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Abstract

Computational protein structure prediction is very important for many applications in 

bioinformatics. In the process of predicting protein structures, it is essential to accurately assess 

the quality of generated models. Although many single-model quality assessment (QA) methods 

have been developed, their accuracy is not high enough for most real applications. In this paper, a 

new approach based on C-α atoms distance matrix and machine learning methods is proposed for 

single-model QA and the identification of native-like models. Different from existing energy/

scoring functions and consensus approaches, this new approach is purely geometry based. 

Furthermore, a novel algorithm based on deep learning techniques, called DL-Pro, is proposed. 

For a protein model, DL-Pro uses its distance matrix that contains pairwise distances between two 

residues’ C-α atoms in the model, which sometimes is also called contact map, as an orientation-

independent representation. From training examples of distance matrices corresponding to good 

and bad models, DL-Pro learns a stacked autoencoder network as a classifier. In experiments on 

selected targets from the Critical Assessment of Structure Prediction (CASP) competition, DL-Pro 

obtained promising results, outperforming state-of-the-art energy/scoring functions, including 

OPUS-CA, DOPE, DFIRE, and RW.
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I. INTRODUCTION

Knowledge of three-dimensional (3D) structure of a protein is critical for understanding its 

function, mutagenesis experiments and drug developments. Several experimental methods 

such as the X-ray crystallography or Nuclear Magnetic Resonance (NMR) can help 

determine a good 3D structure but they are very time-consuming and expensive [1]. To 

address those limitations, computational protein structure prediction methods have been 
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developed, including Modeller [2], HHpred [3], I-TASSER [4], Robetta [5], and MUFOLD 

[6]. The process of predicting protein structure commonly involves generating a large 

number of models, from which good models are selected using some quality assessment 

method.

Although many protein model quality assessment (QA) methods have been developed, such 

as MUFOLD-WQA [7], QMEANClust [8] MULTICOM [9], OPUS_CA [10], RW [11], etc, 

they all have various limitations and are not applicable to real applications. The Critical 

Assessment of Structure Prediction (CASP) is a biennial world-wild event in the structure 

prediction community to assess the current protein modeling techniques, including QA 

methods. In CASPs, different prediction software programs from various research groups 

were given unknown proteins to predict their structures. State-of-the-art single-model 

quality assessment methods include various energy functions or scoring functions, such as 

OPUS_CA [10], DFIRE [12], RW [11], DOPE [13], etc. In CASP competitions [14,15], the 

accuracy of single-model QA methods has been improving consistently, but still not very 

high in most cases. In contrast, consensus QA methods, such as MUFOLD-WQA and 

United3D, which are based on structure similarity, performed well on QA tasks, much better 

than single-model QA methods [14, 15]. The drawback of consensus QA methods is that 

they require a pool of diverse models to work well, which is not always available. More 

importantly, they cannot evaluate the quality of a single protein model, which is a very 

common task in protein predictions and other applications.

In this paper, a novel QA method based on deep learning techniques, called DL-Pro, is 

proposed for single-model quality assessment, specifically the identification of native-like 

models. Different from existing energy/scoring functions and consensus approaches, DL-Pro 

is a purely geometry based method. For a protein model, DL-Pro uses its distance matrix 

that contains pairwise distances between two residues’ C-α atoms in the model, which 

sometimes is also called contact map, as an orientation-independent representation. From 

training examples of distance matrices corresponding to good and bad models, DL-Pro 

learns a stacked autoencoder network as a classifier. In experiments using CASP datasets, 

DL-Pro is compared with existing state-of-the-art energy/scoring functions, including 

OPUS-CA, DOPE, DFIRE, and RW, and shows significant improvement.

This paper is organized as follows. Section II introduces the basics of major techniques used 

in the proposed method and some related works. Section III presents the new method DL-

Pro. Section IV presents experimental results on CASP datasets. Finally, Section V 

concludes the paper.

