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Abstract

Genetic adaptation to different environmental conditions is expected to lead to large differences between populations at
selected loci, thus providing a signature of positive selection. Whereas balancing selection can maintain polymorphisms
over long evolutionary periods and even geographic scale, thus leads to low levels of divergence between populations at
selected loci. However, little is known about the relative importance of these two selective forces in shaping genomic
diversity, partly due to difficulties in recognizing balancing selection in species showing low levels of differentiation. Here
we address this problem by studying genomic diversity in the European common vole (Microtus arvalis) presenting high
levels of differentiation between populations (average FST = 0.31). We studied 3,839 Amplified Fragment Length
Polymorphism (AFLP) markers genotyped in 444 individuals from 21 populations distributed across the European
continent and hence over different environmental conditions. Our statistical approach to detect markers under selection is
based on a Bayesian method specifically developed for AFLP markers, which treats AFLPs as a nearly codominant marker
system, and therefore has increased power to detect selection. The high number of screened populations allowed us to
detect the signature of balancing selection across a large geographic area. We detected 33 markers potentially under
balancing selection, hence strong evidence of stabilizing selection in 21 populations across Europe. However, our analyses
identified four-times more markers (138) being under positive selection, and geographical patterns suggest that some of
these markers are probably associated with alpine regions, which seem to have environmental conditions that favour
adaptation. We conclude that despite favourable conditions in this study for the detection of balancing selection, this
evolutionary force seems to play a relatively minor role in shaping the genomic diversity of the common vole, which is more
influenced by positive selection and neutral processes like drift and demographic history.
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Introduction

Despite nearly six decades of genetic investigations, it remains

unclear for most organisms to which extent the demographic

history of populations, genetic drift or selection influences the

pattern of genetic diversity of a species. Historically, the

observation that many genes are genetically polymorphic within

population was first explained by a selective advantage of

heterozygotes [1]. This explanation was challenged by Kimura’s

neutral [2,3] and nearly neutral [4] theory of molecular evolution,

which provided a competing explanation for the high frequency of

genetic polymorphism. Nowadays it is generally accepted that a

majority of the genetic variations evolved nearly neutrally, but that

natural selection plays a decisive role in evolution and leaves

footprints in the genome. Natural selection acts in at least three

forms, which are positive, purifying and balancing selection.

Positive selection can lower genetic diversity locally but increase it

globally, to a level depending on the spatial and environmental

heterogeneity [5–7]. Balancing selection maintains genetic varia-

tion within populations [8] and leads to generally low levels of

differentiation between populations, even though it can contribute

to increase population differentiation if selective pressures are

spatially heterogeneous [5]. Finally, purifying selection generally

decrease levels of genetic diversity, even though strong background

selection can promote increased difference between populations by

lowering their effective size [9]. In the past, balancing selection

played an important role in evolutionary genetics in explaining the

high level of genomic polymorphism observed among species or

populations [8,10]. However, the effect of selection can be

multifarious and the impact of each is still under debate [11],

especially for balancing selection.

At least in humans a number of common genetic diseases have

been proposed to be maintained in populations as a result of

balancing selection, e.g. sickle-cell anaemia [12,13], glucose-6-

phosphate dehydrogenase deficiency [14], thalassemia [15] and

cystic fibrosis [16]. Other examples are the ABO blood group

[17], polymorphisms of beta-globin [18], the major histocompat-

ibility complex (MHC; [19]) including the human HLA-G
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promoter [20], CCR5 in humans [21], the complementary sex

determination locus in bees [22], response to pathogens [23], high

diversity genes in Arabidopsis [24] or self-incompatibility and

nuclear-cytoplasmic gynodioecy in plants (see e.g. [25]). However,

all these examples were identified by a candidate gene approach

and not genome-wide scans. Hence they do not give any

information about the importance of balancing selection in

shaping genomic diversity. In this context, there are only few

genome-wide studies of balancing selection in humans [26,27] or

sticklebacks [28] and these studies remain inconclusive about the

importance of balancing selection in shaping and maintaining

genetic diversity, potentially due to methodological limitations (see

below). Compared to balancing selection, the occurrence and

influence of positive selection on an organism’s genetic variation is

much less questioned, as positive selection should allow the spread

of advantageous traits and play a central role in the evolution of

species (see e.g. [29,30]).

