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Abstract

A detailed knowledge of cell wall heterogeneity and complexity is crucial for understanding plant growth and development.
One key challenge is to establish links between polysaccharide-rich cell walls and their phenotypic characteristics. It is of
particular interest for some plant material, like cotton fibers, which are of both biological and industrial importance. To this
end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches.
Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from different
cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from
mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic
characteristics of cotton fibers such as length, strength, elongation and micronaire were measured. The relationship
between the two datasets was established in an integrative manner using linear regression methods. In the conducted
analysis, we demonstrated the usefulness of regression based approaches in establishing a relationship between glycan
measurements and phenotypic traits. In addition, the analysis also identified specific polysaccharides which may play a
major role during fiber development for the final fiber characteristics. Three different regression methods identified a
negative correlation between micronaire and the xyloglucan and homogalacturonan probes. Moreover, homogalacturonan
and callose were shown to be significant predictors for fiber length. The role of these polysaccharides was already pointed
out in previous cell wall elongation studies. Additional relationships were predicted for fiber strength and elongation which
will need further experimental validation.
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Introduction

Cell walls, the key determinant of overall plant growth and

development are primarily composed of polysaccharides, namely

cellulose, hemicellulose, and pectins, lignin, and structural proteins

[1,2]. Cell wall biology has been an area of prominent research

over many years with the use of novel technologies to probe these

higher order structures in the native state. Since the early 1970’s,

comparative biochemical analyses revealed that all plant cell walls

share several common features. However, they exhibit diversity

with respect to their chemical composition [3–5]. Indeed, cell walls

are structurally complex as they are constantly remodeled and re-

constructed during plant growth and development. Also, walls are

modulated according to functional requirements, thereby limiting

our knowledge on cell wall design [6–8]. Biochemical analyses

complemented by genetic analyses have identified genes and gene

products associated with cell wall synthesis. However, an

understanding of how these genes are expressed across cells of

different tissues and their impact on cell wall design and

maintenance is still lacking [9–11]. Furthermore, the glycan-rich

cell walls influence the nutritional and processing properties of

plant based products such as pulp for paper manufacture, textile

fibers, timber products, pharmaceuticals, and materials for fuel

and composite manufacture [12–15]. Therefore, understanding

the plant cell walls is not only fundamental to plant sciences but

also of industrial relevance.

Microarrays are widely used in plant research for the high

throughput analysis of nucleotides, proteins and increasingly,

carbohydrate [16–18]. Carbohydrate microarrays also referred to

as glycan arrays enable hundreds of glycans to be analyzed in

parallel. Glycans on the arrays can include oligosaccharides,

polysaccharides, glycoproteins and glycolipids [19–21]. Glycan

arrays have several biological and medical applications which

include glycoproteomic methods to identify new glycoproteins and

glycans [22,23], characterization of glycan probes [24], profiling

carbohydrate-lectin interactions [25,26], glycosaminoglycans-
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growth factor and cytokine interactions [27,28], pathogen-

induced antibody interaction [29,30], cancer-antibody induced

interaction [31,32], carbohydrate-virus interactions [33], quanti-

tative carbohydrate-protein interactions [34], and drug discovery

[35,36].

Comprehensive microarray polymer profiling (CoMPP), a

microarray based glycan screening method is mostly used for

high throughput characterization of plant cell walls. In this

technique, generation of microarrays by sequential extraction of

cell wall polysaccharides and screening samples against a large

number of well-defined cell wall probes such as antibodies,

carbohydrate binding proteins and modules is done. This

methodology was first described in Arabidopsis thaliana and

Physcomitrella patens [37]. In the study of Singh et al, application

of CoMPP to study cotton fibers showed that towards the end of

elongation, there was a loss in certain cell wall polymer epitopes

[38]. Despite the availability of glycan arrays from several

experiments, computational analysis has mostly been restricted

to collection of glycobiology information in databases, motif

analysis of glycans, and oligosaccharide structure determination

[39–41].

In our study, we used the glycan array technology to study

cotton fibers, one of the most important raw materials for the

textile industry. There are four different domesticated species

producing cotton fibers namely Gossypium hirsutum (‘Upland

cotton’), Gossypium barbadense (‘Pima‘or ‘Egyptian‘cotton), Gos-
sypium arboreum (‘Tree cotton‘), and Gossypium herbaceum [42].

The development of cotton fibers occurs in four major stages:

initiation, elongation, secondary wall synthesis and maturation.

