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Cellulose biosynthesis is a common feature of land plants. Therefore, cellulose biosynthesis inhibitors (CBIs) have a potentially
broad-acting herbicidal mode of action and are also useful tools in decoding fundamental aspects of cellulose biosynthesis. Here,
we characterize the herbicide indaziflam as a CBI and provide insight into its inhibitory mechanism. Indaziflam-treated seedlings
exhibited the CBI-like symptomologies of radial swelling and ectopic lignification. Furthermore, indaziflam inhibited the
production of cellulose within ,1 h of treatment and in a dose-dependent manner. Unlike the CBI isoxaben, indaziflam had
strong CBI activity in both a monocotylonous plant (Poa annua) and a dicotyledonous plant (Arabidopsis [Arabidopsis thaliana]).
Arabidopsis mutants resistant to known CBIs isoxaben or quinoxyphen were not cross resistant to indaziflam, suggesting a
different molecular target for indaziflam. To explore this further, we monitored the distribution and mobility of fluorescently
labeled CELLULOSE SYNTHASE A (CESA) proteins in living cells of Arabidopsis during indaziflam exposure. Indaziflam caused
a reduction in the velocity of YELLOW FLUORESCENT PROTEIN:CESA6 particles at the plasma membrane focal plane compared
with controls. Microtubule morphology and motility were not altered after indaziflam treatment. In the hypocotyl expansion zone,
indaziflam caused an atypical increase in the density of plasma membrane-localized CESA particles. Interestingly, this was
accompanied by a cellulose synthase interacting1-independent reduction in the normal coincidence rate between microtubules and
CESA particles. As a CBI, for which there is little evidence of evolved weed resistance, indaziflam represents an important addition
to the action mechanisms available for weed management.

Cellulose is a composite polymer of b-1,4-linked
glucan chains and is the main load-bearing structure of
plant cell walls (Jarvis, 2013). Although cellulose is a
relatively simple polysaccharide molecule, its synthesis
is quite complex. The principle catalytic unit is a plasma
membrane (PM)-localized protein complex referred to as
the cellulose synthase complex (CSC; Davis, 2012). In
plants, the CSC, visualized with freeze fracture micros-
copy, is a solitary, hexagonal rosette-shaped complex
(Herth and Weber, 1984; Delmer, 1999) and at least three
of the catalytic CELLULOSE SYNTHASE A (CESA) pro-
teins are required in each CSC for the production of
cellulose (Desprez et al., 2007; Persson et al., 2007). In
addition to CESAs, several accessory proteins have

been discovered to be necessary for the production and
deposition of cellulose, such as KORRIGAN (Lane et al.,
2001), COBRA (Roudier et al., 2005) and CELLULOSE
SYNTHASE INTERACTING1 (CSI1; Gu et al., 2010), as
well as several others that are yet to be identified. The
loss of function in any of the aforementioned proteins
causes complete or partial loss of anisotropic growth in
cells undergoing expansion, resulting in radial swelling.
Severe radial swelling in rapidly expanding tissue is also
a common symptomology observed in seedlings treated
with cellulose biosynthesis inhibitors (CBIs). Therefore,
numerous potential herbicidal targets exist (mechanisms
of action) for the broad group of known CBIs.

Classification of an herbicide to the CBI designation
was traditionally achieved by short-term [14C]radioisotope
tracer studies focused on the incorporation of Glc into
cellulose (Heim et al., 1990; Sabba and Vaughn, 1999).
More recently, time-lapse confocal microscopy of reporter-
tagged CESA proteins (Paredez et al., 2006) has been used
to further classify CBIs. CBIs can be classified into at least
three primary groups based on how treatment disrupts the
normal tracking and localization of fluorescently labeled
CESAs (for review, see Brabham and DeBolt, 2012). The
disruption is, it can be assumed, the result of the inhibitory
mechanism of the CBI. In the first group, isoxaben and
numerous other compounds cause YELLOW FLUORES-
CENT PROTEIN YFP):CESAs to be depleted from the PM
and concomitantly accumulate in cytosolic vesicles (called
small CESA compartments or microtubule-associated
cellulose synthase compartments; Paredez et al., 2006;
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Crowell et al., 2009; Gutierrez et al., 2009) The second
group, consisting only of dichlobenil (DCB), causes YFP:
CESAs to become immobilized and hyperaccumulated
at distinct foci in the PM (Herth, 1987; DeBolt et al.,
2007b). The third group influences CSC-microtubule
(MT)-associated functions resulting in errant movement
and localization of YFP:CESAs (DeBolt et al., 2007a;
Yoneda et al., 2007). These different disruption pro-
cesses suggest that each CBI group targets a different
aspect of the complex cellulose biosynthetic process.