The prevalence of balancing selection is still highly debated,

mainly due to missing evidence in organisms other than humans,

but also because methods developed specifically to detect

balancing selection are still few (see e.g. [27,31–34]). Moreover,

the classical detection of balancing selection based on levels of

differentiation between populations is difficult in organisms with

low levels of differentiation (see [35]) like humans or Drosophila
[36,37] and a decent number of populations need to be

investigated to have the statistical power to detect balancing

selection [35].

In order to better detect signals of balancing selection, we

focused in this study on an organism showing particularly high

levels of differentiation, which is the common vole (Microtus
arvalis). This species has a very wide distribution in Europe, and it

is found in most open grassland and farmland habitats up to

2,000 m altitude [38–40]. It ranges from the Atlantic coast of

France to Central Russia, as well as from the Orkney archipelago

in the North to the Mediterranean coast in Spain (Figure 1). In

previous studies it has been shown that the vole populations have

an overall high levels of differentiation for both mtDNA

(FST = 0.7) and nuclear markers (STR, FST = 0.17) [41–43]. The

widespread distribution of this species in different habitats and

environments, and its peculiar pattern of genetic diversity makes it

particularly suitable for the detection of markers with high or low

levels of differentiation, and by extension for the determination of

the respective roles of positive or balancing selection over a large

geographic scale.

The aim of this study is to detect selective patterns in

populations across the European mainland to disentangle the

importance of balancing and positive selection in shaping the

genetic diversity observed in the distribution range of the common

vole. However, a major challenge in identifying genomic regions

under selection is to separate the footprint of selection from that of

population history and demography (e.g. [10,44,45]). Hence

examining a large number of loci scattered throughout the

genome is an effective way to tell apart the effect of selection from

the confounding effects of population history and demography

[10,46,47]. Cavalli-Sforza [48] and Lewontin and Krakauer [49]

proposed that genetic drift and gene flow should affect all loci

similarly, leading to some overall degree of differentiation between

populations, but that selected loci would deviate significantly from

this distribution. Indeed, positive selection acting on a given locus

should increase population differentiation (and lead to high FST)

whereas balancing selection should reduce it and lead to low FST

(see e.g. [40,47,50,51]).

For non-model organisms Amplified Fragment Length Poly-

morphisms (AFLPs) allow the screening of thousands of randomly

distributed loci in a genome [52,53]. To detect AFLP outliers, we

used a recently developed extension of the Bayesian FST-based

approach [35,54] based on the F-model [55]. BayeScan 2.1 [40]

provides estimates of allele frequencies and F-statistics from AFLPs

by incorporating for each individual the band intensity of a marker

instead of simply using presence-absence patterns [56,57]. This

procedure implicitly allows one to distinguish between homo- and

heterozygotes, and significantly improves the detection of selection

with AFLP markers, which nearly reach the power obtained with

single nucleotide polymorphism (SNP) data for which individual

genotypes are known [40].

Materials and Methods

Sample and DNA extraction
We analysed 21 vole populations across most of the distribution

range of M. arvalis in Europe, with a total of 444 individuals (see

Figure 1 and Table 1). The populations were spread over

2,500 km from Spain (EAv) to Poland (PSr), and over a 750 km

latitudinal gradient from Belgium (BSt) to Italy (INa).

The samples for this study were obtained by strictly following

the legislation on animal protection and experimentation of

Switzerland and the other European countries involved. Microtus
arvalis is not specifically protected by Swiss laws on animal

protection (Tierschutzgesetz from December 16 2005) and

hunting legislation (Verordnung zum Jagdschutzgesetz, February

29 1988) because of its role as an agricultural pest and general

abundance. The use of snap traps for sampling M. arvalis is not a

stress-inducing animal experiment (Schweregrad 0; Art. 137ff

Swiss federal regulations on animal experimentation). However,

Swiss samples analyzed in this study (some of them also covered in

earlier studies; [40–43,56,58–62]) were obtained also under

animal experimentation permits No. 55/02; 107/05; BE08/10;

BE90/10 issued by the cantonal veterinary office of Bern

according to federal law after ethical approval by the Bernese

cantonal commission on animal experimentation. Additional

samples were obtained from the researcher network on rodent-

borne pathogens based at the German Federal Research Institute

for Animal Health (FLI; http://www.fli.bund.de; GH is one of the

coordinators) [63–65] and its international partners in the

European projects EDEN and EDENext on biology and control

of vector-borne infections in Europe (http://www.edenext.eu).

