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Abstract

In gene regulatory circuits, the expression of individual genes is commonly modulated by a set of 

regulating gene products, which bind to a gene’s cis-regulatory region. This region encodes an 

input-output function, referred to as signal-integration logic, that maps a specific combination of 

regulatory signals (inputs) to a particular expression state (output) of a gene. The space of all 

possible signal-integration functions is vast and the mapping from input to output is many-to-one: 

for the same set of inputs, many functions (genotypes) yield the same expression output 

(phenotype). Here, we exhaustively enumerate the set of signal-integration functions that yield 

idential gene expression patterns within a computational model of gene regulatory circuits. Our 

goal is to characterize the relationship between robustness and evolvability in the signal-

integration space of regulatory circuits, and to understand how these properties vary between the 

genotypic and phenotypic scales. Among other results, we find that the distributions of genotypic 

robustness are skewed, such that the majority of signal-integration functions are robust to 

perturbation. We show that the connected set of genotypes that make up a given phenotype are 

constrained to specific regions of the space of all possible signal-integration functions, but that as 

the distance between genotypes increases, so does their capacity for unique innovations. In 

addition, we find that robust phenotypes are (i) evolvable, (ii) easily identified by random 

mutation, and (iii) mutationally biased toward other robust phenotypes. We explore the 

implications of these latter observations for mutation-based evolution by conducting random 

walks between randomly chosen source and target phenotypes. We demonstrate that the time 

required to identify the target phenotype is independent of the properties of the source phenotype.
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1 Introduction

Living organisms exhibit two seemingly paradoxical properties: They are robust to genetic 

change, yet highly evolvable (Wagner, 2005). These properties appear contradictory because 

the former requires that genetic alterations leave the phenotype intact, while the latter 

requires that these alterations explore new phenotypes. Despite this apparent contradiction, 

several empirical analyses of living systems, particularly at the molecular scale, have 

revealed that robustness often facilitates evolvability (Bloom et al., 2006, Ferrada and 

Wagner, 2008, Hayden et al., 2011, Isalan et al., 2008). A case in point is the cytochrome 

P450 BM3 complex. In this protein, both thermodynamic stability and mutational robustness 

— defined as the tendency of a protein to adopt its native structure in the face of mutation 

— increase the protein’s propensity to evolve novel catalytic functions (Bloom et al., 2006). 

In other, unrelated enzymes, the ability to evolve new functions is facilitated by the ability 

of the enzyme’s native functions to tolerate mutations (Aharoni et al., 2005). More 

generally, the enzymatic diversity of proteins increases with their mutational robustness. 

This indicates that robust proteins have acquired functional diversity in their evolutionary 

history — they are more evolvable (Ferrada and Wagner, 2008).

To clarify the relationship between robustness and evolvability, several theoretical models 

have been proposed (e.g., Newman and Engelhardt (1998), Wagner (2008a), Draghi et al. 

(2010)). A common feature of these models is the concept of a genotype network (a.k.a. 

neutral network). In such a network, each node represents a genotype. Edges connect 

genotypes that share the same phenotype and can be interconverted via single mutational 

events (Fig. 1A). In the case of RNA secondary structure phenotypes, for example, nodes 

represent RNA sequences and two nodes are connected if their corresponding sequences 

confer the same minimum free energy secondary structure, yet differ by a single nucleotide 

(Schuster et al., 1994). Robust phenotypes have large genotype networks (Wagner, 2008a). 

Phenotypic robustness confers evolvability because a population can diffuse neutrally 

throughout the genotype network (Hayden et al., 2011, Huynen et al., 1996) and build up 

genetic diversity, which allows access to novel phenotypes through non-neutral point 

mutations into adjacent genotype networks (Wagner, 2008a).

Genotype networks have been used to explore the relationship between robustness and 

evolvability in a variety of biological systems, ranging from the molecular (Schuster et al., 

1994, Cowperthwaite et al., 2008, Ferrada and Wagner, 2008, 2010, Wagner, 2008b) to the 

cellular level (Aldana et al., 2007, Ciliberti et al., 2007a,b, Mihaljev and Drossel, 2009). At 

the level of proteins and their three-dimensional structure phenotypes, for example, a 

genotype network is made up of all amino acid sequences that fold into the same structure 

and that can be reached via single amino acid substitutions (Ferrada and Wagner, 2008). 

Robust proteins, which are commonly referred to as designable (Li et al., 1996), have large 

genotype networks and exhibit an enhanced capacity for functional innovation (Ferrada and 
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Wagner, 2008). This is a consequence of the arrangement of protein functions in sequence 

space, where distant regions of a genotype network provide access to different protein 

functions (Ferrada and Wagner, 2010).

At higher levels of organization, the phenotype of interest is often a gene expression pattern. 

Such a gene expression pattern is produced by a gene regulatory network, which consists of 

gene products that activate and inhibit one another’s expression. Gene expression is 

controlled by a gene’s cis-regulatory region on DNA (Fig. 2A), which can be thought to 

perform a computation (Fig. 2B), using the regulating gene products as inputs. The 

regulatory program that encodes this computation is referred to as signal-integration logic. It 

is specified in the network’s (regulatory) genotype, which comprises the coding regions and 

the cis-regulatory regions of the network’s genes.