A lack of evolved weed resistance in the field suggests
that CBIs are potentially underutilized tools for weed
control (Sabba and Vaughn, 1999; Heap, 2014). CBIs have
also been useful research tools in decoding fundamental
aspects of cellulose biosynthesis. An exogenous applica-
tion of a CBI provides spatial and temporal inhibition of
cellulose. Resistance screens to CBIs have uncovered key
genes in cellulose biosynthesis (Scheible et al., 2001;
Desprez et al., 2002). Furthermore, CBIs such as isoxaben
have also been effective in linking accessory proteins with
CESAs in the CSC (Robert et al., 2005; Gu et al., 2010).
Therefore, it is important to extend our range of CBI
compounds. Indaziflam (Fig. 1A), an herbicide introduced
by Bayer Crop Science, was recently proposed to be a CBI
and was reported to have a photosystem II inhibition
value of 9.4 (Meyer et al., 2009; Dietrich and Laber, 2012).

Indaziflam is labeled for use in turf, for perennial crops,
and for nonagricultural situations for preemergent control
of grasses and broadleaf weeds (Meyer et al., 2009;
Brosnan et al., 2011). The aim herein was to investigate
indaziflam as a CBI and to characterize its inhibitory
effect on cellulose biosynthesis.

RESULTS

Indaziflam-Treated Seedlings Exhibit
CBI Symptomologies

Dicotyledonous Arabidopsis (Arabidopsis thaliana) and
monocotyledonous Poa annua were germinated and
grown on plates for 7 d with various concentrations of
indaziflam. Seedlings were grown using either a light
(24-h light/0-h dark) or dark (0-h light/24-h dark) growth
regimen to promote root or hypocotyl expansion, re-
spectively. Both P. annua and Arabidopsis were sus-
ceptible to indaziflam and their growth was inhibited
in a dose-dependent manner (Fig. 1, B–D). The growth
reduced by 50% (GR50) values for light-grown P. annua,
dark-grown Arabidopsis, and light-grown Arabidopsis
were 671 rM, 214 rM, and 200 rM of indaziflam, respectively
(Supplemental Fig. S1). The similar GR50 values between the
light- and dark-grown Arabidopsis seedlings suggests the

Figure 1. Indaziflam is a fluoroalkytriazine-containing compound that inhibits elongation in seedlings of P. annua and Ara-
bidopsis. A, Chemical structure of indaziflam. B to D, Images of 7-d-old seedlings treated with increasing concentrations of
indaziflam. B shows light-grown P. annua seedlings (indaziflam concentrations from left to right are 0, 100, 250, 500, 1,000,
5,000, and 10,000 pM). C and D show light-grown and dark-grown Arabidopsis seedlings, respectively (indaziflam concentrations
from left to right are 0, 100, 250, 500, 1,000, and 2,500 pM). Indaziflam treatment induced swollen cells. E, Representative images
of the primary root of P. annua grown in plates for 4 d with and without 10 nM indaziflam. F, Transgenic Arabidopsis seedlings
expressing GFP:PIP2 were examined by laser scanning confocal microscopy and images represent visualization of the primary root
grown vertically for 7-d plates without and with 250 pM indaziflam. PIP2, Plasma membrane intrinsic protein2. Bar = 10 mm in B,
5 mm in C and D, 2 mm in E, and 50 mm in F.
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phytotoxic effects of indaziflam do not require light.
This eliminated several possible herbicidal modes of ac-
tion for indaziflam that are dependent on light for toxicity
(i.e. photosynthesis, chlorophyll, and pigment inhibitors).
Visually, indaziflam-treated seedlings exhibited radial
swelling (Fig. 1, E and F) and phloroglucinol staining
revealed that indaziflam caused ectopic lignification,
both of which are common characteristics of CBIs
(Desprez et al., 2002; Supplemental Fig. S2).

