount and composition of
cell wall polymers is important in developing cellulosic

maize. Lignin not only provides rigidity to the maize
plant (Vanholme et al., 2008) but also makes the digestion
of cellulosic and hemicellulosic sugars difficult during
delignification (Li et al., 2008). Recent research endeavors
have focused on altering lignin content, since plant via-
bility and fitness are affected by lignin reductions
(Li et al., 2008; Bonawitz et al., 2014). Therefore, by uti-
lizing the whole-plant genome-scale model, a system-
wide implication of these genetic disruptions can be
quantitatively assessed, thus facilitating new strategies
for reducing lignin content without affecting the me-
chanical integrity of the maize plant.

MATERIALS AND METHODS

Plant Material

Maize (Zea mays; genotype B73) wild-type plants and gln1-3 and gln1-4
mutant seeds in the B73 background (for the production, selection, and
characterization of the mutants, see Martin et al., 2006) were grown as de-
scribed by Amiour et al. (2012) in a greenhouse at the Institut National de la
Recherche Agronomique (Versailles, France) from May to September 2004.
Three individual plants of similar size and of similar developmental stage
were selected, corresponding to the three replicates used for the omics ex-
periments. The three youngest fully expanded leaves at the 10- to 11-leaf stage
without the midrib were harvested and pooled for the vegetative stage sam-
ples to obtain enough homogenous plant material representative of this plant
development stage.

Plants were watered daily with a complete nutrient solution containing
10 mM KNO3 as the sole N source in the N+ WT, gln1-3 mutant, and gln1-4
mutant conditions (Coïc and Lesaint, 1971). The N2 WT condition was sup-
plied 0.01 mM KNO3. The complete nutrient solution also contained 1.25 mM

K+, 0.25 mM Ca2+, 0.25 mM Mg2+, 1.25 mM H2PO4
2, 0.75 mM SO4

22, 21.5 mM Fe2+

(Sequestrene; Ciba-Geigy), 23 mM B3+, 9 mM Mn2+, 0.3 mM Mo2+, 0.95 mM Cu2+,
and 3.5 mM Zn2+.

Yield Components Analysis

Kernel yield, its components, and the N content of different parts of the plant
at stages of development from silking to maturity were determined according to
the method described by Martin et al. (2005) and corresponded to the data de-
scribed by Martin et al. (2006) and Amiour et al. (2012).

RNA and DNA Preparation

Total RNA was extracted as described by Verwoerd et al. (1989) from leaves
that had been stored at 280°C. Total RNAs (50 mg) for transcriptome and
quantitative real-time (qRT)-PCR studies were treated and prepared as described
previously by Amiour et al. (2012). Reverse transcription reactions and quanti-
tative first strands were synthesized according to Amiour et al. (2012). Primers
for qRT-PCR and reverse transcription-PCR cloning were designed from bac-
terial artificial chromosome sequences found in the public maize genome data-
bases (Maizesequence.org, PlantGDB, and GenBank). The sequences of the
primers used in reverse transcription-PCR and qRT-PCR are presented in
Supplemental Table S1.

Gene Expression Profiles Using Maize Complementary
DNA Microarrays

Whole-genome leaf transcript profiling was performed using the maize
46K arrays obtained from the maize oligonucleotide array project (http://www.
maizecdna.org/outreach/resources.html) as described previously by Amiour
et al. (2012). The maize 46K spotted oligonucleotide array contains 46,000 unique
probes from maize. Its detailed description, composition, and gene putative
annotation can be found at the Gene Expression Omnibus; (http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GPL6438). Transcript abundance in each of
the three replicates for vegetative leaves was determined using a mixture of all
the samples (18 in total, each with the same mRNA concentration) as a reference.
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Statistical significance for differentially expressed genes was evaluated through
statistical group comparisons performed using multiple testing procedures as
described by Amiour et al. (2012). Transcriptomic data were validated by qRT-
PCR analysis performed on a selected number of up- or down-regulated gene
transcripts.