Previous studies of the robustness and evolvability of gene regulatory networks have 

focused on genetic perturbations that alter network structure by adding or deleting 

regulatory interactions (Aldana et al., 2007, Ciliberti et al., 2007a,b, Mihaljev and Drossel, 

2009). In this case, two gene regulatory networks are connected in a genotype network if 

they confer the same gene expression pattern, yet differ in a single regulatory interaction 

(Fig. 1B). The corresponding genotype network is therefore a “network of networks” 

(Ciliberti et al., 2007b). These analyses have revealed several general properties of the 

genotypes and phenotypes of gene regulatory networks. First, a genotype’s capacity to bring 

forth new gene expression phenotypes through genetic change is dependent upon its position 

in a genotype network (Ciliberti et al., 2007a). Second, the robustness of a genotype to 

mutation varies across a genotype network, such that some genotypes are vastly more robust 

than others (Ciliberti et al., 2007b), implying that genotypic robustness is itself an evolvable 

property (Mihaljev and Drossel, 2009). Third, phenotypes have vast genotype networks that 

extend throughout the space of all possible genotypes (Ciliberti et al., 2007a, Mihaljev and 

Drossel, 2009); and fourth, highly robust phenotypes are often highly evolvable (Aldana et 

al., 2007, Ciliberti et al., 2007a).

While these studies have helped to elucidate the relationship between robustness and 

evolvability in gene regulatory networks, they are limited by their assumption that genetic 

perturbations primarily affect network structure. It is well known that the presence or 

absence of regulatory interactions is not the only determining factor of gene expression 

patterns (Setty et al., 2003, Mayo et al., 2006, Kaplan et al., 2008, Hunziker et al., 2010). 

Specifically, by altering the arrangement of promoters and transcription factor binding sites 

(Fig. 2A, shaded boxes) in a gene’s cis-regulatory region, the signal-integration logic of 

gene regulation can be dramatically influenced. For example, by rearranging the location of 

transcription start sites in the promoter region of a reporter gene in the galactose network of 

Escherichia Coli, 12 of the 16 possible Boolean input-output mappings can be realized 

(Hunziker et al., 2010). Thus, it is not only the structure of regulatory interactions that 

affects robustness and evolvability, but also the logic of signal-integration used in the cis-

regulatory region of each gene. When genetic perturbations correspond to changes in the 

signal-integration logic, two gene regulatory networks are connected in the genotype 

network if they are topologically identical and confer the same gene expression pattern, yet 

differ in a single element of their signal-integration logic (Fig. 1C). The extent to which 
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genetic perturbations in the signal-integration logic of gene regulatory networks affect 

robustness and evolvability remains largely unexplored.

We have recently begun to address this open question using computational models of small 

gene regulatory circuits (Payne and Moore, 2011). These circuits are ideal for such an 

investigation because their genotype networks are exhaustively enumerable, which allows 

for a full characterization of the relationship between robustness and evolvability, at both the 

genotypic and phenotypic scales. In our previous analysis, we focused on the relationship 

between these properties at the level of the phenotype only, and investigated their influence 

on a simple, mutation-limited evolutionary process. Here, we extend our previous analysis 

substantially and provide a detailed characterization of robustness and evolvability at the 

level of the genotype. We address several fundamental questions concerning the structure of 

genotype networks in signal-integration space. For instance, what is the distribution of 

genotypic robustness on a genotype network? Does this distribution differ from the case 

where genetic perturbations affect circuit structure? Does the position of a genotype in 

genotype space impact its capacity for evolutionary innovation (i.e., its ability to acquire 

novel phenotypes via genetic change)? How does the robustness of a phenotype influence 

the robustness and evolvability of its underlying genotypes? Is there a tradeoff between 

robustness and evolvability at the level of the phenotype? Are robust phenotypes 

mutationally biased toward one another? If so, how does this impact mutation-based 

evolution? After addressing these and other questions, we discuss the implications of our 

results and present directions for future work.

2 Methods

2.1 Random Boolean Circuits

We use Random Boolean Circuits (RBCs) to model genetic regulation (Kauffman, 1969). 

RBCs are composed of nodes and directed edges (Fig. 2C). Nodes represent gene products 

and edges represent regulatory interactions. Two nodes a and c are connected by a directed 

edge a → c if the expression of gene c is regulated by gene product a. Node states are 

binary, reflecting the presence (1) or absence (0) of a gene product, and dynamic, such that 

the state of a node at time t+1 is dependent upon the states of its regulating nodes at time t. 

This dependence is captured by a look-up table associated with each node, which explicitly 

maps all possible combinations of regulatory input states to an output expression state. This 

look-up table is analogous to the signal-integration logic encoded in cis-regulatory regions. 

The signal-integration logic of all of the nodes in the network can be simultaneously 

represented using a single rule vector (Fig. 2D).

The dynamics of RBCs occur in discrete time with synchronous updating of node states 

(Fig. 2E). The dynamics begin at a pre-specified initial state, which can be thought to 

represent regulatory factors upstream of the circuit (Ciliberti et al., 2007a, Martin and 

Wagner, 2009). The dynamics then unfold according to the circuit’s structure and signal-

integration logic. Since the system is both finite and deterministic, its dynamics eventually 

settle into an attractor (Kauffman, 1969), which represents the gene expression pattern, and 

is referred to as the phenotype. We refer to the combination of circuit structure, rule vector, 

and initial state as an instance of a RBC.
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While simple, the Boolean abstraction has proven capable of precisely replicating specific 

properties of genetic regulation in natural systems. For example, variants of the model have 

emulated the expression patterns of the fruit fly Drosophila melanogaster (Albert and 

Othmer, 2003), the plant Arabidopsis thaliana (Espinosa-Soto et al., 2004), and the yeast 

Saccharomyces pombe (Davidich and Bornholdt, 2008). Due to their accuracy in capturing 

the dynamics of genetic regulation, and because the signal-integration logic of each gene is 

explicitly represented, RBCs are ideal synthetic systems for investigating the relationship 

between robustness and evolvability when genetic perturbations correspond to changes in 

signal-integration logic.