Indaziflam Inhibits Cellulose Biosynthesis

Classification of an herbicide as a CBI has traditionally
been based on inhibition of cellulose synthesis in treated
plants (Sabba and Vaughn, 1999). Cellulose is polymer-
ized from the substrate UDP-Glc by glucosyltransferase
CESA proteins (Delmer, 1999) and it can be partitioned
from other polysaccharides by treatment with nitric acid.
In crude cell wall extracts from the hypocotyl region of
5-d-old etiolated Arabidopsis seedlings, indaziflam re-
duced the amount of nitric acid-insoluble material (con-
sidered crystalline cellulose; Updegraff, 1969; Fig. 2A).
This effect was dose dependent because indaziflam at
200 and 400 rM reduced the Glc content of the acid-
insoluble fraction by 18% and 51%, respectively, compared
with the control (12.7 mg mg21). Furthermore, indaziflam
inhibited the incorporation of [14C]Glc into the acid-
insoluble cellulose fraction within 1 h of treatment
(Fig. 2B). Thus, indaziflam inhibited the production of
cellulose soon after treatment (,1 h) and in a dose-
dependent manner. This is consistent with inhibition
of cellulose biosynthesis as the primary mode of action
for indaziflam.

Isoxaben- and Quinoxyphen-Resistant Plants Are Not
Cross Resistant to Indaziflam

To determine whether indaziflam has the same mech-
anism of action as two other characterized CBIs, we tested
whether known isoxaben- and quinoxyphen-resistant
Arabidopsis mutants were cross resistant to indaziflam
(Fig. 3). The mutants used were cesa3ixr1-1, cesa3ixr1-2, and
cesa1ageusus. Isoxaben-resistant mutants cesa3ixr1-1 and
cesa3ixr1-2 (Heim et al., 1989; Scheible et al., 2001) and the
quinoxyphen-resistant mutant cesa1ageusus (Harris et al.,
2012) have point mutations in the C terminus trans-
spanning membrane domains and not in the cytosolic
catalytic domain that confer resistance to their respec-
tive herbicide. The results were somewhat inconclusive
as to whether the isoxaben- and quinoxyphen-resistant
mutants were cross resistant to indaziflam. There were
differences based upon GR50 values in the susceptibility
of the wild type andmutants to indaziflam. The isoxaben-
resistant mutants cesa3ixr1-1 (P, 0.0001) and cesa3ixr1-2 (P,
0.036) grown in the light both exhibited minor tolerance
(,2-fold) to indaziflam compared with the wild type.
However, these samemutants have a 300-fold and 90-fold
level of resistance to isoxaben, respectively (Heim et al.,
1989). In the dark, only cesa3ixr1-1 (P , 0.0001) exhibited

any tolerance to indaziflam compared with the wild type
(GR50 values of 275 versus 214 rM). The cesa1

ageusus mutant
and an additional isoxaben-resistant mutant, cesa6ixr2-1

(Desprez et al., 2002; data not shown), were equally sen-
sitive to indaziflam as wild-type plants whether grown in
light or dark. Our results do not support indaziflam as
having the same mechanism of action as quinoxyphen or
isoxaben.

Indaziflam Caused Reduced Particle Velocity and
Increased Accumulation of CESA Particles at the PM
Focal Plane

The question of how the PM-localized CSC popu-
lation responds to indaziflam treatment in living cells
is important to determine in order to understand the
inhibitory mechanism of indaziflam. To explore this,
we examined transgenic Arabidopsis plants expressing
both YFP:CESA6 and RED FLUORESCENT PROTEIN
(RFP):Tubulin a5 (TUA5; Gutierrez et al., 2009) during
short-term exposure to indaziflam. Two questions
were initially asked. First, does the entire organization
of the CSC array change during indaziflam treatment
or does the behavior of individual CESA particles
change in response to indaziflam? Second, does inda-
ziflam cause a similar or different inhibitory response
on the PM-localized CSC population compared with