II. Basics of key techniques and related work

A. Protein Model Quality Evaluation

Protein model quality assessment methods can be divided into two main approaches: energy 

or scoring functions and consensus methods [16]. Basically, energy or scoring functions are 

designed based on either physical properties at molecule levels [17, 18], such as 

thermodynamic equilibrium or statistics based properties derived based on information from 

known structures [19, 20]. On the other hand, consensus methods are based on the idea that 
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given a pool of predicted models, a model that is more similar to other models is closer to 

the native structure [21].

1) Consensus methods based on structure similarity—A vital part of consensus 

methods is the measurement of similarity between two 3-D structures. There are three 

commonly used metrics: the Root-Mean-Squared Deviation (RMSD) Score, Template 

Modeling Score (TM-score), and Global Distance Test Total Score (GDT_TS) [22, 23, 24].

Since CASP data is used in this study and GDT-TS is a main metric used in the official 

CASP evaluation, we use GDT_TS as our main metric of evaluation. It is calculated by (1) 

superimposing two models over each other and (2) averaging the percentage of 

corresponding C-α atoms between two models within a certain cutoff. The GDT-TS value 

between two models is computed as follows:

(1)

where Ui and Uj are two 3D models and Pd is the percentage that the C-α atoms in Ui is 

within a defined cutoff distance d, d ∈ {1,2,4,8}, from the corresponding C-α atoms in Uj 

[18]. GDT_TS values have the range of [0, 1] with higher value means two structures are 

more similar.

For a model of a protein, its true quality is the GDT_TS value between it and the native 

structure of the protein, which is called its true GDT_TS score in this paper.

Using GDT_TS as the measurement of model similarity, the consensus methods are 

designed as follows: given a set of prediction models U and a reference set R, the consensus 

score, the CGDT_TS score, of each model Si is defined as:

(2)

where the reference set R can be U or a subset of U. CGDT_TS values also range from 0 to 

1 with higher value means better.

2) Energy or scoring functions—Energy or scoring functions are widely used for 

assessing quality of a given predicted protein model. In this study, we use 4 state-of-the-art 

energy functions, OPUS_CA, DFIRE, RW, and DOPE, which have been used widely in 

practice as well as in CASP competitions, for comparison.

OPUS_CA uses a statistics-based potential function based on the C-α positions in a model. 

It mainly consists of seven major representative molecular interactions in proteins: distance-

dependent pairwise energy with orientation preference, hydrogen bonding energy, short-

range energy, packing energy, tri-peptide packing energy, three-body energy, and salvation 

energy [10].

DFIRE is also a statistics-based scoring function, defined based on a reference state, called 

the distance-scaled, finite ideal-gas reference state. A residue-specific all-atom potential of 

mean force from a database of 1011 nonhomologous (less than 30% homology) protein 
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structures with resolution less than 2 A is constructed by using the reference state. DFIRE 

works better with a full atom model than only backbone and C (beta) atoms. It belongs to 

distance-dependent, residue-specific potentials [12].

RW is a side-chain orientation dependent potential method derived from random-walk 

reference state for protein fold selection and structure prediction. It has two major functions: 

1) a side chain orientation-dependent energy function and 2) a pairwise distance-dependent 

atomic statistical potential function using an ideal random-walk chain as reference state [11].

Discrete Optimized Protein Energy (DOPE) is an atomic distance-dependent statistical 

potential method derived from a sample of native protein structures. Like DFIRE, it is based 

on a reference state that corresponds to non-interacting atoms in a homogeneous sphere with 

the radius dependent on a sample native structure. A non-redundant set of 1472 

crystallographic structures was used to derive the DOPE potential. It was incorporated into 

the modeling package MODELLER-8 [8].

B. Distance Matrix

A 3D model with n C-α atoms can be converted into an n by n distance matrix A, i.e. 

calculating the Euclidean distance of two points in a 3D space, as follows:

(3)

where  are the 3D coordinates of points i and j, respectively.

Figure 1 shows an example of the 3D structure and its corresponding distance matrix of a 

protein model.

C. Principal component analysis (PCA)

PCA [25] is a widely used statistical method for linear dimensionality reduction using 

orthogonal transformation. Normally, the input is normalized to zero mean. Then the 

singular value decomposition is used on input’s covariance matrix to derive eigenvectors 

and eigenvalues. A subset of eigenvectors can be used to project the input to a lower-

dimensional representation. The eigenvalues indicate how much information is retained 

when reducing the dimensionality of the input.