Statistical Analysis of Maize Complementary DNA
Microarray Data

Statistical significance for differentially expressed genes was evaluated with
statistical group comparisons using multiple testing procedures. The following
two gene selection approaches were applied: the significance analysis of
microarrays (Tusher et al., 2001) permutation algorithm and a P value ranking
strategy using both z statistics in ArrayStat 1.0 software (Imaging Research) and
moderated t statistics using a moderated Student’s t test available in MAnGO
tools (http://bioinfome.cgm.cnrs-gif.fr) and BRBArrayTools version 3.2.3 (Korn
et al., 2002). For multiple testing corrections, the false discovery rate procedure
was used (Benjamini and Hochberg, 1995). Statistical tests were computed and
combined for each probe set using the log-transformed data. A significant probe
set indicates that an adjusted P value was less than the effective a level (a = 0.05)
in at least one of the two gene selection tests. A filtering procedure was used to
exclude data points with low signal intensities (average log intensity mean
[Amean] , 7.0) that are considered biologically unreliable.

Total Protein Extraction, Solubilization, and Quantification

A TCA/acetone protein precipitation was performed as described by Méchin
et al. (2007) from the leaves of optimal N and limited N plants harvested at the
vegetative stage of development. The frozen leaf powder was resuspended in
acetone with 0.07% (v/v) 2-mercaptoethanol and 10% (w/v) TCA. Proteins were
allowed to precipitate for 1 h at 220°C. The pellet was then washed overnight
with acetone containing 0.07% (v/v) 2-mercaptoethanol. The supernatant was
discarded, and the pellet was dried under vacuum. Protein resolubilization was
performed according to Méchin et al. (2007) using 60 mL mg21 R2D2 buffer [5 M

urea, 2 M thiourea, 2% (w/v) CHAPS, 2% (w/v) SB3-10 (i.e. N-decyl-N,N-
dimethyl-3-ammonio-1-propane-sulfonate), 20 mM dithiothreitol, 5 mM Tris(2-
carboxyethyl)phosphine hydrochloride, and 0.75% (v/v) carrier ampholytes].
After resolubilization, samples were centrifuged and the supernatant was trans-
ferred to an Eppendorf tube prior to protein quantification. Total protein content
of each sample was evaluated using the 2-D Quant kit (Amersham Biosciences).

Two-Dimensional Electrophoresis, Gel Staining, and
Image Analysis

Total protein extraction, solubilization, and quantification were performed
as described by Méchin et al. (2007). Solubilized proteins (300 mg) were subjected to
two-dimensional gel electrophoresis and identified by liquid chromatography-mass
spectrometry as described by Amiour et al. (2012).

Protein Identification by Liquid Chromatography-Tandem
Mass Spectrometry

Spot digestion and liquid chromatography-tandem mass spectrometry were
performed as described by Martin et al. (2006). In-gel digestion was performed
with the Progest system (Genomic Solution). Gel pieces were washed twice by
successive separate baths of 10% (v/v) acetic acid, 40% (v/v) ethanol, and ace-
tonitrile (ACN). The pieces were then washed twice with successive baths of
25 mM NH4CO3 and ACN. Digestion was subsequently performed for 6 h at 37°C
with 125 ng of modified trypsin (Promega) dissolved in 20% (v/v) methanol and
20 mM NH4CO3. The peptides were extracted successively with 2% (v/v) tri-
fluoroacetic acid and 50% (v/v) ACN and then with ACN. Peptide extracts were
dried in a vacuum centrifuge and suspended in 20 mL of 0.05% (v/v) trifluoro-
acetic acid, 0.05% (v/v) formic acid, and 2% (v/v) ACN. HPLC was performed
on an Ultimate liquid chromatography system combined with a Famos auto-
sampler and a Switchos II microcolumn switch system (Dionex). Trypsin diges-
tion was declared with one possible cleavage. Cys carboxyamidomethylation
and Met oxidation were set to static and variable modifications, respectively.
A multiple-threshold filter was applied at the peptide level: Cross correlation
(i.e. Xcorr) magnitudes were up to 1.7, 2.2, 3.3, and 4.3 for peptides with one, two,
three, and four isotopic charges, respectively; peptide probability was lower than