Figure 2. Indaziflam treatment quantitatively inhibited the production
of cellulose. A, The amount of acid-insoluble Glc content (crystalline
cellulose) from pooled etiolated hypocotyl regions (5 mg of dry weight)
of 5-d-old dark-grown Arabidopsis seedlings after treatment with
indaziflam at 0 (0.01% DMSO mock), 200, or 400 pM. B, The inhib-
itory effects of indaziflam on the incorporation of [14C]Glc into the
acid-insoluble cellulose fraction of 3-d-old etiolated dark-grown Ara-
bidopsis seedlings after a 1-h treatment. The amount of radioactivity
was determined by liquid scintillation spectrometry. In graphs, means
were separated using Tukey’s test (A) or a Student’s t test (B) and different
letters or asterisks indicate a significant difference at an a , 0.05. Error
bars represent 61 SE (n = 5 for A and B). DPM, Disintegrations per
minute.
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previously described CBIs? To address the first ques-
tion, we imaged the behavior of YFP:CESA6 and RFP:
TUA5 in epidermal cells near the apical hook of etio-
lated Arabidopsis seedlings (Supplemental Movies
S1 and S2). Analysis of time-lapse images from seed-
lings in the absence of indaziflam revealed a dynamic
population of YFP:CESA6-labeled particles residing at
the PM (Supplemental Movie S1). After indaziflam
treatment (500 nM for 2 h), a greater population of YFP:
CESA6 particles was observed at the PM focal plane
(Fig. 4A). To quantify this, the number of distinct YFP:
CESA6 particles displaying morphology and motility
consistent with being membrane-localized particles
was counted. In the absence of indaziflam, the density
of discernable PM-localized YFP:CESA6 particles was
0.93 6 0.02 mm22 (Fig. 4B). By contrast, the density of
YFP:CESA6 particles in indaziflam-treated cells was
30% greater (1.29 6 0.02 mm22; Fig. 4B). This response
to indaziflam was consistent throughout the hypocotyl
cells but was most prominent in expanding cells sub-
tending the apical hook. Thus, indaziflam induced an
atypical increase in the population density of CESA
particles at the PM, consistent with broad disturbance
of array organization.

Individual CESA particles can also be tracked and
some aspects of their behavior can be measured. One
measurement is the velocity (positional movement) of
PM-localized CESA particles. However, the actual
movement of CESA particles at the PM is independent
of MTs (Paredez et al., 2006; DeBolt et al., 2007a). Thus,
an MT motor function in propelling CESA particles is
unlikely. Rather, the movement of CESA particles was
proposed to be a function of a polymerization force

generated by the translocating glucan chain (Diotallevi
and Mulder, 2007). The PM movement of CESA parti-
cles in untreated cells was bidirectional with an average
velocity of 3366 167 nm min21, which is consistent with
numerous prior studies (Paredez et al., 2006; Bischoff
et al., 2009; Crowell et al., 2009; Gutierrez et al., 2009; Gu
et al., 2010; Li et al., 2012). After treatment with indaziflam,
YFP:CESA6 velocity was reduced to 119 6 95 nm min21

(Fig. 5). Thus, indaziflam reduced CESA particle velocity
by 65%, which is consistent with a role in inhibiting
polymerization.

With the observed atypical increase in CESA
density, we asked whether the rate of coincidence
between MTs and CESA was altered by indaziflam.
In the molecular rail hypothesis proposed by Giddings
and Staehelin (1988), CESA particles are guided by
the underlying cortical MTs. The coincidence be-
tween PM CESA particles and MTs is normally
around 70% to 80% (Paredez et al., 2006; Li et al.,
2012). The average colocalization rate over three ex-
perimental runs (total n = 544) between YFP:CESA6
particles and RFP:TUA5 after indaziflam treatment
was 53% 6 4%. This was considerably less than the
71% 6 1% colocalization rate (total n = 303) observed
in mock-treated cells (Fig. 6; Table I). This disruption
in the colocalization between CESAs and MTs was
prominent in expanding cells but was less apparent
in cells that had undergone expansion further down
the hypocotyl (Supplemental Fig. S3). Thus, the in-
creased CESA density after indaziflam treatment ap-
pears to contribute to the decreased colocalization
between MTs and CESA in the region close to the
apical hook.

Figure 3. Indaziflam dose response and GR50

values of light-grown Arabidopsis genotypes. To
establish dose responses, seedlings were germi-
nated in the light on agar plates containing indaz-
iflam concentrations ranging from 0 to 10,000 pM.
Seedling root length was measured and standard-
ized as a percentage of the control. The Arabi-
dopsis seedlings used in this assay were the
Columbia ecotype as the wild type and mutants
previously confirmed resistant to other CBIs. The
cesa3ixr1-1 and cesa3ixr1-2 mutants are resistant to
isoxaben and cesa1ageusus is resistant to quinoxy-
phen. The curves and GR50 values were generated
by R software using the drc package. Asterisks in-
dicate a significant difference (n = 60; P , 0.05) in
the GR50 values between the mutant and the wild
type. [See online article for color version of this
figure.]
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Reduced CESA Velocity after Indaziflam Treatment Is
CSI1 Independent