Although much work has already been done on the cotton fiber

transcriptome, the key question in cotton fiber research is to link

the cell wall profile of different cotton types to the cotton fiber

properties and to a better understanding of fiber development [43–

46]. Here, we aim to study the relation between fiber properties

and non-cellulosic polysaccharide composition using univariate

and multivariate regression based approaches on a diverse set of

cotton fibers. To this end, we analyzed two datasets for the same

cotton fibers: a glycan array profile and the physical fiber

properties as determined by HVI and AFIS. We elucidated the

usefulness of regression based approaches to determine the

functional relationship between the two datasets and we also

selected a subset of variables which have a good prediction of the

phenotypic traits.

Materials and Methods

Plant material and evaluation of phenotypic traits
In this study, we used 32 different cotton lines of which three are

from Gossypium arboreum, three from Gossypium barbadense, two

from Gossypium herbaceum and 24 from Gossypium hirsutum. The

cotton lines used in this study are listed in Table S1, including the

plant introduction number (PI number) from the USDA National

Plant Germplasm System (http://www.ars-grin.gov/npgs/). Seeds

were sown in soil compost and plants were grown at constant

conditions in a greenhouse at 26–28uC during a 16 h photoperiod.

Mature cotton fibers were collected by harvesting all fully open

bolls from several plants. The impact of boll position and plant-to-

plant variation was minimized by mixing the fiber from all

harvested bolls. Two types of analyses were performed on these

fibers, the first being the glycan array measurements (Table S2)

and the second being fiber characteristics/phenotype measure-

ments (Table S1). For each line, High Volume Instrument (HVI)

and Advanced Fiber Information System (AFIS) measurements

were performed on 40 g of mature cotton fiber by CIRAD

(France) according to the standard methods ASTM D3818-92 and

D5867-05. These measurements were done on 6 and 5 replicates

for HVI and AFIS, respectively, except for micronaire where only

2 replicates were performed. Five fiber characteristics which

include length from HVI and AFIS, strength, elongation and

micronaire were selected for further analysis due to their

importance for textile processing. Length HVI refers to the

average fiber length of the longer 50% of fibers in a given sample.

Length AFIS (W) L deduces length parameters from individual

fiber measurements. Strength of the cotton fiber refers to the force

required to break a bundle of fibers 1 tex in size (1 tex equals the

weight in grams of 1000 meters of fibers). Elongation of the cotton

fibers is the measurement of the elasticity of cotton fibers with a

higher number indicating more elasticity. Micronaire is obtained

by measuring the resistance of the fibers to airflow and depends on

the fiber fineness and degree of maturation.

Comprehensive Microarray Polymer Profiling (CoMPP) of
mature cotton fiber cell wall

CoMPP analysis was performed on mature cotton fibers as

previously described by [38] with minor modifications. Mature

cotton fiber samples were extracted sequentially in 50 mM

cyclohexanediamine tetraacetic acid (CDTA) and 4 M Sodium

hydroxide (NaOH) with 1% (v/v) sodium tetrahydridoborate

(NaBH4). These two solvents were used to extract pectins and non-

cellulosic polysaccharides, respectively. For each line, 300 ul of

solvent was added to 10 mg of sample and incubated with shaking

for 2 h. After centrifugation, supernatant from each extraction was

printed in four replicates and four dilutions (1:2, 1:6, 1:18 and 1:54

[v/v] dilutions). Cadoxen extraction was omitted because it is

mainly used to extract cellulose which we do not aim to analyse in

our study. The array was probed with eleven monoclonal

antibodies (mAbs) recognizing different carbohydrate epitopes as

listed out in Table 1. A heat map was generated to display the

relative intensity of each signal to the maximum signal observed

within each antibody detection (Table S2). CoMPP is a semi-

quantitative technique and should not be taken to obtain absolute

amounts. Practically speaking, we set the maximum value in the

whole data sheet as 100 and the other values are divided by this

maximum value and multiplied by 100 to obtain numbers

comprised between 0 and 100. When the quantification is done,

the arrays are manually checked to make sure that there are clear

dots on it and not only background or noise. The negative control

is an array incubated with 5% milk in PBS and probed with

secondary antibody and then developed as the others.

Pre-processing of the data
For the statistical analysis, we use R version 3.1.0 on a 64 bit

linux platform [56]. The numerical values from both datasets were

of different physical quantities and on different scales of

magnitude. Moreover, there is no external knowledge that

variables with higher numeric variation should be considered

more important. Standardization of the raw data was done by

computing z- scores of the raw data. Z- scores were calculated for

each data point by subtracting the mean and dividing by the

standard deviation of all data points.