0.05, DCn . 0.1, with a minimum of two different peptides for an identified
protein. Here, DCn is the change between the first and second cross correlation.
A database search was performed with BioWorks 3.3.1 (Thermo Electron). The
Institute for Genomic Research maize gene index database version 16, with
72047*6 (for a total of 72047 EST reads in the six reading frames) EST sequences
(http://compbio.dfci.harvard.edu/tgi/), was used.

Metabolite Extraction and Analyses

Lyophilized leaf material was used for metabolite extraction. Approxi-
mately 20 mg of the powder was extracted in 1 mL of 80% (v/v) ethanol and
20% (v/v) distilled water for 1 h at 4°C. During extraction, the samples were
continuously agitated and then centrifuged for 5 min at 15,000 rpm. The su-
pernatant was removed, and the pellet was subjected to a further extraction in
60% (v/v) ethanol and finally in water at 4°C, as described above. All su-
pernatants were combined to form the aqueous alcohol extract.

Nitrate was determined by the method of Cataldo et al. (1975). Total soluble
amino acids were determined by the colorimetric method of Rosen (1957) with
Leu as a standard. Chlorophyll was estimated using 10 mg of fresh leaf ma-
terial (Arnon, 1949). The total N content of 2 mg of lyophilized material was
determined in an N elemental analyzer using the combustion method of
Dumas (Flash 2000; Thermo Scientific). Starch content was determined as
described by Ferrario-Mery et al. (1998).

Total lipids were extracted from frozen leaf material according to Miquel and
Browse (1992). Individual lipids were purified from the extracts by one-
dimensional thin-layer chromatography on silica gel 60 plates (Lepage, 1967;
Ohnishi and Yamada, 1980), which were obtained from Merck-Millipore. Lipids
were located by spraying the plates with a solution of 0.001% (w/v) primuline
(Sigma) in 80% (v/v) acetone, followed by visualization under UV light. To
determine the fatty acid composition and relative amounts of individual lipids,
the silica gel for each lipid was transferred to a screw-capped tube with 1 mL of
2.5% (v/v) H2SO4 in methanol and an appropriate amount of C17:0 fatty acid
(Sigma) as an internal standard. After heating for 90 min at 80°C, 1 mL of hexane
and 1.5 mL of 0.9% (w/v) NaCl2 were added. Fatty acids were extracted in the
upper organic phase by shaking and low-speed centrifugation. Samples (1 mL) of
the organic phase were separated by gas chromatography on a 30-m 3 0.53-mm
EC-WAX column (Alltech Associates) and quantified using a flame ionization
detector. The gas chromatograph was programmed for an initial temperature of
160°C for 1 min, followed by an increase of 20°C min21 to 190°C and a ramp of
4°C min21 to 230°C, with a 9-min hold of the final temperature.

Themonosaccharide composition and linkage analysis of polysaccharideswere
determined as follows: 100mg (freshweight) of ground leaf waswashed twice in 4
volumes of absolute ethanol for 15min, then rinsed twice in 4 volumes of acetone at
room temperature for 10min, and left to dry under a fumehood overnight at room
temperature. The neutral monosaccharide composition was measured on 5 mg of
dried alcohol-insoluble material after hydrolysis in 2.5 M trifluoroacetic acid for
1.5 h at 100°C as described by Harholt et al. (2006). To determine the cellulose
content, the residual pellet obtained after the monosaccharide analysis was rinsed
twice with 10 volumes of water and hydrolyzed with H2SO4 as described by
Updegraff (1969). The released Glc was diluted 500 times and then quantified
using high-performance anion-exchange chromatography-pulsed-amperometric
detection as described by Harholt et al. (2006).