Sample acquisition followed strictly the legislation of the relevant

countries after approval by the according animal protection and

ethics committees as required by the European Commission

Seventh Framework Programme (FP7; http://cordis.europa.eu/

fp7/home_en.html) [66,67].

Total genomic DNA was extracted from foot, tail or liver tissue

stored in absolute ethanol and later deep-frozen using a standard

phenol-chloroform protocol [68]. The quality and quantity of the

DNA was determined on 0.8% agarose gels and with a

spectrophotometer (NanoDrop ND-1000 Spectrophotometer,

NanoDrop Technologies, Inc., Wilmington, USA). The DNA

concentration was standardized to 100 ng DNA/mL for all

individuals to ensure similar PCR yield across samples [40].

AFLP analyses
AFLP analyses were performed according to standard protocols

as established by Vos et al. [52] and modified by Fink et al. [69].

Selective amplifications were performed using 21 primer combi-

nations (Table S1). These primer combinations were then named

according to the last two selective bases of each primer, e.g. the

combination E01-AAC/M02-cag is referred to as ACag. Special

care was taken to guarantee the reproducibility of AFLP marker
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analyses: a liquid-handling robot (Microlab STAR, Hamilton

Bonaduz AG, Bonaduz, Switzerland) was used for selective

amplification, multiplexing of PCR products and loading of the

96-well sequencer plate, and 38 individuals (9%) were indepen-

dently replicated for all 21 primer combinations (see [40] for more

details).

AFLP fragment scoring and diversity
AFLP fragment scoring was performed with GeneMapper

software version 3.7 (Applied Biosystems). Bin sets were created

automatically and manually revised [40]. Two AFLP data

matrices were produced, one with band intensity information

and one with a standard binary presence-absence matrix. The

AFLPs binary data matrix was used to estimate reproducibility,

AFLP diversity estimates, and to run the first PCA analyses. A

particular AFLP band intensity was scored as ‘present’ (1), if its

value was larger than 10% of the 95% band intensity distribution

quantile, or ‘absent’ (0), if its intensity was smaller than 10% of the

95% quantile value. AFLP marker frequencies, the number of

variable markers per population and AFLP diversity were then

calculated with the program AFLPDAT [70]. AFLP diversity was

calculated as the average proportion of pairwise differences

between individuals for each population, which is an index similar

to Nei’s gene diversity calculated from marker frequencies [71,72].

Outlier detection
A Bayesian genome scan approach (BayeScan) was used to

detect markers under selection. This procedure is more efficient

than classical outlier detection methods (like DETSELD, modified

version of [73] or DFDIST, modified version of [74]) in the

discovery of true selected loci, as it results in a lower number of

false positives [75]. BayeScan 2.1 was specifically developed for

AFLP markers. The inclusion of band intensity information makes

the BayeScan analysis of dominant AFLPs almost as powerful as

an analysis of the same number of codominant markers (e.g.

reaching 92% of the power of a SNP data set) to detect selection

(for more details see [40]). Moreover, this additional information

makes it possible to infer population-specific inbreeding coefficient

(FIS) from AFLP data [56]. Band intensity information required by

BayeScan 2.1 was obtained from the AFLP data matrix of marker

band intensity provided by GeneMapper. Since markers with a

low minor allele frequency systematically bias the FST estimates

downwards [76], only markers with band frequencies between 5%

and 95% were used for subsequent analyses. This procedure

prevents an artificial increase in the number of inferred outlier

markers under positive selection [76]. Note that markers having

band frequencies higher than 95% were still considered as

polymorphic if the distribution of band intensity across all

individuals was bimodal [40] and if they did not exceed three-

times the 95% quantile of the band intensity distribution for that

marker to avoid artefacts of the sequencing machine. These

markers are probably informative to infer FIS, as they contain a

high proportion of fixed and/or heterozygous individuals.