Linear methods to delineate the relationship between
the two datasets

Multiple regression models the relationship between a single

scalar response variable and a set of explanatory (or independent)

variables. Here, we used multiple regression analysis to model

which of the cell wall probes were associated to the fiber

Regression Analysis in Cotton Fibers
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characteristics. This allowed us to determine the overall fit

(variance explained) of the model and the relative contribution

of each of the cell wall probes to the total variance explained. The

results from the analysis were reported in the coefficients and

ANOVA tables. Summary of the fitted model object gave an

account of the residuals, the estimates of the intercept, the slope

(with the results of a t-test), the residual standard error, the R2

statistic and the results of an F-test. The terms used in the output

of regression analysis are defined as follows: residual standard

error is the standard deviation of the data about the regression

line. The squared multiple correlation coefficient (R2) is the

proportion of variability in the response that is fitted in the model

and the F value is a test statistic to decide whether the model as a

whole has statistically significant predictive capability. p values

give the statistically significant predictive capability in the presence

of other variables [57,58]. Based on this, five models were selected

to determine which of the cell wall polysaccharides play an

important role in determining that particular fiber characteristic.

In addition to the multiple regression analysis, relationships

between multiple dependent and independent variables were

investigated simultaneously using canonical correlation analysis

(CCA). The two sets of data were represented by matrices X

(dimension n6p) and Y (dimension n6q) and columns in X and Y

denote the variables p (glycan measurements) and q (fiber

characteristics) respectively. Classification of variables as depen-

dent or independent is of little importance for the statistical

estimation of the canonical functions as canonical correlation finds

linear combinations of sets of multiple dependent and independent

variables which are maximally correlated [59,60].

The first step in CCA was to derive one or more canonical

function between the glycan and phenotypic measurements. Each

function consisted of a pair of variates, one representing the cell

wall probes and the other representing the fiber characteristics.

The maximum number of canonical variates (functions) that could

be extracted from the sets of variables equals the number of

variables in the smallest data set, independent or dependent. As a

result, the first pair of canonical variates was derived so as to have

the highest intercorrelation possible between the glycan array and

the fiber measurements. Technically, the second pair of canonical

variates exhibits the maximum relationship between the two sets of

variables (variates) not accounted for by the first pair of variates

and successive pairs of canonical variates were based on residual

variance. Therefore each of the pairs of variates is orthogonal and

independent of all other variates derived from the same set of data.

The strength of the relationship between the pairs of variates

obtained from both datasets was determined by the canonical

correlation. An estimate of shared variance between the canonical

variates was provided by the squared canonical correlations, also

called canonical roots or eigenvalues. The statistical significance of

each canonical function was assessed using multivariate tests of

significance namely Wilk’s lambda, Hotelling’s trace, Pillai’s trace

and Roy’s greatest characteristic criterion (Roy’s gcr). The

statistically significant canonical functions were then interpreted

using canonical loadings, cross-loadings and redundancy index

[61–65]. We used the ‘‘mixOmics’’ package [66] in R to perform

the canonical correlation analysis.

Sparse partial least square regression to predict the cell
wall probes associated to fiber characteristics

Partial least squares (PLS), a well-known regression technique

dealing with collinear matrices, clearly has an edge over other

regression techniques [67]. Unlike CCA, the PLS latent variables

are linear combinations of the variables based on the maximiza-

tion of covariance but do not allow feature selection. There are

many variants of PLS of which we focused on a sparse partial least

squares approach (sPLS) which includes a built-in feature to select

variables while integrating the data. We used the ‘‘mixOmics’’

package [66] in the regression mode. Specifically, we use a two

block data setup, X be the nxp matrix and Y be the nxq matrix

where n denotes the samples, variables p and q denote the glycan

measurements and fiber characteristics respectively. Sparse PLS,

based on lasso regression penalizes the loading vectors using

singular value decomposition and has an additional advantage to

perform better even when the covariates are highly correlated. We

used sPLS in the regression mode and the aim was to model the

relationship between the variables and also predict one group of

variables from the other [68–71].

Results

Standardization of the raw data
In this study, we attempted to assess the relationship between

the cell wall polysaccharides and the physical fiber properties of

mature cotton fibers, the data of which are provided as Table S1

and S2. The glycan array values used for the regression analysis

were the sums from the CDTA and the NaOH extractions as

performing the analysis using the individual values gave the same

Table 1. List of probes used in the glycan array.

Probes used in the analysis Specificity of the probes Reference Source

BS-400-2 (1,3)-b-D-glucan (callose) [47] Purchased from Biosupplies (Australia)

JIM5 Partially methyl-esterified homogalacturonan (HG) [48] Paul Knox lab

LM19 Un-esterified homogalacturonan (HG) [49] Paul Knox lab

JIM13 Arabinogalactan (AGP) [50] Paul Knox lab

JIM20 Extensin glycoproteins [51] Paul Knox lab

LM11 Xylan [52] Paul Knox lab

LM15 XXXG xyloglucans (XG) epitope [53] Paul Knox lab

LM24 XXLG and XLLG xyloglucan (XG) epitopes [24] Paul Knox lab

LM25 XXLG and XLLG xyloglucan (XG) epitopes [24] Paul Knox lab

BS-400-4 Mannan [54] Purchased from Biosupplies (Australia)

LM21 Mannan [55] Paul Knox lab

doi:10.1371/journal.pone.0112168.t001
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correlations. For the fiber characteristics dataset, the values were

in different units and scales such as mm (for length), g/tex (for

strength), and percentage (for elongation). To make the fiber

characteristics dataset compliant to the glycan array, the raw data

were jointly standardized using z scores prior to the analysis.