For lignin quantification, 100 mg (fresh weight) of ground leaf was washed
twice in 4 volumes of absolute ethanol for 15 min and twice with 4 volumes of
water at room temperature, then rinsed twice in 4 volumes of acetone at room
temperature for 10 min, and left to dry under a fume hood overnight at room
temperature. The following protocol is adapted from Fukushima and Hatfield
(2001). Lignins from the prepared cell wall residue were solubilized in 1 mL of
acetyl bromide solution (acetyl bromide:acetic acid, 1:3 [v/v]) in a glass vial at
55°C for 2.5 h under shaking. Samples were then allowed to cool to room tem-
perature, and 1.2 mL of 2 M NaOH:acetic acid (9:50 v/v) was added in the vial. One
hundred microliters of this sample was transferred in 300 mL of 0.5 M hydroxyla-
mine chlorhydrate and mixed with 1.4 mL of acetic acid. The A280 of the samples
was measured. The lignin content was calculated using the following formula:

%lignin ¼ 100 3 ðA280 3 Vreaction 3 VdilutionÞ
20 3 Vsample solution 3 msample mg

ð1Þ

Metabolome Analysis

All steps were adapted from the original protocol described by Fiehn (2006)
following the procedure described by Amiour et al. (2012).
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Model Development and Curation

Figure 5 outlines the work flow used for model development. Our previ-
ously developed maize model, iRS1563 (Saha et al., 2011), and biological da-
tabases such as MetaCrop (downloaded in December 2012; Schreiber et al.,
2012) and MaizeCyc (version 2.0.2; Monaco et al., 2013) provided information
pertaining to the genes, proteins, reactions, and metabolites used to recon-
struct the second-generation maize leaf genome-scale model. In addition,
available proteomic and transcriptomic data, maize-specific biological data-
bases, namely MetaCrop and MaizeCyc, and published literature were used to
assign cellular (i.e. bundle sheath or mesophyll) and intracellular organelle
specificity to the curated reactions.

When the gene expression level was reported in reads per kilobase per
million mapped reads (RPKM; Li et al., 2010; Chang et al., 2012), the cell
specificity of any gene i can be calculated as:

Ri ¼ jmi 2 bij
maxðmi; biÞ ð2Þ

Here, mi and bi are the RPKM abundance of gene i in the mesophyll and
bundle sheath cells, respectively (Chang et al., 2012). A gene that is only
expressed in one cell type will have an Ri of 1, while a gene that is equally
expressed in both cell types will have an Ri of 0. As suggested by Chang et al.
(2012), a threshold of 0.8 or a 5-fold abundance difference is adopted to assign
gene cell type specificity. In the absence of RPKM information, an adjusted
spectral count (adjSPC) along with the fold change difference between the
mesophyll and bundle sheath cells was used to determine gene cell type
specificity (Friso et al., 2010). The adjSPC is the number of mass spectra
identified for a protein normalized by the number of unique spectral counts.
Since low counts are not statistically informative, a cutoff of 10 was used for
adjSPC (Zybailov et al., 2008; Kim et al., 2009). Similar to the threshold used
for RPKM data, a 5-fold difference between the mesophyll and bundle sheath
cell type normalized spectral abundance factor was used to determine the
cellular specificity of any gene (Friso et al., 2010). The normalized spectral
abundance factor is a weighted adjSPC based on the number of theoretical
tryptic peptides with a relevant length (Ehleringer et al., 1997; Friso et al.,
2010). Additional intracellular compartmentalization was carried out based on
the MetaCrop database (Schreiber et al., 2012), the MaizeCyc database
(Monaco et al., 2013), and primary literature sources (Chang et al., 2012; Zhao
et al., 2013).

