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We report the successful use of transcription activator-
like effector nucleases (TALENs) under the control of an
estrogen-inducible promoter for targeted mutagenesis
in tomato (Solanum lycopersicum) of the negative regulator
of GA signaling PROCERA (PRO). TALEN expression
was induced and plants were regenerated from cotyle-
dons of seedlings derived from stable transgenic lines.
Six of 40 regenerated plants carried pro alleles, and the
mutations in the two lines examined were heritable.
Homozygous pro segregants exhibited phenotypes con-
sistent with increased GA response.

Tomato is an important agricultural crop in which
significant resources are invested for breeding traits such
as disease resistance and fruit shape and color (Foolad
and Panthee, 2012). Mutations affecting these traits
can be generated using random mutagens such as ethyl
methanesulfonate and transfer DNA integration (Mathews
et al., 2003; Menda et al., 2004); however, screening for
the desired mutation is laborious and time consuming.
A potentially more efficient method of gene disruption
is targetedmutagenesis using sequence-specific nucleases,
which create a double strand break in the target sequence.
These breaks are then repaired either by the homologous
recombination or nonhomologous end-joining pathway
(Jasin and Rothstein, 2013). Nonhomologous end-joining
is sometimes imprecise, resulting in deletions or insertions
at the double strand break site.

TALENs are composed of a sequence-specific DNA-
binding domain fused to the FokI nuclease domain
(Christian et al., 2010; Zhang et al., 2010). Binding of
TALEN monomers to the targeted gene allows the FokI
nuclease domain to dimerize and cleave the DNA (Chen
and Gao, 2013; Voytas, 2013). TALENs have been suc-
cessfully used to make sequence-specific mutations in a
variety of plant species, including Arabidopsis (Arabi-
dopsis thaliana), tobacco (Nicotiana tabacum), rice (Oryza

sativa), Brachypodium spp., and barley (Hordeum vulgare;
Cermak et al., 2011; Li et al., 2012; Christian et al., 2013;
Shan et al., 2013a; Wendt et al., 2013; Zhang et al., 2013).
More recently, the clustered regularly interspaced short
palindromic repeats (CRISPR)/CRISPR associated protein9
(Cas9) system has also been demonstrated to be a prom-
ising genome-editing tool (Jiang et al., 2013; Li et al., 2013;
Nekrasov et al., 2013; Shan et al., 2013b; Upadhyay et al.,
2013). The CRISPR/Cas9 system has been shown to be
an effective tool for targeted mutagenesis in transgenic
tomato hairy roots (Ron et al., 2014). In an accompanying
paper, CRISPR/Cas9 is shown to be useful for generat-
ing heritable mutations (Brooks et al., 2014).

DELLA proteins are negative regulators of GA signal-
ing (Hauvermale et al., 2012). The loss of DELLA function
results in increased GA response, which causes the mu-
tants to be tall and slender with light green vegetation.
Tomato has one DELLA gene called PROCERA (PRO).
A pro mutant caused by a missense mutation has been
characterized (Jones, 1987; Bassel et al., 2008; Jasinski
et al., 2008; Carrera et al., 2012). Although the mutant has
phenotypes corresponding to increased GA response, it is
partially responsive to GA, suggesting that the mutant
protein retains partial activity (Van Tuinen et al., 1999).
We used TALENs to create new pro alleles that can be
used to determine the role of PRO in GA signaling.

RESULTS AND DISCUSSION

TALEN pairs pTAL423/4 and pTAL425/6 were
designed to target the PRO gene using TALE-NT
(Supplemental Fig. S1; Supplemental Table S1; Doyle
et al., 2012). Due to concerns about potential TALEN
cytotoxicity (Christian et al., 2013), we generated trans-
genic tomato plants that express the TALEN pairs under
the control of the estrogen-inducible XVE promoter (Zuo
et al., 2000). One primary transgenic plant with TALEN
pair pTAL423/4 (pTAL423/4 T0) and four with TALEN
pair pTAL425/6 (pTAL425/6 T0) were generated.

Leaves of T0 plants were assayed for evidence of
TALEN activity 7 d after spraying plants with b-estradiol.
For this assay, PRO genomic DNA was PCR amplified
and tested to determine if the Sm1I restriction site located
at the TALEN cleavage site was mutated (Zhang et al.,
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2010). However, no Sm1I-resistant PRO amplicons
were detected, suggesting that the TALENs were not
active or that the mutation frequency was too low for
detection without enrichment. Therefore, Sm1I-digested
PRO amplicons were used as the template for a second
round of PCR amplification, and one T0 plant (desig-
nated as pTAL425/6_1 T0) had Sm1I-resistant PRO
amplicons. Mutations ranging in size from 2 to 168 bp
were identified when these amplicons were sequenced
(Supplemental Fig. S2).
We attempted to produce heritable TALEN-induced

mutations by spraying the shoot apex of pTAL425/6_1
T0 plants with b-estradiol daily for 1 week, but no
TALEN-inducedmutationswere detected in the pTAL425/
6_1 T1 seedlings. We then sprayed unopened and opened
flowers with b-estradiol daily and injected immature and
mature fruits with b-estradiol, but mutations were not
detected in seedlings from the treated plants. In addition,
when pTAL425/6_1 T1 seeds were germinated in the
presence of b-estradiol, no mutations were detected in
the T2 seedlings.
Since the TALENs were active in somatic tissue, we