Modelling the fiber properties using linear regression
models

We investigated the linear relationship between the fiber

properties and their corresponding array values by a series of

regression analyses. Multiple regression models were built

considering one fiber characteristic at a time as the dependent

variable and multiple probes as the independent variables. Five

such models were predicted for the phenotypic traits and the

overall model prediction result (Table 2) shows that the model for

length HVI, length AFIS and micronaire are statistically

significant. The significant predictor variables of length HVI are

BS-400-2, LM19 and the ones for length AFIS include BS-400-2,

JIM5, JIM20, LM15, and LM19. LM15, LM19, LM24 and LM25

are the significant predictor variables for the model predicting

cotton fiber micronaire and the overall model has a p value of

4.906e-06. The models for strength and elongation do not show

any statistical significance.

Assessing the relationship between multiple probes and
all of the fiber characteristics simultaneously using
canonical correlation analysis

The multiple regression analysis can predict the value of a single

(metric) dependent variable from a linear function of a set of

independent variables. However, to explore the relationship of sets

of multiple predictor variables (probe measurements) to sets of

multiple response variables (phenotypic traits) CCA was used. As

CCA uses information from all the variables in both the predictor

and response sets, it serves as a more efficient approach than

methods routinely used, such as multiple linear regression.

For the CCA analysis, the glycan array measurements (probed

by 11 antibodies) are designated as the set of independent

variables. The fiber characteristics namely length AFIS, length

HVI, strength, elongation and micronaire were specified as the set

of dependent variables (Figure 1). However, it is of little

importance to classify the variables as independent or dependent

as the technique aims to maximize the correlation between the two

sets of variables. In Figure 1, the terms rx1 to rx11 represent the

canonical loadings which reflect the variance that the eleven

variables from the glycan array shares with the independent

canonical variate U1. Similarly the terms ry1 to ry5 represent the

canonical loadings which reflect the variance that the five

phenotypic variables share with the dependent canonical variate

V1. The canonical correlation between the independent and

dependent canonical variates is measured by the canonical

functions which are represented by R2
c1 to R2

c5. The statistical

problem involved identifying any latent relationships (relationships

between composites of variables rather than the individual

variables themselves) between the glycan and the fiber measure-

ments.

The canonical correlation which is based on the linear

relationship of the glycan array data and fiber characteristics

was computed to derive five canonical functions. Each of these

functions consists of a pair of variates, one for the glycan array

data and the other for the fiber characteristics. Since the study

includes 11 independent variables and 5 dependent variables, the

maximum number of canonical functions which could be derived

is five (Table 3).

In addition to tests of each canonical function separately,

multivariate tests of these five functions simultaneously were also

performed. The test statistics employed include Wilks’ lambda,

Pillai’s criterion, Hotelling’s trace, and Roy’s gcr. Table 4 details

the p-values from the multivariate test statistics, which all indicate

that only the first canonical function, taken collectively, is

statistically significant at 1% level.

From the results of these tests, we proceeded to interpret other

aspects of the analysis based on the first canonical function. A

redundancy index was calculated for the independent and

dependent variates of the first function in Table 5. The

redundancy index is calculated as the average loading squared

times the canonical R2. As can be seen, the redundancy index for

the dependent (0.191) and independent variates (0.200) is quite

low. The low values result from the relatively low shared variance

in the dependent variates (0.214) and independent variates (0.225),

not the canonical R2. With such a small percentage, this is an

example of a statistically significant canonical function that does

not have practical significance because it does not explain a large

proportion of the dependent variables’ variance.

The interpretations involve examining the canonical functions

to determine the relative importance of each of the original

variables in deriving the canonical relationships (Table 6). The

three methods for interpretation are (1) canonical weights

(standardized coefficients), (2) canonical loadings (structure corre-

lations), and (3) canonical cross-loadings.

Table 6 contains the standardized canonical weights for each

canonical variate for both dependent and independent variables.

As mentioned earlier, the magnitude of the weights represent their

relative contribution to the variate. Based on the size of the

weights, the order of contribution of independent variables to the

Table 2. Summary statistics of the five possible multiple regression models.