2.2 Dynamical Regimes of RBCs

An important feature of RBCs is that they exhibit three dynamical regimes: ordered, critical, 

and chaotic (Kauffman, 1969). In the ordered regime, gene expression patterns (i.e., 

attractors) are relatively insensitive to perturbations, while in the chaotic regime they are 

highly sensitive. The critical regime delineates these two extremes. For randomly 

constructed circuits, as considered herein, the transitions between regimes are controlled by 

two parameters: the average in-degree z and the probability ρ of gene expression (i.e., the 

probability of observing a 1 in the rule vector). Letting s = 2ρ(1 − ρ)z, the RBC lies in the 

ordered regime when s < 1, the critical regime when s = 1, and the chaotic regime when s > 

1 (Aldana and Cluzel, 2003, Schmulevich and Kauffman, 2004). When there is an equal 

probability of observing a 0 or a 1 in the rule vector (ρ = 0.5) the dynamical regime is 

determined solely by the average in-degree, with z < 2 yielding the ordered regime, z = 2 the 

critical regime, and z > 2 the chaotic regime. In this study, we use ρ = 0.5 and a fixed 

number of inputs per node z ∈ {1, 2, 3}.

2.3 Genotype Networks

We refer to the signal-integration logic of a RBC, as represented by its rule vector (Fig. 2D), 

as the circuit’s genotype. There are a total of 2L unique genotypes for a given combination 

of circuit structure and initial state, where L = N2z. We refer to this set of genotypes as the 

genotype space, or equivalently, as the signal-integration space. For the RBCs considered 

here, the size of the genotype space ranges from 26 for the ordered regime to 224 for the 

chaotic regime.

These genotypes map to a significantly smaller set of phenotypes. This high level of 

redundancy is a general feature of RBCs, and can be formalized using a genotype network, 

in which rule vectors are represented as nodes, and edges connect rule vectors that differ by 

a single bit, yet yield the same gene expression pattern (i.e., phenotype). Thus, we define a 

neutral point mutation as a single change to an element of the genotype that does not lead to 

a change in phenotype. Such a mutation can be thought of as a change in the affinity or 

position of a transcription factor binding site in the cis-regulatory region that leaves the gene 

expression pattern unchanged. We characterize genotype networks using an exhaustive 

breadth-first search, thus discovering all genotypes that yield the same phenotype and are 

accessible via neutral point mutations, starting from the original genotype of an RBC 

instance. While it may be possible that a phenotype is comprised of multiple disconnected 

genotype networks, our analysis is focused on the connected component of the genotype 
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network in which the RBC instance resides, which we refer to as the focal genotype 

network.

2.4 Observable Quantities

Several definitions of robustness and evolvability have been proposed, at both the genotypic 

and phenotypic scales (Aldana et al., 2007, Wagner, 2008b, Mihaljev and Drossel, 2009, 

Draghi et al., 2010). Here, we define these terms as they are used in this study. Where 

appropriate, we use superscripts to indicate whether a variable or function pertains to the 

genotypic (g) or phenotypic (p) scale.

The quantity vxPyP captures the number of unique non-neutral point mutations to genotypes 

in the focal genotype network of phenotype xp that lead to genotypes in a genotype network 

of phenotype yp. We call phenotypes xp and yp adjacent if vxPyP> 0. By enumerating all of 

the genotype networks that are adjacent to the focal genotype network of phenotype xp, we 

capture the mutational biases between adjacent phenotypes; that is, we capture the 

propensity with which the genotypes on one genotype network mutate into the genotypes on 

adjacent genotype networks. Our analysis therefore completely characterizes both the focal 

genotype network and its adjacent genotype networks.

2.4.1 Robustness—We define the genotypic robustness Rg(xg) of a genotype xg as the 

proportion of its L possible point mutations that do not lead to a change in phenotype. This 

quantity is normalized by L to provide a measure that is independent of rule vector length. 

We use as a proxy for phenotypic robustness Rp(xp) the proportion of signal-integration 

space that is occupied by the focal genotype network of phenotype xp. This proxy captures 

the fraction of all genotypes that yield the same phenotype and that can also be accessed via 

neutral point mutation from the rule vector of an RBC instance. This quantity is normalized 

by 2L to provide a measure that is independent of the size of genotype space. Thus, we 

consider phenotypic robustness to be the fractional size of the phenotype’s underlying focal 

genotype network.

2.4.2 Evolvability—Genotypic evolvability Eg(xg) is defined as the number of unique 

phenotypes that can be reached through individual non-neutral point mutations to genotype 

xg. We define phenotypic evolvability using two metrics. The first Ep(xp) is simply the 

number of phenotypes that can be accessed through non-neutral point mutations from the 

focal genotype network of phenotype xp (Wagner, 2008b). The second ξp(xp) captures the 

mutational biases that exist between the focal genotype network of phenotype xp and its 

adjacent genotype networks (Cowperthwaite et al., 2008). Letting

(1)

denote the fraction of non-neutral point mutations to genotypes on the focal genotype 

network of phenotype xp that result in genotypes of phenotype yp, we define the evolvability 

ξp(xp) of phenotype xp as
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(2)

Since  captures the probability that two randomly chosen non-neutral point 

mutations to genotypes on the focal genotype network of phenotype xp result in genotypes 

with identical phenotypes, its complement ξp(xp) captures the probability that these same 

mutations result in genotypes with distinct phenotypes. This metric takes on high values 

when a phenotype is adjacent to many other phenotypes and its non-neutral point mutations 

are uniformly divided amongst these phenotypes. The metric takes on low values when a 

phenotype is adjacent to only a few other phenotypes and its non-neutral point mutations are 

biased toward a subset of these phenotypes.