CSI1 was identified as a primary linker protein be-
tween MTs and CSCs (Gu et al., 2010; Bringmann et al.,
2012; Lei et al., 2012; Li et al., 2012). In csi1mutants, CESA
particles in the PM were found to display reduced ve-
locity and their association with MTs was completely
disrupted (Gu et al., 2010; Li et al., 2012). Because this
cellular phenotype is similar to what we observed in
wild-type seedlings treated with indaziflam, we explored
the effect of indaziflam on the behavior of CESA particles
in the csi1-3 mutant background.
The velocity of YFP:CESA6 at the PM focal plane in

untreated csi1-3 was 236 6 114 nm min21 and, as ex-
pected, was slower than that observed in the untreated
wild type (336 6 167 nm min21; Supplemental Fig. S4,
A and B). However, upon treatment with indaziflam,
YFP:CESA6 velocity in csi1-3was further reduced from

2366 114 to 1256 102 nmmin21. Indaziflam also caused
a significant increase in the number of PM-localized YFP:
CESA6 particles on average to 1.25 particles per mm22 in
both csi1-3 andwild-type seedlings (Supplemental Fig. S5,
A and B). These data suggest that the mechanism of ac-
tion of indaziflam does not depend on a functional CSI1,
otherwise the velocity of YFP:CESA6 in the csi1-3 back-
ground should not have been altered.

DISCUSSION

Indaziflam caused CBI symptomologies, including
radial swelling and ectopic lignification, in both Ara-
bidopsis and P. annua treated seedlings (Fig. 1). Further-
more, indaziflam inhibited the production of cellulose in
Arabidopsis seedlings in a dose-dependent manner and
within 1 h of treatment (Fig. 2). On the basis of these
findings, the mode of action of indaziflam is consistent

Figure 4. Indaziflam treatment induced a higher density of CESAs at the PM. Arabidopsis seedlings expressing YFP:CESA6 were
grown in the dark for 3 d before imaging. A, Representative images and analysis of the PM-localized YFP:CESA6 particles in the
prc1-1 background are shown. Single optical sections (monochrome) show the distribution of YFP:CESA6-labeled puncta upon
2-h 0.01% DMSO mock treatment (left) or 500 nM indaziflam treatment (right). The green/magenta overlay is a spatial count of
the puncta that display morphology and motility consistent with PM YFP:CESA6 particles. A gray mask indicates the region of
interest lacking underlying intracellular compartments, and magenta dots indicate local maxima of the fluorescence signal.
B, Upon indaziflam treatment, the average density of YFP:CESA6 puncta at the PM increased. n = 15 cells from nine seedlings
for mock and n = 18 cells from 12 seedlings for indaziflam. Error bars are 61 SE from the mean. Bar = 10 mm.

Figure 5. Indaziflam reduced the velocity (par-
ticle movement rate) of YFP:CESA6. A, Repre-
sentative time-lapse images of YFP:CESA6
particles in the prc1-1 background with and
without indaziflam treatment (61 frames aver-
aged). B, The histogram depicts the frequency of
YFP:CESA6 particle velocities at the PM focal
plane after a 2-h treatment with indaziflam or
DMSO mock. Velocity was determined from
images taken in the epidermal cells of 3-d-old
dark-grown hypocotyls. The white bars are the
recorded velocity from the mock and the black
bars are indaziflam treatment (mean 61 SE).
Bar = 10 mm
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with its classification as a CBI. In characterizing the
mechanisms of action of CBIs, it is important to under-
stand the complexity of cellulose biosynthesis. In higher
plants, a solitary, hexagonal rosette-shaped CSC synthe-
sizes cellulose at the PM (Herth andWeber, 1984; Delmer,
1999). Recent data suggest that the CSC consists of 18 to
24 catalytic CESA proteins producing a microfibril with a
cross sectional area of around 7 nm2 (Jarvis, 2013).
Moreover, an incomplete but growing list of accessory
proteins that are required for the functionality of
CSCs may serve as potential CBI targets. Examples of
such accessory proteins are KORRIGAN (endo-1,4-
b-D-glucanase; Lane et al., 2001), COBRA (glycosyl-
phosphatidyl inositol-anchored protein; Roudier et al.,
2005), and CSI1 (Lei et al., 2012). Thus, there are many
potential targets for CBIs and they may be further clas-
sified according to the specific mechanism of action.
Traditional biochemical methodologies used to illustrate
drug molecular mechanisms are not yet applicable to
CBIs. To date, purification of functionally active cellulose-
producing CSCs or CESAs has been challenging (Lai-
Kee-Him et al., 2002) and insufficiently robust to enable
in vitro drug affinity-binding assays. Furthermore, de-
spite a crystallized bacterial CESA homolog (Morgan
et al., 2013), both CESAs and CSCs have sufficiently
diverged over time so that CBIs do not exhibit activity
on bacteria (Tsekos, 1999; Morgan et al., 2013; Sethaphong
et al., 2013). Therefore, determining how a given CBI
disrupts cellulose biosynthesis has utilized live-cell
imaging of CESA proteins in the presence of a CBI.