Fiber
characteristics

Residual standard
error

Multiple R-
squared

Adjusted
R-
squared F-statistic p-value

Significant
predictors

Length HVI 0.696 0.706 0.545 4.372 on 11 and 20 DF 0.002 BS-400-2, LM19

Length AFIS 0.632 0.720 0.566 4.677 on 11 and 20 DF 0.001 BS-400-2, JIM5, JIM20,
LM15, LM19

Strength 0.940 0.378 0.036 1.107 on 11 and 20 DF 0.404 JIM20

Elongation 0.825 0.376 0.033 1.098 on 11 and 20 DF 0.410 –

Micronaire 0.469 0.851 0.769 10.4 on 11 and 20 DF 4.906e-06 LM15, LM19, LM24,
LM25

doi:10.1371/journal.pone.0112168.t002
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first variate is LM19, LM25, JIM5, LM15, BS-400-4, LM21,

LM24, JIM13, and JIM20 and the dependent variable order on

the first variate is micronaire followed by length AFIS, length

HVI, strength and elongation. Because canonical weights are

typically unstable, particularly in instances of multicollinearity,

owing to their calculation solely to optimize the canonical

correlation, the canonical loading and cross-loadings are consid-

ered more appropriate.

Table 6 also contains the canonical loadings for the dependent

and independent variates for the first canonical functions. In the

first dependent variates, all the five variables had different values

of loadings resulting in low shared variance (0.214). This indicates

a low degree of inter-correlation among the five dependent

variables. Observing the independent variates, there is a different

pattern and loading values ranged from 0.06 to 0.77. The

variables with the highest loadings on the independent variate are

LM25, LM19, LM15, and JIM5. We also observed some loadings

with negative values which include those of BS-400-4, JIM20, and

LM11.

In case of the cross loadings, micronaire has a value of 20.890

and interestingly has a negative loading. Length AFIS to some

extent has a loading value of 0.387 while those of the other

variables is low. By squaring these terms, we find the percentage of

the variance for each of the variables explained by function 1. The

results show that 79.21 percent of the variance in micronaire,

14.97 percent of the variance in length AFIS is explained by

function 1 whereas strength, elongation and length HVI have very

low values. Similarly for the independent variables’ cross loadings,

variables LM25, LM19, LM15, JIM5 have high correlations of

0.73, 0.67, 0.61, and 0.61 respectively. From this information,

approximately 51.8% of the variance in LM25, 45.1% of the

variance in LM19, 36.3% of the variance in LM15, and 35.7% of

the variance in JIM5 is explained by the dependent canonical

variates.

Figure 1. Canonical correlation analysis maximizes the correlation between the linear combination of the cell wall polysaccharides
in the glycan array and the fiber properties. In this figure, given a linear combination of X variables: U1 = f161+ f262+ …+fpXp and a linear
combination of Y variables: V1 = g1Y1+ g2Y2+ …+gqYq, the first canonical correlation is the maximum correlation coefficient between U1 and V1, for all
U1 and V1.
doi:10.1371/journal.pone.0112168.g001

Table 3. Canonical Correlation analysis relating probe signals and fiber characteristics with the measure of overall model fit.

Canonical function Canonical correlation Canonical R2 F statistics p-value

1 0.945 0.883 2.85 1.57338e-05

2 0.868 0.753 1.88 1.072479e-02

3 0.803 0.645 1.30 2.035076e-01

4 0.523 0.273 0.59 8.715784e-01

5 0.342 0.116 0.34 9.040993e-01

doi:10.1371/journal.pone.0112168.t003
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The final step of interpretation is examining the signs of the

cross-loadings. Examining the signs of the independent variables’

cross loadings, those with high correlations have a positive direct

relationship whereas BS-400-4, JIM20 and LM11 have an inverse

relationship. The four highest cross-loadings of the first indepen-

dent variate correspond to the variables with the highest canonical

loadings as well. Observing the cross loadings of the dependent

variables, we see that micronaire has the highest canonical loading

and an inverse relationship. Also, elongation is observed to have

an inverse relation but since it is of very low value, it was not taken

into account.

sPLS approach to predict specific cell wall
polysaccharides involved in fiber properties

sPLS was computed in the regression mode and the input for

the analysis included the 11 cell wall probes along with the five

fiber characteristics The number of dimensions H to be retained

was estimated with the Qh2 criterion, for which a value below the

threshold 0.0975 indicates a significant contribution for the

prediction purpose. The Qh2 values calculated for each dimension

of the sPLS showed that 2 dimensions were enough to capture the

whole information. From Figure 2, we can interpret the results

from the sPLS via the correlation circle plot where the predictor

variables are in red and the response variables are represented in

blue. A correlation circle plot is a graphic tool to represent

variables of two different data-types and examine the relationships

between the variables and variates. In this plot, variables namely

cell wall probes and fiber measurements can be represented as

vectors. The relationship between these two data-types is

approximated by the inner product between the associated vectors

which is defined as the product of the two vector lengths and their

cosine angle. For better interpretation, two circles of radii 0.5 and

1 are represented to visualize the variables. The longer the

distance to the origin, the stronger is the relationship between the

variables.