2.4.3 Accessibility—In addition to measuring phenotypic evolvability, we also consider 

phenotypic accessibility

(3)

which captures the propensity to mutate into the focal genotype network of phenotype xp 

(Cowperthwaite et al., 2008). This metric takes on high values if the phenotypes adjacent to 

phenotype xp are mutationally biased toward xp and low values otherwise.

2.4.4 Adjacent Robustness—We measure the robustness of all phenotypes that are 

adjacent to the focal genotype network of phenotype xp, in proportion to the probability that 

these phenotypes are encountered through a randomly chosen, non-neutral point mutation 

from the focal genotype network of phenotype xp (Cowperthwaite et al., 2008). We refer to 

this quantity as adjacent robustness,

(4)

This metric takes on high values when a phenotype is mutationally biased toward robust 

phenotypes and low values otherwise.

2.4.5 Distance and Diversity—The genotypic distance Dg between two genotypes xg 

and yg is given by the normalized Hamming distance

(5)

where  if genotypes xg and yg differ at location i and  otherwise. This 

quantity is normalized by L to provide a measure that is independent of rule vector length.

Payne et al. Page 7

Artif Life. Author manuscript; available in PMC 2014 November 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Following Ciliberti et al. (2007a), the diversity Fp of the sets of phenotypes P(xg) and P(yg) 

that are accessible through individual non-neutral point mutations to genotypes xg and yg of 

the same genotype network, is calculated as

(6)

This measure captures the proportion of all phenotypes in P(xg) and P(yg) that are unique to 

either P(xg) or P(yg). We refer to this measure as the diversity of adjacent phenotypes and 

consider it in the context of genotypic distance. For example, if the genotypic distance 

Dg(xg, yg) between genotypes xg and yg is large, but the diversity of adjacent phenotypes 

Fp(P(xg), P(yg)) is small, then the position of a genotype in genotype space has little 

influence on which phenotypes are accessible via non-neutral point mutation. In contrast, if 

both Dg(xg, yg) and Fp(P(xg), P(yg)) are large, then the position of a genotype in genotype 

space has a strong influence on which phenotypes are accessible via non-neutral point 

mutation. Note that xg and yg can be separated by any distance, so long as they reside on the 

same genotype network. Note also that the phenotypes in P(xg) need not be adjacent to the 

phenotypes in P(yg).

2.5 Simulation Details and Data Analysis

For all RBC instances, the rule vector and initial state are generated at random with ρ = 0.5. 

The circuit structure is also generated at random, but subject to the constraint that each node 

has exactly z inputs. Self-loops are permitted, mimicking autoregulation. We separately 

consider RBCs in the ordered, critical, and chaotic regimes by setting z = 1, 2, 3, 

respectively. The initial state and circuit structure are held fixed for each RBC instance. To 

ensure that all of the genotype networks considered in this study are amenable to exhaustive 

enumeration, we restrict our attention to RBCs with N = 3 nodes. While these RBCs are 

small, sensitivity analysis (Derrida and Pomeau, 1986) confirms that they exhibit the same 

dynamical regimes as larger networks, albeit with shorter attractors. To assess the strength 

and significance of the trends in our data, we employ Pearson’s correlation coefficient.

3 Results

3.1 Characteristics of Genotype Networks

To describe the structure of signal-integration space in RBCs, we randomly generate 2500 

RBC instances for each dynamical regime and exhaustively characterize the focal genotype 

networks of their corresponding phenotypes, and the genotype networks of all adjacent 

phenotypes.

As the dynamical regime shifts from ordered to chaotic, the mean, variance, and maximum 

of the distributions of genotypic robustness (Fig. 3A–C) and genotypic evolvability (Fig. 

3D–F) increase. For example, mean genotypic robustness increases by 72% and mean 

genotypic evolvability increases by 114% as the dynamical regime transitions from ordered 

to chaotic. Genotypic evolvability and genotypic robustness are inversely correlated (Fig. 

3G), highlighting the fundamental tradeoff between these two quantities. The strength of 
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correlation is virtually indistinguishable between dynamical regimes (z = 1 : r = −0.97, p ≪ 

0.001; z = 2 : r = −0.98, p ≪ 0.001; z = 3 : r = −0.98, p ≪ 0.001), but the slopes of these 

inverse relationships vary significantly. For instance, increasing genotypic robustness from 

0.4 to 0.5 results in a 28% reduction in genotypic evolvability for chaotic RBCs, but only an 

18% reduction for ordered RBCs.