The intracellular compartmentalization was determined based first on the
MetaCrop database (Schreiber et al., 2012), literature sources (Friso et al., 2010;
Chang et al., 2012), compartmentalization information in the MaizeCyc da-
tabase, and finally the Plant Proteomics Database (Sun et al., 2009). An original
set of intercellular and intracellular transporters was determined based on
literature evidence (Alberte and Thornber, 1977; Leegood, 1985; Stitt and
Heldt, 1985; Furbank et al., 1989; Weiner and Heldt, 1992; Doulis et al., 1997;
Burgener et al., 1998; Taniguchi et al., 2004; Sowi�nski et al., 2008; Friso et al.,
2010). In the subsequent standardization step, the MetRxn knowledgebase
(Kumar et al., 2012) as well as manual curation were used to standardize the
description of metabolites and reactions such as fixing stoichiometric errors
(i.e. elemental or charge imbalances) and incomplete atomistic details (e.g.
absence of stereospecificity and presence of unspecified side chains). Reactions
and metabolites were given the Kyoto Encyclopedia of Genes and Genomes
identifiers where available or were otherwise given new identifiers (in the
form of MR or MC, respectively). Reaction directionality was adopted from
the manually curated MetaCrop database, as available, and from the Maize-
Cyc database for the remaining reactions.

In the next step of model development, all reactions (including metabolic,
intracellular, and extracellular transport reactions) were divided into two
categories based on the evidence of their intercellular and intracellular com-
partmental specificity. The core set contains all metabolic reactions with ex-
perimental or literature-backed evidence of intracellular or intercellular
compartmentalization as well as known intracellular and intercellular trans-
porters. The noncore set contains reactions with partial or completely absent
localization information. Barring any conflicting evidence, these reactions were
provisionally placed in all compartments. An optimization formulation (as
shown below)was developed by imposing flow though themaximal number of
core reactions while including minimal intracellular and intercellular trans-
porters and minimal participation of noncore reactions in various compart-
ments. A parsimony criterion was used to apportion noncore functions so that
core functions could be restored. Furthermore, in order to restore a core
function, the resolution strategy was prioritized in the following order:

(1) apportion noncore reaction(s) in one/multiple compartment(s); (2) add
intracellular transporter(s); and (3) add intercellular transporter(s). To this end,
an objective function was formulated by taking the weighted sum of the
number of noncore reactions and intracellular and intercellular transporters by
providing weights of 1, 104, and 106, respectively, for these three groups of
reactions. However, it is important to ensure that any resolution strategy does
not cause thermodynamically infeasible cycles. Therefore, each of these solu-
tions was further checked, and those reactions that result in the formation of a
cycle were rejected. For each core reaction, multiple solutions were deter-
mined, and the solution that fixes the largest number of core reactions was
accepted. When required, manual curation was used to delineate between
multiple solutions. This approach is analogous to the one proposed by Mintz-
Oron et al. (2012) but does not rely on a complicated scoring system. It is also
computationally less taxing, as it activates one core reaction at a time. Fur-
thermore, in contrast to the approach of Mintz-Oron et al. (2012), the method
proposed here allows for the minimal number of transporters added, rather
than potentially minimizing the flux through many transporters. The process
of minimally adding the number of reactions and transporters to the model is
similar to that used by the model SEED (Henry et al., 2010). In order to allow
flux through all reactions in the core set C = {1,.,c}, we minimized the ad-
dition of reactions from the noncore set NC = {c + 1,.,g}, intracellular
transporter set T = {g + 1,.,t}, and intercellular transporter set IC = {t + 1,.,m}.
This encompasses an overall set of reactions M = {1,.,m} and a set of metab-
olites N = {1,.,n}. In addition, binary variable yj is defined as:

yj ¼
�
1 if the reaction is added to the model from NC;  I;  or IC sets
0 otherwise

The task of identifying the minimal set of additional reactions that enable flux
through a core reaction j* is posed as the following mixed-integer linear
programming problem:

Minimize c1 ∑
j∈NC

yj þ c2 ∑
j∈I

yj þ c3 ∑
j∈IC

yj ∀ j ∈ C ð3Þ

subject to:

∑
m

j¼1
Sijvj ¼ 0 ∀ i ∈ 1;.;  n ð4Þ

vj�$ « ∀ j ∈ C ð5Þ

vj;max $ vj $ vj;min ∀ j ∈ C ð6Þ

vj;max yj $ vj $ vj;min yj ∀ j ∈ NC or T or I or IC ð7Þ
Here, Sij is the stoichiometric coefficient of metabolite i in reaction j and vj is
the flux value of reaction j. Parameters vj,min and vj,max denote the minimum
and maximum allowable fluxes for reaction j, respectively. vj* represents the
core reaction flux that is currently being unblocked, and « is a small value to
ensure a threshold amount of flux through each core reaction. c1, c2, and c3
represent weights associated with each set of reactions (i.e. noncore set, in-
tracellular transporter set, and intercellular transporter set, respectively). In
this formulation, the objective function 3 above minimizes the number of
added reactions (from three reaction sets as mentioned earlier) so as to restore
flux through reaction j*. We chose values of 1, 104, and 106 for c1, c2, and c3,
respectively, so that metabolic reactions without experimental or literature
evidence for compartmental specificity are added to specific compartment(s)
before including additional transport reactions with no literature evidence.
Constraint set 4 above represents the pseudo-steady-state assumption, while
constraint 5 determines the threshold amount of flux necessary through j*.
Bounds on core reaction fluxes are imposed by constraint set 6, while con-
straint set 7 ensures that only reactions from those three sets having nonzero
flow are added to the model. This algorithm is repeated for each core reaction
j* to ensure flux and, hence, provides compartmentalization assignments for
431 metabolic reactions by assigning them to at least one compartment,
adding 1,032 total metabolic reactions to the model, as shown in Table II.

The reactions identified by the above-mentioned algorithm plus the reactions
from the core set constituted two new sets, a set of reactions with resolved
compartmental information and a set whose location still needs resolution, as
shown in Figure 5. Reactions from the latter set that are known to occur within
the maize leaf tissue but were not in the initial model were added
to intracellular/intercellular compartments manually based on pathway
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localization or simply added to the cytosol of bundle sheath and/or mesophyll
cells. Thermodynamically infeasible cycles were resolved by changing the
minimum number of reaction directionalities possible and eliminating the
smallest number of reactions from the model (Schellenberger et al., 2011) while
conserving biomass formation. An optimization procedure was iteratively run
for each reaction in a thermodynamically infeasible cycle to determine the
minimum number of directionality changes or reaction removals required
to fix the cycle. These results were then compared for each reaction to deter-
mine the changes that resolve the largest number of reactions participating in
thermodynamically infeasible cycles. The solutions found were manually
inspected before the changes were applied to the model. The application of
this optimization procedure led to restricting the directionality for 507 reac-
tions that prevented 889 reactions from carrying unbounded fluxes, thus
eliminating the corresponding thermodynamically infeasible cycles.

In the final step, as shown in Figure 5, the GapFind/GapFill (Kumar et al.,
2007) procedure was applied to identify blocked/dead-end metabolites and
subsequently restore their connectivity. A gap-filling database of reactions was
created by combining reactions from phylogenetically close/model plant
species (i.e. rice [Oryza sativa ssp. japonica], Brachypodium distachyon, sorghum
[Sorghum bicolor], and Arabidopsis thaliana), noncore reactions without com-
partmental specificity (not identified by our aforementioned algorithm), and
all possible intracellular/intercellular transporters. The gap-filling procedure
was modified by prioritizing the addition of reactions from closely related/
model plant species or noncore reactions over transporters to unblock the
flow-through metabolites while ensuring that no new thermodynamically
infeasible cycles are created. After completing this step, we added five reac-
tions from closely related/model plant species, changed the directionality of
14 reactions, and added eight intracellular transporters.

