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Abstract

The activation of Notch signaling is implicated in tumorigenesis in the colon due to the induction 

of pro-survival signaling in colonic epithelial cells. Chemoresistance is a major obstacle for 

treatment and for the complete eradication of colorectal cancer (CRC), hence, the inhibition of 

Notch is an attractive target for CRC and several groups are working to identify small molecules 

or monoclonal antibodies that inhibit Notch or its downstream events; however, toxicity profiles in 

normal cells and organs often impede the clinical translation of these molecules. Dietary agents 

have gained momentum for targeting several pro-survival signaling cascades, and recent studies 

demonstrated that agents that inhibit Notch signaling result in growth inhibition in preclinical 

models of CRC. In this review, we focus on the importance of Notch as a preventive and 

therapeutic target for colon cancer and on the effect of WA on this signaling pathway in the 

context of colon cancer.
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Introduction

Cancer is a hyper-proliferative disease in which cells grow in an uncontrolled manner and 

acquire an invasive phenotype, leading to metastatic disease [1]. Worldwide, colorectal 

cancer (CRC) is the third most common malignancy in males and the second most common 

malignancy in females [2]. In the United States, CRC is the third leading cause of cancer-

related deaths in men and women [3] and accounts for 136,830 new cases and 50,310 deaths 

annually. As per the National Institute of Health, total cost for the treatment of CRC for the 

year 2010 was fourteen billion dollars in United States. The mainstay of management of the 

early stage of CRC is still surgical resection with adjuvant therapy; the advanced stage 

disease may not be amenable to adjuvant modalities due to chemoresistance. Although early 

detection of CRC has improved, the mortality rate remains high due to chemoresistance and 

systemic toxicity to normal cells and organs [1].
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CRC is a multistep process that involves the disruption of molecular mechanisms necessary 

for intestinal homeostasis by maintaining intestinal proliferation, differentiation and 

programmed cell death. The repercussions of this deregulation of cellular signals promotes 

oncogenic phenotypes, in which cells exhibit uncontrolled proliferation, the loss of 

apoptosis, a highly invasive phenotype that advances to metastasis, the induction of 

angiogenesis and chemoresistance to drugs [4]. It is imperative to understand the molecular 

mechanisms involved in the development and progression of CRC to identify novel targets 

and develop novel drugs, which could benefit patients with CRC by avoiding the 

disadvantages associated with current treatment modalities. This review article focuses on 

the potential of the natural compound Withaferin A (WA) and its ability to target Notch 

signaling and impede CRC development and progression.

Notch signaling and components

The Notch signaling pathway consists of five Notch ligands (i.e., the Delta-like ligands 

DLL1, DLL3 and DLL4 and the Serrate-like ligands Jagged1 and Jagged2) and four Notch 

receptors (i.e., Notch1-4). Notch receptors are type-I transmembrane proteins with (i) an 

extracellular domain (NECD); (ii) a transmembrane domain; and (iii) an intracellular 

domain (NICD) that contains a RAM domain, six ankyrin repeats, and a transactivation 

domain [5, 6]. The activation of Notch depends on cell-to-cell contact in which Notch 

ligands present on a cell bind to Notch receptors present on a neighboring cell (i.e., the 

signal-receiving cell) [5, 7] and trigger metalloproteases in the a disintegrin and 

metalloprotease (ADAM) family, resulting in the cleavage of the extracellular domain [8]. 

Subsequently, activated γ-secretase cleaves within the transmembrane domain of Notch 

receptors, resulting in the release of the NICD [6, 9]. The NICD translocates to the nucleus 

and binds via its RAM and ankyrin domains to the DNA-binding transcription factor CSL 

(which consists of CBP or RBP-JK in vertebrates, Su (H) in Drosophila, and Lag-1 in 

Caenorhabditis elegans), Mastermind like-1 (MAML-1) and p300/CBP. Once formed, this 

complex displaces the co-repressors bound to the transcription factors, recruits 

transcriptional co-activators and induces the expression of target genes, such as hairy-

enhancer-of-split (Hes-1) and Hes-related protein gene families [5, 6, 10, 11], that 

subsequently execute pro-survival functions.