Using the interpretation which is detailed, we find that BS-400-

4, LM21, and JIM13 share a positive relationship with elongation

characteristic of cotton fibers. We were also able to attribute the

strength of the cotton fibers to JIM20, LM11 and LM24.

Interestingly, LM19, JIM5, LM15, and LM25 were projected

diametrically opposite to that of the micronaire in the correlation

circle, thereby indicating a strongly negative relationship. Length

HVI and length AFIS share a negative relation to BS-400-2. To

estimate the significance of the predicted relationships, the root

mean squared error prediction (RMSEP) values were computed

for each response variable (fiber properties) and ranked according

to the absolute value of their loadings in v2. The lower the RMSEP

value, the better the prediction of the model is. In this case, the

model for micronaire was the best one (RMSEP of 0.71), followed

by that of length AFIS (1.13), strength (1.14), elongation (1.15),

and length HVI (1.21).

Figure 3 displays the graphical representation of the cotton lines

in dimension 1 and 2. This plot shows that some of the lines are

clustered together, with Acala SJ1, Germains Acala (GC 352 and

GC 362), TAM-90C-19 S, and FM966 forming one cluster, Acala

red okra, okra leaf, multiple marker, Tidewater, and TTU 202-

1107B forming a second cluster and PIMAS7, Lankart 57, IV4F-

91057, GA161, Ting tao tzu ching chung mien, Brymer brown,

Malla guza, Selection of SHIH, China 10, Texas rust brown, Tex

1000 and 30834 (A1660) forming a third cluster. Strikingly, some

of these clusters contain lines from different Gossypium species and

lines from one species often belong to multiple clusters. The

Table 4. Multivariate tests of significance for the canonical functions.

Canonical
function

Wilks’ Lambda, using F-
approximation (Rao’s F):

Hotelling-Lawley Trace, using F-
approximation:

Pillai-Bartlett Trace using F-
approximation

Roy’s largest root using F-
approximation

1 1.57338e-05 2.666759e-07 0.00 8.732348e-12

2 1.072479e-02 1.221924e-03 0.042

3 2.035076e-01 5.475660e-02 0.285

4 8.715784e-01 8.365373e-01 0.801

5 9.040993e-01 8.855773e-01 0.848

doi:10.1371/journal.pone.0112168.t004

Table 5. Redundancy analysis of dependent and independent variates for the first canonical function.

Standardized variance of the dependent variables explained by

Their own Canonical variates (shared variance) The opposite canonical variates (Redundancy)

Percentage Cumulative percentage Canonical R2 Percentage Cumulative percentage

0.214 0.214 0.883 0.191 0.191

Standardized variance of the independent variables explained by

Their own Canonical variates (shared variance) The opposite canonical variates (Redundancy)

Percentage Cumulative percentage Canonical R2 Percentage Cumulative percentage

0.225 0.225 0.883 0.200 0.200

doi:10.1371/journal.pone.0112168.t005
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variation in fiber characteristics and composition is thus clearly not

species-specific. However, one should be careful in interpreting the

results from the individual lines as the study was designed to

discover correlations between fiber properties and composition

and not to study properties of individual lines.

Discussion

Understanding the genetics and physiology of cotton fibers is of

importance to the textile industry. There have been numerous

studies, both profiling and sequencing based experiments to study

cotton fiber development at the transcriptional level. The high

degree of transcriptional complexity in the development of cotton

fibers has been the focus of these studies [43,72–75]. We used the

CoMPP technique in our analysis to study directly the glycan

composition of cotton lines from different species. The work

presented here demonstrates the potential of glycan microarrays in

combination with multivariate statistical approaches for under-

standing the cell wall composition responsible for the fiber

characteristics. Specifically, the use of regression based approaches

in our study helps to predict models for each of the fiber trait

under study.

We studied the association between glycan array measurements

and their relation with fiber characteristics using linear approaches

like multiple regression, CCA and sPLS. From the results of

multiple regression (Table 2), we were able to predict three models

for length HVI, length AFIS and micronaire of cotton fibers but

not for strength and elongation characteristics. Moreover, to

extend our understanding of the data to situations involving more

than one fiber characteristic at a time, CCA was used as it

simultaneously models effects of multiple independent variables on

multiple dependent variables. As CCA uses information from all

the variables in both the exposure and outcome variable sets and

maximizes the estimation of the relationship between the two sets,

CCA may offer a more efficient approach for assessing the

relationship of the cell wall probes with fiber characteristics than

methods routinely used such as multiple linear regression. CCA

starts with simultaneous consideration of both glycan array

measurements and the phenotype measures, limiting the ineffi-

ciencies that may accompany conventional multiple testing, and

thus, reducing type-1 error. The resulting procedure gives a global

view of association between indicators of both datasets. Thus,

Table 6. Canonical weights, loadings, and cross-loadings for the first canonical function.