D. Deep Learning with Sparse Autoencoder

An autoencoder [26–29] is a Feedforward Neural Network (FFNN) that tries to implement 

an identity function by setting the outputs equal to the inputs in training. Figure 2 shows an 

example. A compressed representation of the input data, as represented by the hidden nodes, 

can be learned by placing some restrictions on the network. One way is to force the network 

to use fewer nodes to represent the input by limiting the number of nodes in the hidden 

layer. Each hidden node represents a certain feature of the input data. Autoencoders can be 

viewed as nonlinear low-dimensional representations as compared to linear low-dimensional 

representations generated by PCA. In autoencoders, the mapping of the input layer to the 

hidden layer is called encoding and the mapping of the hidden layer to the output layer is 
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called decoding. In general, an autoencoder of a given structure tries to find the weights to 

minimize the following objective function:

(4)

where x is the input, W the weights, b the biases, and h the function mapping input to output.

Another technique of forcing an autoencoder to learn compressed representation is sparsity 

regularization on the hidden nodes, i.e., only a small fraction of hidden nodes are active for 

an input. With sparsity regularization, the number of hidden nodes can be more than that of 

the input nodes. Specifically, let

(5)

be the average activation of hidden unit j over a training set of size m. The goal here is to 

make p̂ approximate a given sparsity parameter p. To measure the difference between p and 

p ̂, an extra penalty term can be added to Eq. (4):

(6)

where s2 is the number of nodes in the hidden layer and j a hidden node. The value reaches 

minimum of 0 when p̂j = p and goes to infinity as p̂j approaches 0 or 1. Now, the overall cost 

function becomes

(7)

where parameter β defines the tradeoff between the mapping quality and the sparsity of a 

network.

Given the objective function in Eq. (7), its derivatives w.r.t. W and b can be derived 

analytically. Variants of backpropagation algorithms can find optimal W and b values 

iteratively on training examples.

Stacked autoencoders are deep learning networks constructed using autoencoders layer-by-

layer. Another autoencoder can be constructed on top of a trained autoencoder by treating 

the learned feature detectors in the hidden layer of the trained autoencoder as visible input 

layer. Autoencoder training is unsupervised learning since only unlabeled data are used. The 

learned weights and biases will be used as the starting point for the fine-tuning supervised 

learning stage of deep learning.

The supervised learning stage adds a label layer, such as a softmax classifier, as the highest 

layer. First, the softmax classifier is trained using labeled data. Then the whole multilayer 

deep network is treated as a feedforward network and trained using backpropagation, 

starting with weights and biases learned before.
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III. DL-Pro, A Novel Deep Learning Method for Protein Model QA

A. Problem formulation

The QA problem is formulated as a classification problem in this paper: given a set of 

predicted models of a protein, classify them into two classes, good (or near-native) and bad.

For the experiments, we prepare the dataset that contains good and bad models, but not 

intermediate models, as follows. Let A be a set of n predicted models for a target protein of 

length l, A={ai, 1 ≤ i ≤ n}, and ai = {Uj, j ∈ [1,l]} where Uj is the 3D coordinates of residue j 

of model ai. Let C = {ci, 1 ≤ i ≤ n, 0 ≤ ci ≤ 1} be the true-GDT_TS scores, i.e. the true 

quality, of models in A. Then, the classification label of a model is P (for near native) if its 

true GDT_TS score ci ≥ 0.7, and label P̄ (for not near native) if its true GDT_TS score ci < 

0.4. Note that models with true GDT_TS scores between 0.4 and 0.7 are dropped from the 

dataset. Our focus in the paper is to separate clearly good models from clearly bad models.

In this paper, the performance metric of a classification algorithm is classification accuracy 

T:

(8)

where v is the number of correctly classified examples and n is the total number of 

examples.