Notch signaling and intestinal homeostasis

Notch signaling is required for the normal maintenance and homeostasis of the intestinal 

epithelium [5, 12, 13]. In particular, this pathway plays an important role in controlling the 

cellular fate of intestinal stem cells and the differentiation of colonic goblet cells [11, 14, 

15]. The expression of components of this signaling pathway has been demonstrated in both 

the developing and adult intestine [16, 17]. Various studies demonstrated that the intestinal 

epithelium is enriched in the expression of Notch1, Notch2, DLL1, DLL4 and Jagged1 

within the crypts. The secretory lineage of crypt cells, including the crypt base goblet cells 

in the colon, exhibit high levels of expression of DLL1 and DLL4 [18–20]. In the human 

colon, the Notch-1, -2 and -3 are highly expressed at the basal crypt while CSL and Jagged1 

are highly expressed at the top of the crypts [21]. Notch signaling is crucial for the 

proliferation of crypt progenitors and for the differentiation of colonic epithelial cells [6].
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Published studies demonstrate that deleting CSL/RBP-Jκ in combination with the deletion of 

Notch1 and Notch2 or treatment with a γ-secretase inhibitor skewed colon-based columnar 

stem cells to differentiate into intestinal secretory cells, primarily goblet cells [15, 22]. 

Conversely, in transgenic mice, ectopic expression of the NICD throughout the intestinal 

epithelium caused a marked decrease in secretory cell production, indicating that Notch 

activation leads to the amplification of the intestinal progenitor pool and the inhibition of 

cell differentiation [11, 23]. In addition, Notch signaling is necessary for and works 

synergistically with Wnt signaling to promote the maintenance of the gut [24]. Notch and 

Wnt signaling act synergistically to inhibit the terminal differentiation of intestinal epithelial 

cells by downregulating the basic helix-loop-helix transcription factor ATOH1 (Atonal 

homolog 1), which is also termed MATH1 or HATH1 [25]. ATOH1 is a transcriptional 

activator that is repressed by HES-1; this protein is one of the most abundant targets of 

Notch and plays an opposing role to that of Notch/Hes by promoting secretory lineage 

differentiation [26–28].

The importance of Notch signaling in cancer

Notch signaling is critical for maintaining the balance between cell proliferation, 

differentiation, and apoptosis and is also involved in angiogenesis and the migration of 

cancer cells [6, 29]. Hence, deregulation of these processes that are regulated by Notch 

signaling may lead to the initiation and/or progression of CRC [30]. Notch receptors and 

their ligands are aberrantly activated in many human cancers, such as T-ALL [31, 32], 

pancreatic cancer [33, 34], breast cancer [35–37], prostate cancer [38–40], liver cancer [41], 

cervical cancer [42, 43], Kaposi’s sarcoma [44], lung cancer [45], ovarian cancer [46], 

lymphoma [47], renal cancer [48] and CRC [49, 50]. Overexpression of Notch elements, 

such as receptors, ligands and downstream target genes, is correlated with increased 

progression, metastatic potential, and recurrence and poor prognosis and clinical outcome in 

various cancers [38]. For example, overexpression of Notch1 is associated with decreased 

time to recurrence in breast cancer [51]; similarly, high expression of Jagged-1 is correlated 

with the recurrence of prostate cancer [38]. Moreover, inhibiting Notch signaling with γ-

secretase (GSI) in rodents caused a noticeable overproduction of goblet and enteroendocrine 

cells [52–54].

It was previously demonstrated that Notch is activated in primary CRC rather than 

metastatic colon cancer, implying that the activation of Notch may be an early step of CRC 

development [55]. In contrast, a more recent study reported high expression of Notch-1 and 

its target gene Hes-1 during both colon cancer progression [9] and metastasis [4]. No clear 

mechanism for the constitutive activation of Notch has been reported, and the implications 

of this activation for the initiation and progression of CRC remain unknown; however, 

mutations in the Notch receptor may play a significant role. In addition, the activity of 

Notch1 is also increased as a result of β-catenin-mediated upregulation of the Notch ligand 

Jagged-1 [56].

