Skip to main content
. Author manuscript; available in PMC: 2014 Nov 10.
Published in final edited form as: Proc Int Jt Conf Neural Netw. 2014 Jul;2014:2071–2078. doi: 10.1109/IJCNN.2014.6889891

Table 2.

Parameters of sparse autoencoder training in the DL-Pro algorithm used in the experiments.

Parameter Value
Sparsity 0.1
Weight decay λ 3e-3
Weight of sparsity penalty β 3
Maximum number of iterations 500
Optimization method ‘lbfgs’