The range of phenotypic robustness Rp varies with dynamical regime, with ordered RBCs 

spanning the smallest range (3.12×10−2 ≤ Rp ≤ 1.25×10−1), critical RBCs spanning an 

intermediate range (4.88×10−4 ≤ Rp ≤ 1.25 × 10−1), and chaotic RBCs spanning the largest 

range (4.77 × 10−7 ≤ Rp ≤ 1.25 × 10−1). The maximum value of phenotypic robustness is 

independent of dynamical regime, and corresponds to the case where the initial state is 

identical to the attractor, which thus comprises only a single state (i.e., it is a fixed-point 

attractor). In this case, there are no transient dynamics and each vertex is exposed to only a 

single input value during the attractor, which means that only a single entry of each of the N 

look-up tables is used. This implies that only N bits of the rule vector are accessed during 

the RBC’s dynamics, leaving L − N bits unused. Thus, the corresponding genotype network 

is of size 2L−N, with phenotypic robustness . The 

average phenotypic robustness decreases from the ordered (Rp = 9.57 × 10−2) to the critical 

(Rp = 4.12 × 10−2) to the chaotic (Rp = 3.02 × 10−2) regime.

Average genotypic robustness is positively correlated (Fig. 4A; z = 1 : r = 0.82, p ≪ 0.01; z 

= 2 : r = 0.88, p ≪ 0.01; z = 3 : r = 0.81, p ≪ 0.01), and average genotypic evolvability 

negatively correlated (Fig. 4B; z = 1 : r = −0.83, p ≪ 0.01; z = 2 : r = −0.88, p ≪ 0.01; z = 

3 : r = −0.81, p ≪ 0.01), with phenotypic robustness. The genotypes that map to a given 

phenotype therefore become more robust and less evolvable as that phenotype becomes 

more robust. Averaging genotypic robustness and genotypic evolvability across all 2500 

RBC instances per dynamical regime reveals a linear increase in both quantities as z 

increases (Fig. 4, insets). Thus, the genotypes of chaotic RBCs are simultaneously more 

robust and more evolvable than the genotypes of critical or ordered RBCs, on average.

To determine the distributions of genotypic distance between pairs of genotypes, we 

randomly sample 10,000 pairs of genotypes from each of the 2500 genotype networks per 

dynamical regime (Fig. 5A–C). We then compare these distributions to their corresponding 

null distributions, which are computed by randomly sampling 25 million pairs of genotypes 

from the entirety of genotype space (i.e., without regard to phenotype) (Fig. 5A–C, vertical 

lines). The average genotypic distance between randomly sampled pairs of genotypes from 

focal genotype networks increases from the ordered ( ) to the critical ( ) to 

the chaotic ( ) regime. However, these averages are always significantly less than 

the averages of the corresponding null distributions (p ≪ 0.001 for all z, Kolmogorov-

Smirnov test), indicating that the connected components of genotype networks of signal-

integration logic are constrained to specific regions of genotype space.

To understand how the position of a genotype in genotype space impacts the variety of 

phenotypes it may access via non-neutral mutation, we consider the diversity of adjacent 

phenotypes Fp as a function of genotypic distance Dg (Fig. 5D). For all three dynamical 

regimes, the diversity of adjacent phenotypes increases as the distance between two 
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genotypes on the same connected components of a genotype network increases. In the 

critical regime, for example, 43% of the phenotypes found within the 1-neighborhoods of 

genotypes separated by a distance of D = 0.08 are unique; for D = 0.75, 95% are unique. 

Thus, the greater the distance between two genotypes, the greater the difference between the 

two sets of phenotypes that may be encountered via non-neutral mutation. Strikingly, 100% 

of the phenotypes found within the 1-neighborhoods of genotypes separated by a distance D 

> 0.8 are unique in the chaotic regime. As expected, the average genotypic distance between 

randomly sampled genotypes increases as phenotypic robustness Rp increases (Fig. 5E), 

supporting the intuitive notion that larger genotype networks extend farther throughout 

genotype space than smaller genotype networks.

Phenotypic evolvability Ep and phenotypic robustness Rp are positively correlated (Fig. 6A), 

and the strength of correlation increases from the ordered (r = 0.65, p ≪ 0.01) to the critical 

(r = 0.89, p ≪ 0.01) to the chaotic (r = 0.98, p ≪ 0.01) regime. This indicates that, in this 

system, no trade-off exists between phenotypic robustness and the number of phenotypes 

accessible via non-neutral point mutations; the more robust the phenotype, the higher its 

evolvability Ep. Average phenotypic evolvability  increases faster than linearly with 

increasing z, indicating a rapid increase in the number of adjacent phenotypes as the 

dynamical regime shifts from ordered to chaotic (Fig. 6A, inset).

When mutational biases between adjacent phenotypes are taken into account using ξp, a 

slightly different relationship is observed between phenotypic evolvability and phenotypic 

robustness (Fig. 6B). RBCs in the ordered regime exhibit a weak and insignificant 

correlation between ξp and Rp (r = 0.02, p = 0.41). In contrast, RBCs in the critical and 

chaotic regimes exhibit weak, but significant correlations, with the strength of correlation 

increasing from the critical (r = 0.09, p ≪ 0.01) to the chaotic regime (r = 0.42, p ≪ 0.01). 

The average evolvability  increases approximately linearly as z increases (Fig. 6B, inset). 

Thus, the average probability that two randomly chosen, non-neutral point mutations lead to 

distinct phenotypes is only ≈ 15% higher in chaotic RBCs than in ordered RBCs, despite the 

four order-of-magnitude difference in the absolute number of adjacent phenotypes (Fig. 6A, 

inset).

Phenotypic accessibility Ap and phenotypic robustness Rp are positively correlated (Fig. 6C), 

with the strength of correlation again increasing from the ordered (r = 0.81, p ≪ 0.01) to the 

critical (r = 0.93, p ≪ 0.01) to the chaotic (r = 0.98, p ≪ 0.01) regimes. This implies that, 

for all three dynamical regimes, random point mutations are more likely to lead to robust 

phenotypes than to non-robust phenotypes. Average accessibility  increases faster than 

linearly as z increases (Fig. 6C, inset), indicating a rapid increase in the relative ease with 

which phenotypes are found by random mutation as the dynamical regime shifts from 

ordered to chaotic.