Incorporation of Transcriptomic, Proteomic, and
Metabolomic Data

Significantly different gene transcripts and proteins were incorporated into
the model by switching off corresponding reactions under the N+ WT, N2 WT
(Amiour et al., 2012), gln1-3 mutant, and gln1-4 mutant (Martin et al., 2006)
conditions. The number of proteins, gene transcripts, and metabolites with
abundances that are statistically differentially expressed in the various con-
ditions are listed in Table IV. Reactions with GPRs associated with signifi-
cantly lowered transcriptomic and proteomic expression are switched off
under the corresponding conditions. Metabolite turnover rates were deter-
mined based on the flux-sum analysis method (Chung and Lee, 2009) and
compared with the metabolomic data. The range of the flux sum or the flow
through of each metabolite with experimental measurements was maximized/
minimized as follows:

2
666666666664

Max=Min 0:5∑
m

j¼1

��Sijvj�� ð8Þ
Subject to:

∑
m

j¼1
Sijvj ¼ 0; ∀ i ∈ 1;.;n ð4Þ

vj;min # vj # vj;max ð6Þ
vj ¼ 0; j∈LE ð9Þ
vbiomass ¼ vmax

biomass ð10Þ

3
777777777775

; ∀ i ∈ E

Here, set E represents the set of metabolites with experimental measurements
and set LE represents reactions with statistically lower expression of gene
transcripts and/or proteins. The formulation was run in an iterative manner for
each metabolite with experimental measurements. The formulation was also
repeated for each individual condition, ensuring that the proper nutrients and
simulated knockouts were considered. By linearizing the objective function, the
resulting formulation is a mixed-integer linear programming problem similar
to the description by Chung and Lee (2009). Therefore, the basic idea is to
determine the range of the flux sum of a metabolite (for which metabolomic
data are available) under a given condition by switching off reaction fluxes
corresponding to gene transcripts and/or proteins with lower expression
levels (i.e. constraint 9). The flux-sum ranges were determined at the maxi-
mum biomass for the condition as displayed in constraint 10. Predictions were
made only when the flux-sum ranges did not overlap between the N back-
ground condition and the N+ WT condition and when the direction of change
in all compartments was consistent. In this way, the compartment-specific
predictions of the flux-sum ranges were compared with tissue-specific ex-
perimental measurements. The flux-sum levels in the N2 WT, gln1-3 mutant,
and gln1-4 mutant conditions were compared with the reference N+ WT

condition to find the qualitative trend in the change of metabolite pool size
between the conditions.

Flux variability analysis was used to determine the flux range of each re-
action under maximum biomass by subsequently maximizing and minimizing
the flux through each reaction. The flux range of each reaction for the N2 WT,
gln1-3 mutant, and gln1-4 mutant conditions was compared with the reference
N+ WT condition. Flux ranges that did not overlap between one of the
N background conditions and the reference condition were further analyzed.
These are reactions that must change in response to the limited amount of N or
the mutant conditions. Finally, we determined for each condition the mini-
mum number of reactions that, when not regulated, will restore the biomass to
the yield obtained when no omics-based regulation is applied. This was done
by identifying the minimal set of reactions, included in the omics-based reg-
ulation, that when active would allow for a biomass yield equivalent to the
yield under no omics-based regulation. This set of reactions represent the
reactions whose restriction affects the biomass yield.

The CPLEX solver (version 12.3 IBM ILOG) was used in the GAMS envi-
ronment (version 23.3.3; GAMS Development) to solve the optimization
problems. The Python programming language was also used during model
development (mainly for scripting and data analysis). All computations were
carried out on Intel Xeon X5675 Six-Core 3.06 GHz processors constituting the
Lion-XF cluster, which was built and operated by the Research Computing and
Cyberinfrastructure Group of Pennsylvania State University.
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