B. Classification using energy or scoring functions

For comparison purpose, we adapt existing energy or scoring functions for the classification 

problem defined in the previous subsection. The general method, call EC (Energy function 

based Classification), can be applied to existing energy or scoring functions, including the 

four used in this paper, OPUS-CA, DOPE, DFIRE, and RW. For these four scoring 

functions, smaller values represent better models and near-native models have very negative 

values. Since the true GDT_TS scores of models are in the range [0–1] and larger value 

means better, a linear mapping from energy scores to the true GDT_TS scores is first 

learned from a set of training examples and then the thresholds corresponding to good (true 

GDT_TS score ≥ 0.7) and bad (true GDT_TS score ci < 0.4) models are determined. Later, 

the energy scores of test examples are first converted using the linear mapping and then their 

classes are determined using the learned thresholds.

Figure 3 shows the pseudocode of the EC algorithm. The algorithm consists of a training 

phase, EC_Train, and a test phase, EC_Test. Based on the energy scores and corresponding 

true GDT_TS scores of a set of models, which constitute the training examples, EC_Train 

first computes the mean and standard deviation of the energy scores for normalization, 

performs linear regression, and then determines a threshold to label the positive (good) and 

negative (bad) examples.

Specifically, EC_Train first flips the sign of energy scores from negative to positive so that 

bigger value means better. Then energy scores are normalized to zero mean and unit 

variance. Next, a linear function with parameters Θ1 and Θ2 is learned to fit the data of 
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normalized energy scores and true-GDTTS scores. Two values, s1 and s2, on the normalized 

energy scores are calculated using the linear function from true GDTTS scores 0.4 and 0.7. 

Finally, the average of s1 and s1, s0, is the threshold on energy scores for labeling the two 

classes, good and bad models.

On test examples, EC_Test first normalizes the energy score of a test example using the 

training example mean and standard deviation. Then, the example gets a positive label if the 

normalized energy score is larger than the threshold s0 and gets a negative label otherwise.

C. New QA methods based on C-α atom distance matrix

In this section, a new approach based on C-α atoms distance matrix and machine learning 

methods is proposed for single-model quality assessment and the identification of native-like 

models. Different from existing energy/scoring functions and consensus approaches, this 

new approach is purely geometry based. Various supervised machine learning algorithm can 

be used in this approach and three algorithms based on deep learning networks, support 

vector machines (SVM), and feed-forward neural networks (FFNN), respectively, are 

presented next.

1) DL-Pro, a new deep learning QA algorithm using C-α atom distance matrix
—DL-Pro is a novel QA algorithm based on deep learning techniques. For a protein model, 

DL-Pro uses its distance matrix that contains pairwise distances between two residues’ C-α 

atoms in the model, which sometimes is also called contact map, as an orientation-

independent representation. From training examples of distance matrices corresponding to 

good and bad models, DL-Pro learns a stacked sparse autoencoder classifier to classify good 

and bad models.

Figure 4 shows the pseudocode of the DL-Pro algorithm. DL-Pro consists of a training 

phase, DL-Pro_Train, and a test phase, DL-Pro_Test. Based on the 3D structures and labels 

of a set of training models, DL-Pro_Train first computes the distance matrix composed of 

pairwise distances between every pair of residues’ C-α atoms in the model. Then, the 

distance matrix is normalized to mean 0 and standard deviation 1 based on its mean and 

standard deviation, which are kept for future use in testing. Next, PCA is applied to reduce 

the dimension of the distance matrices to generate the inputs of training examples. 

Significant reduction can be achieved even when 99% of information is kept, i.e., keeping 

99% variance of the original data set.

The top eigenvectors are kept for future use in testing. Finally, a deep learning network 

consisting of one or more layers of sparse autoencoders followed by a softmax classifier is 

trained using the training examples.

On test examples, DL-Pro_Test first pre-processes a test model by calculating its distance 

matrix, normalizing the matrix using learned mean and standard deviation, and reducing the 

matrix dimension using PCA with learned eigenvectors. Then, the learned deep learning 

network classifier is used to classify the data.
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2) A new Support Vector Machine (SVM) QA algorithm using C-α atom 
distance matrix—Instead of stacked autoencoder classifiers, other classifiers such as 

SVM can also be used in the approach based on C-α atom distance matrix. The algorithm 

using SVM is very similar to the DL-Pro algorithm in Figure 4, with only two differences: 

1) Step 6 of DL-Pro_Train is replaced by training a SVM classifier using the examples to 

get SVM parameters. 2) Step 4 of DL-Pro_Test is replaced by SVM classification [30].