Through confocal microscopy, we demonstrated
that indaziflam caused an atypical increase in CESA
particle density and reduced, but not paused, velocity
at the PM focal plane (Figs. 4 and 5). Indaziflam is
clearly different from the CBIs quinoxyphen, isoxaben,
and thaxtomin-A, which all induce a rapid clearance of
CESA particles from the PM focal plane (Paredez et al.,
2006; Bischoff et al., 2009; Harris et al., 2012). This
corroborates our findings of a lack of cross resistance
to indaziflam in isoxaben- or quinoxyphen-resistant mu-
tants (Fig. 3). Similarly, morlin and cobteron (DeBolt et al.,

2007a; Yoneda et al., 2007) affect both MT and CESA
arrays, which was not the case for indaziflam. Indaziflam
effects also share little similarity with those caused by
DCB. DCB causes YFP:CESA6 particles to stop moving
and hyperaccumulate at single foci in the PM focal plane
(Herth and Weber, 1984; DeBolt et al., 2007b). Although
both DCB and indaziflam caused CESA particles to ac-
cumulate in the PM, indaziflam induced CESA accumu-
lation in both MT-rich and MT-poor regions and DCB
appears to cause accumulation at distinct foci in MT-rich
regions (DeBolt et al., 2007b). Furthermore, DeBolt et al.
(2007b) found that the majority of the accumulated
PM-localized YFP:CESA6 particles did not exhibit de-
tectable movement 1 h after treatment (maximum velocity
34 nmmin21). However, in our study, the average particle
velocity after indaziflam treatment was 1196 95 nmmin21.
In all, the data suggest that indaziflam influences a dif-
ferent component of the complex cellulose biosynthetic
process than other CBIs.

Interestingly, despite no obvious effect on the cortical
MT morphology or motility, CESA-MT coincidence
(Paredez et al., 2006) was uncoupled in indaziflam-
treated cells (Fig. 6). Here, the behavior of YFP:CESA6
in indaziflam-treated cells resembled the behavior of
CESAs in the CSC-MT linker protein, csi1, mutant
background (Gu et al., 2010). Specifically, in the absence
of CSI1, CESA particles at the PMwere uncoupled from
the MT array and exhibited reduced velocity (2366 114
nm min21). Indaziflam also caused reduced CESA
particle velocity and partial uncoupling from the MT

Figure 6. Indaziflam treatment decreased the net
colocalization between MTs and YFP:CESA6 at
the PM. Arabidopsis seedlings expressing both
RFP:TUA5 and YFP:CESA6 in prc1-1 were grown
in the dark for 3 d before imaging. Representative
single optical sections (monochrome) of cortical
MTs labeled by RFP:TUA5 (magenta) and PM-
localized YFP:CESA6 (green) were used for the
colocalization analysis (Table I). After 2 h in
0.01% DMSO mock, 71% 6 1% of YFP:CESA6
particles were coaligned with MTs, which was
not different from the ratio without any treatment
(Li et al., 2012). After 2 h in 500 nM indaziflam,
the colocalization ratio between YFP:CESA6 and
RFP:TUA5 decreased to 53% 6 4%, which was
not significantly different from the expected ran-
dom ratio association of 47% 6 10%. Bar = 5 mm.

Table I. Quantification of colocalization between CESA and MTs

Indaziflam treatment comprised 500 nM indaziflam for 2 h.