Adjacent robustness Bp and phenotypic robustness Rp are positively correlated, with the 

strength of correlation decreasing from the ordered (r = 0.89, p ≪ 0.01) to the critical (r = 

0.64, p ≪ 0.01) to the chaotic regimes (r = 0.35, p ≪ 0.01). This implies that non-neutral 

point mutations to genotypes within robust phenotypes often lead to other robust 

phenotypes, but that the strength of this tendency weakens as RBCs approach the chaotic 
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regime. The average adjacent robustness  decreases approximately linearly as z increases 

(Fig. 6D, inset), indicating that the expected robustness of a phenotype encountered via non-

neutral point mutation decreases as the dynamical regime shifts from ordered to chaotic.

Taken together, these results suggest that a series of random point mutations will tend 

toward phenotypes of increased robustness (Fig. 6D) and correspondingly increased 

evolvability (Fig. 6A,B). Further, the ease with which such a blind evolutionary process 

identifies an arbitrary phenotype should increase with that phenotype’s robustness (Fig. 6C) 

and as the dynamical regime shifts from ordered to critical to chaotic (Fig. 6C, inset).

3.2 Random Walks Through Signal-Integration Space

To investigate how phenotypic robustness, evolvability, and accessibility influence blind, 

mutation-based evolution, we conduct an ensemble of random walks. For each dynamical 

regime, we randomly generate 1000 RBC instances and identify the phenotype of each 

instance as a source phenotype. For each instance, we then sample the genotype space at 

random until we discover a genotype that yields a different phenotype from the source 

phenotype, and we identify this as the target phenotype. For each pair of source and target 

phenotypes, we then perform a random walk, starting from the instance’s genotype and 

ending when the random walk reaches any genotype in the target phenotype. Each step in 

the random walk corresponds to a single point mutation to the genotype. We record the 

number of steps S required to reach the target phenotype, which we normalize by the size of 

the signal-integration space 2L, and refer to as the waiting time T = S/2L.

Waiting time T decreases faster than linearly as z increases (Fig. 7A, inset). For all three 

dynamical regimes, waiting time is strongly negatively correlated with the accessibility A of 

the target phenotype (Fig. 7A), and the strength of correlation increases from the ordered (r 

= −0.41, p ≪ 0.01) to the critical (r = −0.67, p ≪ 0.01) to the chaotic (r = −0.82, p ≪ 0.01) 

regime. In contrast, the correlation between waiting time T and the evolvability Ep of the 

source phenotype is weak and insignificant (z = 1 : r = −0.03, p = 0.38; z = 2 : r = 0.01, p = 

0.82; z = 3 : r = −0.02, p = 0.56) (Fig. 7B). We observed similarly weak and insignificant 

correlations between waiting time T and other characteristics of the source phenotype, such 

as ξp, Ap, and Bp (data not shown). These results indicate that the time required for a blind 

evolutionary search to identify a target phenotype is independent of the phenotypic 

properties of the starting point and solely dependent upon the phenotypic properties of the 

target.

4 Discussion

In this study, we have extended our previous analysis (Payne and Moore, 2011) of genotype 

networks in the signal-integration space of Random Boolean Circuits (RBCs). While our 

earlier work was focused exclusively on the properties of phenotypes, we now additionally 

provide a detailed description of the properties of genotypes. Specifically, we have 

characterized the distributions of genotypic robustness Rg (Fig. 3A–C) and genotypic 

evolvability Eg (Fig. 3D–F), revealing distributions that are skewed toward genotypes of 

high robustness and low evolvability, which increase in both mean and variance as the 

dynamical regime shifts toward chaos. This variability implies that genotypic robustness and 
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genotypic evolvability are themselves evolvable properties in RBCs, that by gradually 

altering signal-integration logic via point mutation, an evolutionary process can navigate 

through signal-integration space toward areas of either high genotypic robustness or high 

genotypic evolvability, without phenotypic modification.

When genetic perturbations correspond to changes in circuit structure, rather than to changes 

in signal-integration logic, the distribution of genotypic robustness is skewed toward 

genotypes of low robustness (Ciliberti et al., 2007b). This result contrasts with our 

observations, and underscores the sensitivity of the structure of genotype networks to the 

form of genetic perturbation under consideration. Regardless of the form of genetic 

perturbation, it is not possible to simultaneously maximize genotypic robustness and 

genotypic evolvability (Fig. 3G), due to the inherent tradeoff between these properties 

(Wagner, 2008b).

We found a positive correlation between average genotypic robustness  and phenotypic 

robustness Rp (Fig. 4A), an intuitive observation given that the latter quantity is commonly 

defined via the former (Wagner, 2008b). In contrast, average genotypic evolvability  was 

negatively correlated with phenotypic robustness Rp (Fig. 4B), indicating that the individual 

genotypes that make up robust phenotypes have a reduced capacity for innovation, relative 

to the genotypes of less robust phenotypes. Both the average genotypic robustness  and 

the average genotypic evolvability  increased as the dynamical regime shifted from 

ordered to chaotic (Fig. 4, insets).