3) A new Feedforward Neural Network (FFNN) algorithm using C-α atom 
distance matrix—In this algorithm, FFNNs, instead of deep learning classifiers or SVMs, 

are used to perform supervised learning and classification. Again, Step 6 of DL-Pro_Train 

and Step 4 of DL-Pro_Test are replaced by FFNN training and testing.

IV. EXPERIMENTAL RESULTS

1) Data set

CASP dataset: 20 CASP targets with sequence length from 93 to 115 are selected. Each 

target has approximately 200 predicted models. To reduce redundancy, all models that have 

the same GDT_TS score are removed. All models shorter than 93 residues are also removed. 

To make all examples the same input size, all models longer than 93 are truncated at the 

beginning and end, and the middle segment of 93 residues are kept. In the end, the dataset 

has good and bad 1,117 models.

Protein native structure dataset: The native structures of a set of protein with sequence 

length from 93 to 113 are downloaded from Protein Data Bank’s website. These native 

structures are compared with the native structures of the 20 CASP targets selected. If a 

native structure is more than 80% similar to a CASP target, it is removed to make sure that 

the training set and test set used in our experiments do not overlap. Similarly to the CASP 

set, structures longer than 93 are truncated on both ends to get to 93. In the end, the dataset 

has 972 structures.

For a model of length 93, the size of the upper triangle portion of the 93 by 93 distance 

matrix is 4278, a very high dimensional input to a typical classifier. After applying PCA 

with 99% information retained, the input dimension is reduced to 358, much more 

manageable.

2) Classification performance of energy functions

In this experiment, the EC (Energy function based Classification) algorithm in Figure 3 is 

applied to the CASP dataset with different energy scores obtained from OPUS-CA, DOPE, 

DFIRE, and RW, respectively. The experiment results are from 4-fold cross-validation: the 

dataset is divided into 4 folds, each containing models of 5 targets. The EC algorithm is run 

4 times total, each using 3 folds as training examples and 1 fold as test examples. The final 

result is the average of the 4 runs.

Figure 5 shows classification accuracy of the four energy function based algorithms. EC-

DFIRE achieves the best performance, 75% accuracy, while the other three have similar 

results, around 66%. Table 1 shows the confusion matrix of EC-DFIRE. Positive examples 

Nguyen et al. Page 8

Proc Int Jt Conf Neural Netw. Author manuscript; available in PMC 2014 November 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



are predicted very accurately, 660 out of 740, 89%, whereas prediction accuracy on negative 

examples is much lower, 182 out of 375, 49%.

3) Classification performance of QA algorithms based on C-α atom distance matrix: DL-
Pro, SVM, and FFNN

In this experiment, the CASP dataset is again divided into 4 folds, each containing models of 

5 targets, and the results of 4-fold cross-validation are reported. The SVM and FFNN 

algorithms only use the CASP dataset, whereas DL-Pro uses something extra, the protein 

native structure dataset, in its unsupervised autoencoder learning stage.

For the FFNN algorithm, 1 hidden layer networks with different hidden units (25, 50, 100, 

150, 200, and 250) were tried. For the DL-Pro algorithm, 1 and 2 hidden layer networks 

were tried. For 1-hidden-layer configurations (referred to as DL-Pro1), various numbers of 

hidden units (50, 100, 150, 200, and 250) were tried. For 2-hidden-layer configurations 

(referred to as DL-Pro2), the first hidden layer is fixed at 300 hidden units, while the 2nd 

hidden layer has various numbers of hidden units (100, 200, 300, 400, and 500). Other 

parameters are listed in Table 2. For each configuration, DL-Pro and FFNN ran for 10 times 

from random initial weights and their average results are reported.