Notch ligand Jagged1 is highly confined to enteroendocrine cells and is undetectable in the 

mucosa of the small or large intestine; however, higher expression of this ligand is observed 

in human colon tumors (12–20). A recent study reported that downregulation of Jagged1 
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decreases cell viability and causes cell cycle arrest by downregulating the expression of 

Cyclin D1, Cyclin E and c-Myc in CRC [50]. These in vitro studies also demonstrated a 

reduction of the migratory and invasive behavior of CRC cells. Further, knocking down 

Jagged-1 inhibited the growth of xenograft tumors compared to controls, supporting the 

therapeutic role of Notch in CRC models [50]. Activation of Notch signaling has been 

reported to be indispensable for the development of adenomas in APCMin/+ mice and for the 

self-renewal of tumor-initiating cells [1].

Targeting Notch signaling in CRC

Various approaches are being used to inhibit Notch signaling and are under investigation in 

many cancer types; this topic is discussed in detail by Espinoza and Miele [57]. These 

approaches include neutralizing Notch antibody, in which blocking monoclonal antibodies 

(mAb) are directed against Notch receptors (i.e., Notch-1, -2, -3, -4). In addition, blocking 

antibodies against Notch ligands are under development. A novel mAb against the 

extracellular domain of nicastrin has also been generated [58]. This mAb recognizes fully 

mature nicastrin in the active γ-secretase complex and inhibits its activity. Another attractive 

therapeutic candidate is decoy, which is the soluble form of the extracellular domains of 

Notch receptors [59]. These decoys compete with their cell surface-bound endogenous 

counterparts and abolish Notch signaling, as they lack the transmembrane region that is 

necessary for receptor activation. In another approach, various clinical trials have focused on 

blocking the cleavage process of Notch receptors with γ-secretase inhibitors (GSIs) [60, 61]. 

γ-secretase is a promising target for Notch inhibition and exhibits cytostatic or cytotoxic 

activities in various cancer cells [57]. Silencing Notch1 with GSIs sensitizes colon cancer 

cells to chemotherapy [9, 61]. Although GSIs appear to be attractive tools for inhibiting 

Notch signaling, there are some drawbacks associated with these inhibitors, as they exhibit 

some off-target and adverse effects, leading to gastrointestinal toxicity and liver injury [50, 

62]. Another study published by Timme et al. demonstrated the nonspecific effects of a GSI 

[63]. GSIs are known to induce apoptosis while enhancing the response to chemotherapy in 

various cancers. However, in this study, the authors found that treating colon cancer cells 

with a potent inhibitor of γ-secretase reduced oxaliplatin-induced apoptosis by increasing the 

expression of anti-apoptotic proteins (i.e., Mcl-1 and/or Bcl-xL). In addition, GSI treatment 

alone exerted no apoptosis or growth inhibitory effect. This study is surprising and 

demonstrates that caution is warranted when treating colon cancer with GSIs in combination 

with chemotherapeutic agents.

Although many approaches are available to inhibit Notch signaling, these approaches are 

either in their infancy or are under investigation due to toxicity issues. Thus, it is very 

important to identify small molecules or establish regimens that target Notch signaling in 

CRC with minimal or no side effects. One such approach is the use of dietary 

chemopreventive agents, which might be non-toxic to normal cells/organs while selectively 

inhibiting tumorigenesis [64–68]. Natural products are of paramount importance for the 

identification of novel anticancer agents. One such plant-derived natural product is WA. 

This product has gained considerable scientific attention. The next section of this article will 

focus on WA and its anticancer properties and effects.
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Withaferin A targets Notch signaling

Withaferin A [(4β,5β,6β,22R)-4,27-dihydroxy-5,6:22,26-diepoxyergosta-2,24-diene-1,26-

dione)] is a bioactive compound derived from the medicinal plant Withania somnifera 

Dunal. This plant is commonly known as Ashwagandha, Indian ginseng or Indian winter 

cherry. Withania somnifera is a small subtropical shrub, and products from this plant have 

been used safely for centuries in the Indian Ayurvedic system of medicine to treat various 

ailments and to increase longevity and vitality [68–73]. The root and leaf extracts of this 

plant protect against chemical-induced carcinogenesis in experimental rodents, as reviewed 

previously [74]. WA is a steroidal lactone and is derived from the leaves and roots of this 

plant [75]. The ethnobotanical history of WA-containing herbal preparations reveals the 

numerous effects of this compound, including anticancer and anti-inflammatory effects [76], 

a preventive role in neurologic disorders [69] and growth inhibitory properties in various 

cancer cell lines, including human colon cancer cells [77, 78]. This natural compound WA 

exhibits diverse pharmacologic activities (Figure 1), including anti-inflammatory, 

cardioactive, central nervous system, immunomodulatory and antiangiogenic effects [79–