YFP:CESA6 versus RFP:TUA5 Mock Control Indaziflam Treatment

No. of colocalized voxels 303 544
Percentage of material

colocalized
71 6 1 53 6 4

P value 0.013 0.398
Percentage of expected

random colocalized
47 6 10 47 6 10
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array. Thus, utilizing the csi1-3mutant, we askedwhether
indaziflam interacts with CSI1. Results for indaziflam-
treated csi1-3 were comparable to indaziflam-treated
wild-type cells, suggesting that the inhibitory mechanism
of indaziflam was independent of CSI1 (Supplemental
Figs. 2–4). Thus, the inhibitory mechanism of indaziflam
does not mimic any prior characterized CBI or genetic
lesion.
To date, there have yet to be any reported cases of

weed species that have evolved field resistance to CBIs
(Heap, 2014). The lack of CBI-resistant weeds could be
attributable to several factors. First, CBIs may be used
on a relatively small scale because they are mainly
registered for use in perennial cropping systems (i.e.
orchards and turf), for ornamentals, or for total vege-
tation control. Unlike some other herbicides such as
glyphosate, CBIs are often used in combination with
alternative modes of action and this can lower the
probability of selecting for resistance to CBIs. Fitness of
CBI-resistant weeds may be another factor. Although
no field resistance has been reported, point mutations
conferring resistance to isoxaben (Heim et al., 1990)
and quinoxyphen (Harris et al., 2012) have been gen-
erated in Arabidopsis populations treated with the
mutagen ethyl methane sulfonate. The mutations were
mapped to CESA genes (Scheible et al., 2001; Desprez
et al., 2002; Harris et al., 2012) and each point mutation
was associated with a fitness penalty. Furthermore,
plant cells can be habituated to a lethal dose of CBIs
by significantly alternating their cell wall composition
(Díaz-Cacho et al., 1999; Mélida et al., 2010). It is yet to
be seen whether the mechanism for in vitro CBI ha-
bituation observed in the cell culture system could be
mimicked in developmentally complex multicellular
organisms, like a plant, to confer resistance. In lieu of
these data, indaziflam is a potent herbicide used at low
rates, has long soil residual activity, and has broad-
spectrum activity on seedlings with type I (eudicots)
or type II (Poaceae) cell walls, which is not the case for
isoxaben. These properties could result in over-reliance
on indaziflam alone, resulting in an increased selection
pressure for indaziflam-resistant weeds. If resistance is
managed, indaziflam has the potential to be a valuable
alternative mode of action for weed management.

MATERIALS AND METHODS

Indaziflam Dose Response and Cross Resistance

All Arabidopsis (Arabidopsis thaliana) seedlings were grown vertically on
one-half-strength Murashige and Skoog (MS) Basal Salt Mixture (Phyto-
Technology Laboratories) agar plates under continuous light or dark condi-
tions. The Arabidopsis Columbia ecotype was considered the wild type in all
experiments. The CBI-resistant mutants used in conjunction with the dose-
response assay were isoxaben-resistant cesa3ixr1-1, cesa3ixr1-2, and cesa6ixr2-1

(Heim et al., 1989; Scheible et al., 2001) and the quinoxyphen-resistant mutant
cesa1ageusus (Harris et al., 2012) Poa annua were pregerminated and seedlings
(n = 12) with a protruding radicle , 1.5 mm were placed in 9-cm-wide petri
dishes and grown under constant light. The petri dishes contained two
Whatman filter papers soaked with 4 mL of treatment. Appropriate indazi-
flam (Specticle 20 WSP 20% [w/w] active ingredient; Bayer Environmental
Science) rates were predetermined prior to experiments. The compatibility

and surfactant ingredients present as background in Specticle were not
available and were replaced with 0.01% (v/v) dimethyl sulfoxide (DMSO) or
deionized water. Treatments for Arabidopsis were indaziflam at 0, 50, 100,
250, 500, 1,000, and 10,000 pM and the DMSO concentration in agar media did
not exceed more than 0.01% (v/v). P. annua treatments were indaziflam at 0,
100, 250, 500, 1,000, 5,000, and 10,000 pM in water. A total of 20 hypocotyl or
root lengths from each Arabidopsis line and 12 P. annua roots were measured
7 d after treatment. Experiments were replicated in time, thrice. Length data
were standardized to the percentage of the untreated control in each experi-
ment. Percentage data were analyzed in R software using the drc package to
determine and compare GR50 values (Knezevic et al., 2007).