To understand how a genotype’s position in signal-integration space influences its capacity 

for innovation, we analyzed the relationship between the genotypic distance Dg of randomly 

sampled pairs of genotypes on the same genotype network, and the diversity of phenotypes 

Fp accessible via non-neutral point mutation from these genotypes. We found a monotonic 

increase in Fp across the full range of genotypic distances observed for each dynamical 

regime. This results contrasts again with observations made by Ciliberti et al. (2007a), who 

only found a strong statistical association between these quantities for low genotypic 

distance (Dg ≲ 0.2). Thus, large distances between genotypes in signal-integration space 

may facilitate access to a greater diversity of phenotypes than the same genotypic distances 

in the space of circuit structures.

We found a positive correlation between phenotypic robustness Rp and phenotypic 

evolvability, as measured by either the absolute number of adjacent phenotypes Ep (Fig. 6A) 

or by the probability that two non-neutral point mutations lead to distinct phenotypes ξp 

(Fig. 6B). Our results corroborate the observation made in previous studies that the 

phenotypes of gene regulatory networks can simultaneously exhibit robustness and 

evolvability (Aldana et al., 2007, Ciliberti et al., 2007a,b). Further, our analyses extend these 

previous studies by providing an explicit description of this relationship and by considering 

genetic perturbations that alter the signal-integration logic encoded in cis-regulatory regions, 

instead of genetic perturbations that alter circuit structure.

We also found a positive correlation between phenotypic robustness Rp and phenotypic 

accessibility Ap (Fig. 6C), a measure that captures the relative ease with which a phenotype 
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can be identified by mutation-based evolution. This result supports the intuitive notion that 

phenotypes formed by many genotypes are easier to find in blind evolutionary searches than 

phenotypes formed by few genotypes. In addition, robust phenotypes are mutationally 

biased toward other robust phenotypes (Fig. 6D), indicating that blind evolutionary searches 

should encounter, at least on average, highly robust phenotypes. This observation 

corroborates recent observations made in RNA systems (Jörg et al., 2008), where biological 

RNA structures were shown to have significantly larger genotype networks than random 

RNA structures.

To understand how phenotypic robustness, evolvability, and accessibility in signal-

integration space influence mutation-based evolution, we considered an ensemble of random 

walks between pairs of source and target phenotypes. We found that the number of random 

mutations required to reach the target phenotype was entirely dependent upon its 

accessibility  (Fig. 7A) and independent of any properties of the source phenotype (e.g., 

Fig. 7B). This suggests that a random walk through signal-integration space quickly loses 

any memory of its starting location. Consequently, extant evolvability metrics cannot be 

expected to predict the duration of a random walk between phenotypes. To overcome this 

issue, future work will seek to develop new phenotypic evolvability metrics that take into 

consideration the global structure of genotype space, as opposed to only considering the 

immediate adjacency of genotype networks.

Most of our results are consistent with those made in RNA systems (Cowperthwaite et al., 

2008, Wagner, 2008b). However, there is one difference worth emphasizing: the correlation 

between phenotypic robustness Rp and phenotypic evolvability ξp is negative in RNA 

(Cowperthwaite et al., 2008). Since the relationship between Rp and adjacent robustness Bp 

is positive in RNA, Cowperthwaite et al. (2008) concluded that robust phenotypes act as 

“evolutionary traps” (but, see Wagner (2008b)). That is, random mutation may tend toward 

phenotypes of higher robustness, which in turn may be less evolvable by this criterion, and 

therefore slow down evolutionary search. Since we observed a positive correlation between 

(i) Rp and ξp and between (ii) Rp and Bp, we conclude that robust phenotypes in the signal-

integration space of RBCs are not evolutionary traps, but instead may facilitate the 

discovery of novel phenotypes. Such contrasts between model systems underscores the fact 

that the relationships between robustness, evolvability, and accessibility are system 

dependent.

Phenotypic evolvability increased monotonically as z increased (Fig. 6A,B, insets) and the 

maximum achievable robustness was independent of z (Rmax = 2−N). Taken together, these 

results indicate that robustness and evolvability can be simultaneously maximized in chaotic 

RBCs. This result contrasts with previous analysis (Aldana et al., 2007), which found 

robustness and evolvability to be simultaneously maximized in critical RBCs. This 

discrepancy can be understood by considering the two primary differences between the 

analyses. First, Aldana et al. (2007) focused on genetic perturbations that altered circuit 

structure (and consequently, in some cases, signal-integration logic) while we focused solely 

on genetic perturbations that altered signal-integration logic. Second, and of greater 

importance, the measures of robustness and evolvability considered by Aldana et al. (2007) 

were not based on genotype networks. Instead, robustness was defined as the ability of a 
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single mutated genotype to maintain the phenotypic landscape (i.e., the set of all phenotypes 

observed across all possible initial states), and evolvability was defined as the capacity of 

the mutated genotype to expand the phenotypic landscape (i.e., add new phenotypes to the 

set of existing phenotypes). Thus, the definitions of robustness and evolvability used by 

Aldana et al. (2007) differed from ours, and were focused solely on the level of individual 

genotypes and their immediate mutational neighbors. While these definitions are reasonable 

and insightful, our departure from their use precludes any direct comparison between the 

two studies. That said, our observation that the robustness and evolvability of chaotic RBCs, 

at both the genotypic and phenotypic scales, are higher than that of critical or ordered RBCs 

should be interpreted with caution. For all dynamical regimes, robustness is maximal for 

fixed point attractors, and these occur with decreasing frequency as the dynamical regime 

transitions from order to chaos (i.e., as z increases). Thus, while it is only possible to 

simultaneously observe maximal robustness and maximal evolvability in chaotic RBCs, this 

case represents the exception rather than the rule.