Canonical weights Canonical loadings Canonical cross-loadings

Dependent variables

Length HVI 20.636 0.127 0.120

Strength 20.226 0.040 0.038

Elongation 20.033 0.056 0.053

Micronaire 20.843 20.941 20.890

Length AFIS 0.810 0.409 0.387

Independent variables

BS-400-2 0.184 0.362 0.342

BS-400-4 20.487 20.119 20.113

JIM5 20.823 0. 0.632 0.598

JIM13 20.290 0.288 0.272

JIM20 20.204 20.376 20.355

LM11 20.114 20.360 20.340

LM15 20.719 0.638 0.603

LM19 1.243 0.712 0.672

LM21 0.356 0,275 0.260

LM24 20.324 0.066 0.062

LM25 1.082 0.767 0.724

doi:10.1371/journal.pone.0112168.t006

Figure 2. Graphical representation of the variables selected by
sPLS on the first two dimensions predicts specific cell wall
polysaccharides linked to the fiber properties. The coordinates of
each variable are obtained by computing the correlation between the
latent variable vectors and the original dataset. The selected variables
are then projected onto correlation circles where highly correlated
variables cluster together. These graphics help to identify association
between the two datasets. The correlation between two variables is
positive if the angle is sharp cos(a).0, negative if the angle is obtuse
cos(h),0, and null if the vectors are perpendicular cos(b),0.
doi:10.1371/journal.pone.0112168.g002
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CCA could be used as a comprehensive approach to extract

information from data simultaneously. Another major advantage

of using the CCA to multiple regression analysis is to deal with the

issue of multicollinearity. In multiple regression, the interpretation

is usually based on the significance of weights, which is highly

influenced by multicollinearity. If two variables have a high

correlation one of them will be completely eliminated even if both

have a high correlation to the outcome. In our analysis this is

illustrated by JIM5 and LM19 (both detecting homogalacturonan),

with both showing a high correlation with micronaire in CCA but

only LM19 being identified as a predictor of micronaire in the

linear regression model. From the results of the CCA, we obtained

an overall picture of associations between the glycan and

phenotype measurements, with information about the relative

contribution of the variables to that particular canonical variate

through canonical loadings. The canonical analysis revealed that

the canonical correlation was statistically significant at 1%.

However, canonical correlation based methods are statistically

difficult to assess as they do not fit into a regression framework. In

this context penalized CCA adapted with elastic net (CCA-EN)

could be used but the elastic net is similar to a lasso soft-

thresholding penalization and the algorithm uses partial least

squares and not canonical correlation computations [63]. From

[63] it is evident that sPLS made a good compromise between all

of these approaches and includes variable selection. Additionally,

we used the sPLS approach to be able to predict specific cell wall

polysaccharides linked with fiber characteristics. Moreover, sPLS

maximizes the covariance between the latent variables whereas the

canonical correlation based methods maximize the correlation.

There were both unique and common findings from the three

types of regression analysis. The major and most significant finding

in common to all these analyses is that micronaire is negatively

correlated with the xyloglucan (XG) and homogalacturonan (HG)

probes. One possible explanation for this observation is that cotton

fiber with a high micronaire usually has a very thick secondary cell

wall resulting in very high levels of cellulose and lower levels of the

non-cellulosic components. However, we do not find a negative

correlation of micronaire with other non-cellulosic compounds

suggesting that increased cellulose levels of high micronaire fibers

affect the XG and HG epitopes in a different way than the other

non-cellulosic epitopes. For instance, it could specifically decrease

extractability of the XG and HG epitopes. As micronaire measures

a combination of fiber fineness and maturity, we wanted to

understand whether the observed correlation is with maturity or

fineness or a combination of both. We tested this using linear

regression models once again and built models for fineness and

maturity of the fibers. We observed that the regression models for

fineness had an adjusted R2 value of 0.803 with JIM5, LM19, and

LM25 as significant predictors at a 1% threshold. The regression

model for maturity was also significant at the 1% threshold but

with no particular significant predictors thereby suggesting that the

observed correlation is attributed to fiber fineness. This indicates

that this correlation is linked to the thickness rather than the shape

of the fiber, which is consistent with a link to the cellulose levels.