81]. WA also exerts analgesic and antipyretic effects in mice [82]. WA targets vimentin in 

soft tissue sarcoma, suggesting a role of this compound in the modulation of epithelial to 

mesenchymal transitions [83].

In recent years, our laboratory explored the anticancer effects of WA on various cancer 

types and demonstrated the incredible potential of this natural compound as an anticancer 

agent [84–86]. Our results revealed an inhibition of Notch1 signaling in WA-treated CRC at 

both the RNA and protein levels. Notch1 inhibition also affected downstream targets, such 

as Hes-1 and Hey-1. Interestingly, no inhibitory effects on γ-secretase complex subunits 

were observed. This WA-mediated inhibition of Notch1 also affected other pro-survival 

signaling pathways, which are reported to be involved in crosstalk with Notch signaling. 

WA inhibited the AKT/NF-κB/Bcl-2 axis, thereby inhibiting cellular proliferation and 

inducing apoptosis in these colon cancer cells. In addition, we also observed a concomitant 

downregulation of mTOR signaling in WA-treated CRC cells.

The overexpression of Notch1 in colon cancer cells increased the expression of the 

downstream targets Hes-1 and Hey-1. In addition, this overexpression resulted in increased 

expression of pAKT and the mTOR signaling components pp70S6K and p-4E-BP1. In 

contrast, knockdown of Notch1 had the opposite effect, confirming Notch-mediated 

modulation of Akt and mTOR signaling. These results suggest that Notch is upstream of Akt 

and mTOR signaling. In addition, Notch signaling interacts with the ERK and JNK 

pathways. Notch negatively regulates c-Jun and JNK in various cancer types. In this study, 

WA treatment also upregulated phosphorylated c-Jun expression and JNK expression, 

thereby inducing apoptosis in colon cancer cells [84]. Similar findings were observed in 

breast cancer, where WA resulted in the inhibition of Notch1 [87]. In ovarian cancer [88] 

cells, WA downregulated expression of Notch1 and Notch3 was observed. WA treatment of 

CaOV3 and SKOV3 ovarian cancer cells inhibited the growth and colony formation 

efficiency of these cells [88]. WA also induced cell cycle arrest and apoptosis in these 

cancer cells. At the molecular level, these changes were accompanied by the downregulation 

of the Notch1, Notch3, cdc25C, total Akt, phosphorylated Akt and bcl-2 proteins. This study 
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suggests that WA is a potential therapeutic agent for ovarian cancer. Consistent with these 

studies that investigated WA and Notch signaling, our unpublished data demonstrate that 

WA inhibits tumor growth in xenograft models of colon cancer.

Conclusions and future directions

Notch signaling is an important therapeutic target, as it plays a major role in the colonic 

crypt compartment by maintaining colon homeostasis via the regulation of colon stem cell 

behavior and differentiation. However, aberrant activation of Notch initiates and promotes 

colon carcinogenesis, hence selectively targeting Notch signaling in colon cancer cells could 

be an ideal strategy for prevention and treatment of colon cancer. WA appears to have 

tremendous anticancer potential as a result of targeting multiple molecules in a variety of 

human cancers, including CRC, as evidenced by various preclinical in vitro and in vivo 

studies. Only our group has demonstrated the Notch inhibitory role of WA in CRC. It will 

be interesting to study the effect of this molecule in colon cancer stem cells that reside in the 

colon crypts and play an important role in this disease. In addition, the effect of this natural 

compound in combination with current chemotherapeutic drugs must be studied. We are 

currently generating potent WA analogs, which could be even more effective in inhibiting 

Notch signaling than WA. Appropriately powered studies are needed to take this molecule, 

which has been known to have therapeutic value for decades, from bench to bedside in the 

clinical setting.
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Figure 1. 
Medicinal properties of Withaferin-A
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