Future work will seek to understand how evolution navigates signal-integration space. Is it 

possible for mutation and selection to identify the high-robustness, high-evolvability 

phenotypes of chaotic RBCs? If so, can they out-compete critical and ordered RBCs in static 

(Oikonomou and Cluzel, 2006) or dynamic (Greenbury et al., 2010) environments? How are 

these evolutionary outcomes affected by mutation rate (Wilke et al., 2001) or recombination 

(Martin and Wagner, 2009)? Future research will also focus on larger systems, moving from 

an analysis of small circuits to large networks. To accomplish this, Monte Carlo sampling 

methods will be required (Jörg et al., 2008), as the increased size of the signal-integration 

space will prohibit the exhaustive enumeration of genotype networks. In addition, future 

work will seek to understand both the influence of canalyzing functions (Kauffman et al., 

2004) and the probability of gene expression on the size and structure of genotype networks. 

These directions, among others (e.g., Pechenick et al. (2012)), will lead to a more thorough 

theoretical understanding of how the genetic malleability of cis-regulatory DNA can 

influence evolutionary processes.
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Figure 1. 
(A) The space of all possible genotypes can be represented as a network, where vertices 

correspond to genotypes and edges connect genotypes that can be interconverted through 

point mutations. A genotype network is a connected subgraph in which each genotype yields 

the same phenotype (denoted by vertex color). Thus, all point mutations within a genotype 

network leave the phenotype unchanged. (B) When perturbations correspond to the addition 

or deletion of regulatory interactions, two RBCs are connected in a genotype network if they 

share the same gene expression pattern (phenotype), but differ in a single regulatory 

interaction. (C) When perturbations correspond to changes in the signal-integration logic, 

two RBCs are connected in a genotype network if they share the same phenotype, but differ 

in a single bit of their rule vector. This perturbation is analogous to a change in the affinity 

or position of a transcription factor binding site in the cis-regulatory region that leaves the 

gene expression pattern unchanged. The genotype networks shown in (B,C) are part of the 

larger (hypothetical) genotype space shown in (A). The number of neighbors per vertex is 

intentionally reduced for visual clarity.
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Figure 2. 
(A) Schematic of genetic regulation, where gene products a and b serve as regulatory inputs, 

attaching to their respective binding sites (gray shaded boxes) in the cis-regulatory region of 

gene c to influence its expression. The input-output function encoded in this regulatory 

region is called signal-integration logic and can be modeled as (B) a discrete function that 

explicitly maps all of the 2z input-output combinations of a z-input function. Here, z = 2. (C) 

All interactions between gene products a, b, and c can be represented as a Random Boolean 

Circuit (RBC) with N = 3 nodes. In this example circuit, gene product c possesses the same 

regulatory inputs and signal-integration logic as in (A) to clearly depict how the RBC 

abstraction captures genetic regulation. (D) The signal-integration logic of every node in the 

RBC can be simultaneously represented with a single rule vector by concatenating the 

rightmost columns of each node’s look-up table. (E) The dynamics of the RBC begin with 

an initial state (e.g., 〈011〉) and eventually settle into an attractor (gray shaded region).
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Figure 3. 
Distributions of (A–C) genotypic robustness Rg and (D–F) genotypic evolvability Eg for 

each of the three dynamical regimes: (A,D) ordered (z = 1), (B,E) critical (z = 2), and (C,F) 

chaotic (z = 3). Each distribution comprises data from 2500 genotype networks. (G) Average 

genotypic evolvability  as a function of average genotypic robustness , for each of the 

three dynamical regimes. Each data point represents an average across all genotypes in a 

genotype network.
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Figure 4. 
(A) Average genotypic robustness  and (B) average genotypic evolvability  as a 

function of phenotypic robustness Rp, for each of the three dynamical regimes: ordered (z = 

1), critical (z = 2), and chaotic (z = 3). The insets depict the corresponding averages across 

all 2500 genotype networks, as a function of z. Lines are provided as a guide for the eye.
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Figure 5. 
Distribution of the genotypic distance Dg between randomly sampled pairs of genotypes 

from focal genotype networks in each of the three dynamical regimes: (A) ordered (z = 1), 

(B) critical (z = 2), and (C) chaotic (z = 3). The dashed vertical lines represent one standard 

deviation from the mean of the corresponding null distribution (see text). (D) Diversity of 

adjacent phenotypes Fp as a function of genotypic distance Dg. Data are offset in the 

horizontal dimension for visual clarity. Error bars denote one standard deviation from the 

mean. (E) Average genotypic distance  per genotype network, as a function of phenotypic 

robustness Rp.
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Figure 6. 
Phenotypic evolvability (A) Ep, (B) ξp, (C) accessibility Ap, and (D) adjacent robustness Bp 

as a function of phenotypic robustness Rp for each of the three dynamical regimes: ordered 

(z = 1), critical (z = 2), and chaotic (z = 3). Each data point represents one of 2500 RBC 

instances for each dynamical regime. The insets depict the corresponding averages, as a 

function of z. Lines are provided as a guide for the eye.
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Figure 7. 
Waiting time of a random walk T = S/2L as a function of (A) the target phenotype’s 

accessibility  and (B) the source phenotype’s evolvability , for each of the three 

dynamical regimes: ordered (z = 1), critical (z = 2), and chaotic (z = 3). The inset in (A) 

depicts the average waiting time T as a function of z. Lines are provided as a guide for the 

eye.
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