Figure 3. Graphical representation of the cotton lines on the first two sPLS dimensions shows the trend in clustering of specific
cotton lines across different species. Four different species of cotton are shown in different colors. Gossypium hirsutum is colored in magenta,
Gossypium barbadense in green, Gossypium herbaceum in orange and Gossypium arboreum in red.
doi:10.1371/journal.pone.0112168.g003
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Since only the first canonical function of the CCA analysis is

statistically significant and this function explains only for

micronaire a large fraction of the variance, the results of the

CCA analysis are not informative with respect to the other fiber

properties. For these fiber properties, the correlation between fiber

length and callose is the only one that was detected in both the

linear regression and the sPLS analysis. Callose has been described

to play a role in cotton fiber elongation. Indeed, it was reported

that plasmodesmatal closure was positively correlated with the

rapid fiber elongation and that callose was involved in the gating of

these plasmodesmata [76]. However, this observation involves

transient callose detection, only after 5 dpa and already

significantly reduced at 20 dpa, what makes it unlikely to be

detected in mature fibers. Other callose deposition was reported

by [77]. This callose is supposed to be deposited in the secondary

cell wall and remains in the fiber. From the results of the multiple

regression models (Table 2), a positive correlation between several

of the homogalacturonan probes and length property of the fibers

is apparent. The link between pectins and the elongation of cell

walls is already observed in several plant systems [78] and studies

in flax stems, pea stems and maize coleoptiles revealed a negative

correlation between pectin levels and cell elongation. In cotton

fibers and trichomes, there exists a positive correlation between

pectic sheath and elongation [79] and recent studies by [80] have

established that pectic polysaccharides and xyloglucan containing

uronic acids were the major polysaccharides extracted during

elongation. Hence, our results are in agreement with various

studies which state that pectin biosynthesis promotes fiber

elongation [81] and that the degree of esterification is a key factor

in controlling the elongation [38,82]. The correlation between

length and HG was not detected in the sPLS analysis most likely

because the stronger (negative) correlation of HG with micronaire.

Furthermore, relationships between fiber strength or elongation

and specific carbohydrate epitopes could be deduced from the

results of the sPLS analysis (Figure 2). For instance, fiber strength

was associated both with the xylan (LM11) and the extensin

(JIM20) epitope. A role of xylan in fiber strength would be

consistent with the function of heteroxylan in other cell types

which is commonly related to the strengthening of cell walls as

revealed by defects in cellulose deposition in xylan mutants [83]. A

role of extensin in fiber strength is less expected and would need

experimental validation. In the linear regression analysis, extensin

was identified as a significant predictor for length AFIS but not for

length HVI. A role for extensin in determining cotton fiber length

would be more consistent with its role in other plant cell types

[84]. Finally, AGP glycan (JIM13) and mannan (BS-400-4 and

LM21) epitopes were found to predict cotton fiber elongation from

the sPLS model. Interestingly, studies have indicated that AGPs

are important players during fiber development. Immunofluores-

cence assays by JIM 13 showed distinct patterns in developing

fiber cells indicating that polysaccharide chains of AGPs are

involved in initiation and elongation stages of cotton fibers [85–

87]. However, it is not clear how these AGPs would affect the

elongation property of the mature fiber. These unexpected

correlations present thus interesting hypotheses for further

structure-function relationship studies of the cotton fiber.

Overall, CoMPP assays of cell wall polysaccharides from cotton

fibers suggest that it will be a powerful tool in detecting and

quantifying the differences between large sets of cotton lines thus

gathering lot of information which is necessary for a proper

statistical approach. With the use of predictive statistical

approaches to integrate different kinds of datasets, this analysis

has thus discovered some correlations that are in line with already

known biological functions and others for which the biological

relevance still has to be tested. Also, it confirmed the relevance of

this type of analysis to enable a detailed understanding of the data

from CoMPP assays of cell wall polysaccharides. However, the use

of mature cotton fibers in this analysis only allows detecting

relevant correlations for components that are still present at

maturity. In addition, many changes in polysaccharide composi-

tion occur between the fiber elongation stage and maturity. One

would thus expect to identify only a fraction of the relationships

between polysaccharide composition and fiber properties by

analysis of mature fibers, especially for fiber properties such as

length that are determined in the early stages of development.

Hence it would be interesting to perform a similar kind of analysis

using the polysaccharide composition of developing fibers to see

whether additional relationships with fiber properties can be

determined. The panel of cotton lines used in this study was

selected to have maximal diversity in fiber properties and

composition. Applying this type of analysis to commercially

important cotton lines would allow to understand whether

differences in polysaccharide composition affect properties of

commercial cotton in the same way as observed in this study and

to get insight into the developmental polysaccharides that are

essential to obtain high quality cotton fibers. With the sequencing

of the G. hirsutum genome, cotton fiber research is an exciting

field and the work presented here will provide a base for future

studies, with potential to translate this study on the developing

fibers.
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