Figure 6 shows classification accuracy of DL-Pro1 (DL-Pro with one-hidden-layer 

configurations), DL-Pro2 (DL-Pro with two-hidden-layer configurations), and FFNN with 

various hidden units. Their performance changes slightly as the number of hidden units 

changes. DL-Pro1 with 100 hidden units yields the best result with accuracy of 0.78. Figure 

7 compares classification performance of EC-DFIRE (the best of energy functions), SVM, 

FFNN, DL-Pro1 and DL-Pro2. SVM is significantly worse than FFNN and DL-Pro 

algorithms. Both DL-Pro1 and DL-Pro2 are slightly better than EC-DFIRE, with DL-Pro1 

achieving 78% accuracy, the best overall. The performance difference between FFNN and 

DL-Pro shows that deep learning is able to learn better features from both labeled and 

unlabeled data to achieve improved performance over traditional neural networks.

Table 3 shows the confusion matrix of SVM, indicating that it classifies all examples as 

positive. Table 4 shows the confusion matrix of FFNN with 1 hidden layer of 150 hidden 

units. Its accuracy is 81% on positive examples and 47% on negative examples. Finally, 

Table 5 shows the confusion matrix of DL-Pro1 with 1 hidden layer of 100 hidden units. Its 

accuracy on positive examples is excellent, 95%, but not so good on negative examples, 

only 45%.

V. Summary

This paper presents a new approach based on C-α atoms distance matrix and machine 

learning methods for single-model QA. To the best of our knowledge, this is the first attempt 

to use purely geometry information of a model and deep learning for single-model QA. 

Three new QA algorithms, DL-Pro, FFNN, and SVM using different learning methods have 

been proposed within the common framework.
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Experiments using selected CASP models and targets show very promising results. 

Compared to traditional feedforward neural networks, deep learning is significantly better, 

as demonstrated by the performance difference between DL-Pro and FFNN. Deep learning 

was able to learn useful features representing good models and DL-Pro achieved the best 

results, outperforming state-of-the-art energy/scoring functions, including DFIRE, OPUS-

CA, DOPE, and RW. Yet, the information used by DL-Pro is far less than other single-

model QA methods. With additional model information, DL-Pro is expected to improve 

further.
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Figure 1. 
The 3D structure and its corresponding distance matrix of a protein model.
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Figure 2. 
An example of autoencoder
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Figure 3. 
Pseudocode of the EC (Energy function based Classification) algorithm.
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Figure 4. 
Pseudocode of the DL-Pro algorithm, a novel QA algorithm based on deep learning and 

model distance matrix of pairwise distances between two residues’ C-α atoms in a model.
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Figure 5. 
Classification performance of energy function based classification algorithms. The EC 

algorithm in Figure 3 is applied to the CASP dataset with different energy scores obtained 

from OPUS-CA, DOPE, DFIRE, and RW, respectively.
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Figure 6. 
Classification performance of DL-Pro1 (DL-Pro with one-hidden-layer configurations), DL-

Pro2 (DL-Pro with two-hidden-layer configurations), and FFNN with various hidden units.
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Figure 7. 
Classification performance of EC-DFIRE (the best of energy functions), SVM, FFNN, DL-

Pro1 and DL-Pro2.
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Table 1

Confusion matrix of EC-DFIRE on the CASP dataset

Predicted Positive Predicted Negative

Actual Positive 660 82

Actual Negative 193 182
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Table 2

Parameters of sparse autoencoder training in the DL-Pro algorithm used in the experiments.

Parameter Value

Sparsity 0.1

Weight decay λ 3e-3

Weight of sparsity penalty β 3

Maximum number of iterations 500

Optimization method ‘lbfgs’
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Table 3

Confusion matrix of the SVM QA algorithm based on C-α atom distance matrix

Predicted Positive Predicted Negative

Actual Positive 742 0

Actual Negative 375 0
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Table 4

Confusion matrix of FFNN with 1 hidden layer of 150 hidden units.

Predicted Positive Predicted Negative

Actual Positive 604 138

Actual Negative 198 177
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Table 5

Confusion matrix of DL-Pro1 with 1 hidden layer of 100 hidden units.

Predicted Positive Predicted Negative

Actual Positive 704 38

Actual Negative 207 168
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