Cellulose Assay and Lignin Staining

Cellulose content in the hypocotyl region of 5-d-old dark-grown Arabi-
dopsis seedlings was determined by boiling 5 mg dry weight of the plant in
nitric acid-acetic acid (Updegraff, 1969). Treatments were indaziflam at 0, 200,
or 400 pM. The insoluble material was quantified colorimetrically for Glc
content using the anthrone-sulphuric acid method and back calculated to
cellulose (Scott and Melvin, 1953). For lignin staining, 7-d-old light-grown
seedlings were incubated in ethanol (70%) for 24 h followed by 30 min in a
2% (w/v) phloroglucinol solution (20% hydrochloric acid). Images were taken
with a bright-field stereomicroscope.

[14C]Glc Cell Wall Incorporation Assay

An adapted protocol similar to that of Heim et al. (1990) was used to
measure the incorporation of radiolabeled Glc into the cellulose fraction of the
cell wall. Dark-grown Arabidopsis seedlings were grown for 3 d in liquid MS
media supplemented with 2% (w/v) Glc. After removal from the media,
seedlings (20 mg fresh weight) were measured and placed in a 1.5-mL
Eppendorf tube. This represents one replication. Seedlings were then washed
twice with 0.5 mL of Glc-free MS media and centrifuged, and the supernatant
was removed. Next, 0.5 mL of Glc-free MS media solution containing [14C]Glc
at 1 mCi mL21 was added to each tube followed by the addition of treatments.
Seedlings were treated for 1 h in the dark with either DMSO (0.01% [v/v])
or indaziflam (32 nM). Samples were centrifuged and washed three times to
remove unincorporated radioactivity. The material was then boiled in nitric
acid-acetic acid for 30 min, cooled, and centrifuged for 5 min to pelletize
insoluble material. A total of 400 mL of supernatant was removed and placed
in a 10-mL liquid scintillation vial. The remaining liquid and insoluble
material was washed with 0.5 mL of water and centrifuged for 5 min at
10,000 rpm. This was repeated thrice to remove any remaining [14C]Glc in
solution. The pelletized material was resuspended in water and transferred
to a liquid scintillation vial. Five mL of scintillation fluid cocktail (Bio-
Safe II; Research Products International) was added to each vial with either
soluble or insoluble fractions and radioactivity was determined by a liquid
scintillation counter.

Confocal Microscopy

For live-cell imaging, 3-d-old dark-grown seedlings expressing YFP:CESA6
(Paredez et al., 2006) or YFP:CESA6- RFP:TUA5 (Gutierrez et al., 2009) were
used. In addition, to visualize Arabidopsis expansion, we examined seedlings
expressing the plasma membrane intrinsic protein2::GFP (Cutler et al., 2000).
Seedlings were mounted in MS liquid medium for 2 h with or without indaz-
iflam at 500 nM. Imaging was performed on a Yokogawa CSUX1 spinning disk
system featuring a DMI6000 Leica motorized microscope, a Photometrics
QuantEM:512SC CCD camera, and a Leica 1003/1.4 numerical aperture oil
objective. An acousto-optic tunable filter laser with three laser lines (440,
491, and 561 nm) was used to enable faster shuttering and switching be-
tween different excitations. Band-pass filters (485/30 nm for CYAN FLUO-
RESCENT PROTEIN, 520/50 nm for GFP, 535/30 nm for YFP, and 620/60 nm
for RFP) were used for emission filtering. Image analysis was performed using
Metamorph (Molecular Devices), ImageJ (version 1.36b; http://rsbweb.nih.
gov/ij/), and Imaris (Bitplane) software.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Indaziflam dose response of P. annua and Arabidopsis.
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Supplemental Figure S2. Indaziflam treatment-induced swollen cells in
P. annua and Arabidopsis seedlings.

Supplemental Figure S3. Indaziflam treatment increased density of PM
CSCs even in the regions where CESA was less expressed.

Supplemental Figure S4. Indaziflam reduced the velocity (particle move-
ment rate) of YFP:CESA6 particles independent of CSI1.

Supplemental Figure S5. YFP:CESA6 particle density analysis in csi1
background.

Supplemental Movie S1. Time lapse imaging of YFP:CESA6 in the absence
of indaziflam.

Supplemental Movie S2. Time lapse imaging of YFP:CESA6 in the pres-
ence of indaziflam.
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