attempted to regenerate plants bearing mutations from
cotyledons (Supplemental Fig. S3). pTAL425/6_1 T1
cotyledons were immersed in b-estradiol solution weekly,
and plants (bE-pTAL425/6 M0) were regenerated. Six
and three plants were regenerated from tissue that re-
ceived either one or two b-estradiol treatments, respec-
tively, but none carried TALEN-induced mutations. Forty
bE-pTAL425/6 M0 plants were regenerated from tissue
that had received three treatments, and seven of these
plants (designated as pro_1–pro_7 M0) carried mutations
(Fig. 1A). Since restriction enzyme assays do not detect all
TALEN-induced mutations (Suzuki et al., 2014; Veres
et al., 2014), additional plants may have carried muta-
tions. While pro_1 to pro_6 each carried one mutant allele,
pro_7 carried two different mutant alleles and exhibited

characteristic pro mutant phenotypes, including long in-
ternode length and smooth leaf margins. Sequencing in-
dicated that each allele was unique (Fig. 1B). Themutations
in pro_2 to pro_7 were deletions ranging in size from 1 to

Figure 1. Characterization of TALEN-induced mutations. A, PCR screen for TALEN-induced mutations in bE-pTAL425/6 M0
plants. Wild-type (WT) PRO amplicons were cleaved by Sm1I, producing 647- and 225-bp products, but the mutant amplicons in
lines 1 to 5, 7, and 8 are not cleaved. Note that line 9 failed to amplify. The mutant line designations below the image correspond
to the DNA sequences in B. M indicates the marker lane, and C indicates the no-template control. B, DNA sequence alignment of
TALEN-induced mutations. Left and right TALEN-binding sequences are underlined in the wild type. The sizes of deletions (2) and
insertions (+) are indicated to the right of the sequences. The red dashes indicate the location of a 39-bp insertion in pro_1.

Figure 2. A, Three-week-old seedlings segregating for the proTALEN_2

allele. Homozygous proTALEN_2 mutants are indicated by the asterisks.
B, Genotyping of the homozygous proTALEN_2 seedlings marked in A by
PCR amplification and digestion with Sm1l. C indicates the no-template
control. C, Comparison of 8-week-old wild-type (WT) and WT+GA3

plants with homozygous proTALEN_2 plants. D, Third youngest fully ex-
panded leaves of the plants shown in C.
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88 bp; pro_1 has a 39-bp insertion and a 4-bp deletion
(Supplemental Fig. S4). Seven of the deletions cause frame
shifts that would result in the production of a truncated
PRO protein.

We then determined if the mutant alleles in the pro_2
and pro_1 lines (proTALEN_2 and proTALEN_1, respectively)
are heritable. The previously described pro allele is re-
cessive (Jones, 1987); thus, if proTALEN_2 and proTALEN_1

are heritable, we expected one-quarter of the seedlings
derived from the heterozygous pro_2 and pro_1 plants
to exhibit a mutant phenotype. Consistent with the mu-
tations being heritable, four of 20 pro_2 seedlings (Fig. 2)
and three of 20 pro_1 seedlings (Supplemental Fig. S5)
were tall, and genotyping indicated that they were ho-
mozygous mutants. In further experiments, 55 of 293
pro_2 M1 seedlings were tall, and the resulting x2

P value for a 3:1 segregation ratio was 0.014, which is
consistent with Mendelian inheritance of the proTALEN_2

allele. In addition, we tested if the transgene encoding
the TALEN nuclease segregated away from the TALEN-
induced pro mutation and found that proTALEN_2-2 and
proTALEN_2-4 M1 mutants did not have the transfer DNA
insertion (data not shown).

Homozygous proTALEN_2 plants are phenocopies of
wild-type plants sprayed with GA3 (Fig. 2, C and D). In
contrast to control wild-type plants, wild-type tomato
plants sprayed with 50 mM GA3 daily and homozygous
proTALEN_2 plants were taller and had lighter green leaves
with smoother margins. These phenotypes are similar
to those of the previously characterized promutant (Jones,
1987; Bassel et al., 2008; Jasinski et al., 2008; Carrera et al.,
2012). The new pro alleles described here, and others that
can be created through targeted mutagenesis, should
prove useful in dissecting the role of PRO in GA signaling.

This report and the accompanying report by Brooks
et al. (2014) demonstrate that both TALENs and CRISPR/
Cas9 are effective tools for creating heritable mutations in
tomato. The greater ease of synthesizing CRISPR/Cas9
and its higher mutagenesis frequency relative to TALEN
might make it the preferred technology. However,
CRISPR/Cas9 has been reported to have a higher fre-
quency of off-target cleavage than TALENs (Fu et al.,
2013; Suzuki et al., 2014; Veres et al., 2014), but progress is
being made in addressing this deficiency (Fu et al., 2014).

MATERIALS AND METHODS
Materials and methods are described in Supplemental Materials and

Methods S1.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Locations of TALEN target sites.

Supplemental Figure S2. Sequences of TALEN-induced mutations gener-
ated in somatic cells.

Supplemental Figure S3. Strategy for regenerating pTAL425/6 TALEN-
induced mutants.

Supplemental Figure S4. The coding region of PRO showing the se-
quences of proTALEN_1 and one of the pro_7 alleles.

Supplemental Figure S5. Six-week-old seedling segregating for the proTALEN_1

allele.

Supplemental Table S1. TALEN Repeat Variable Diresidues sequences
and TALEN target sequences.

Supplemental Materials and Methods S1. Materials and methods used.
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