BayeScan assumes that allele frequencies within populations

follow a multinomial-Dirichlet distribution [55,77,78] with FST

parameters being a function of population-specific components

shared among all loci and of locus-specific components shared

among all populations. For a given locus, departure from

neutrality is assumed when the locus-specific component is

required to explain the observed pattern of diversity. BayeScan

directly infers the posterior probability of each locus to be under

the effect of selection by defining and comparing two alternative

models: one model includes the locus-specific component, while

the other excludes it [35]. The ratio of the model posterior

probabilities is used to calculate then the posterior odds (PO),

which measures how much more likely the model with selection is

compared to the model without selection (see [40]). We used a

threshold of PO.10 for a marker to be considered under

selection, which refers to ‘‘strong evidence’’ for the alternative

model (in this case the model with selection) as defined by Jeffreys

[79]. For the Markov chain Monte Carlo (MCMC) algorithm we

used 20 pilot runs of 5,000 iterations to adjust the proposal

Figure 1. Geographic location of the 21 Microtus arvalis populations analyzed. The grey area corresponds to the European distribution of
the species (after [98]). See Table 1 for sample abbreviations.
doi:10.1371/journal.pone.0112332.g001
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distribution to acceptance rates between 0.25 and 0.45 for the

runs. A burn-in of 50,000 iterations was used and visually checked

for convergence of the MCMC chains, followed by 50,000

iterations for estimation using a thinning interval of 10. False

Discovery Rate (FDR) was used to control for multiple testing

[40,80].

Inference of neutral genetic structure across Europe
We performed two principal component analyses (PCA) in R

[81] to infer the patterns of neutral genetic structure in common

voles across Europe. PCA analyses were performed on the neutral

(excluding outlier loci) and evolutionary informative AFLP

markers. Evolutionary informative AFLPs have band frequencies

ranging between 5% and 95%, which excludes uninformative and

rare markers [76]. One PCA analysis was done at the individual

level using AFLP marker presence/absence data for all 444

individuals and the second analysis was done at the population

level, on the basis of marker allele frequencies estimated by

BayeScan [40,56] using band intensity information.

Inference of balancing selection
Markers detected under balancing selection were investigated in

more detail, as heterozygosity information can be gained from the

population-specific band intensity distribution for a specific AFLP

marker. A marker under balancing selection should indeed have

evenly distributed allele frequencies across most populations and

heterozygous individuals should be observed within populations,

leading to a bimodal band intensity distribution for this AFLP

marker [56]. The markers inferred as under balancing selection

were thus carefully examined for bimodality of band intensities.

However, sex-chromosome linked markers may also show bimodal

distributions and low differentiation between populations in

samples with equal sex ratios, as males only have one X-

chromosome. A t-test implemented in R was thus used to check for

association between band intensity and gender, using a threshold

of p.0.05 without correction for multiple testing, to be

conservative in the identification of marker under balancing

selection. We have used the same approach to test for any

amplification difference among different 96-well PCR plates of the

same primer pair (batch effect).

Inference of positive selection patterns across Europe
To infer the patterns of positive selection in common voles

across Europe we performed scaled PCA in R of the population

allele frequencies of loci inferred under positive selection by

BayeScan.

To identify the strongest geographic patterns of selection across

Europe, we used a locus-by-locus SAMOVA approach [82] to

separate for each marker populations into groups (k = 2) leading to

the highest level of genetic differentiation (FCT). The three outlier

loci showing the highest FCT were identified and plotted onto the

European map using the R package plotrix to visualize the

population-specific allele frequencies of these patterns of selection.

To find loci showing similar geographic patterns of selection across

Europe, which could be the cause of multi-genic adaptation due to

similar selective pressures on different loci or genetic linkage of

markers, we computed a pairwise Pearson’s correlation between

the population-specific allele frequencies of the outlier loci using

the R package psych and Holm’s correction for multiple testing

[83].

Results

AFLP variation and neutral genetic structure across
Europe

The AFLP analyses of the 21 European vole populations

provided 3,839 markers. The majority of these AFLP markers

were polymorphic (3,318; 86%) and 2,054 (54%) showed

informative band frequencies between 5% and 95% overall. For

each individual, we obtained on average 2,342 AFLPs (range:

2,169–2,418) across all primer combinations, and the mean length

of the fragments was 239 bp. An average of 183 AFLP markers

was scored per primer combination across all individuals (range:

86–256; Table 2). The average proportion of variable AFLP bands

per population was 31%, with an average AFLP diversity of 9.6%.

FIS estimates were low for all populations, ranging between 0.001

and 0.043 (Table 1). Average genetic differentiation among

populations was globally high with an average population-specific

FST of 0.31. The population from the Czech Republic (CZD) had

the highest number of variable AFLP bands per population (46%),

and consequently the lowest population-specific FST (0.16),

whereas the lowest diversity was observed in a population of the

Swiss Alps (CHMe), with only 20% of variable markers and hence

a high population-specific FST (0.41).

The two ‘‘evolutionary neutral’’ PCAs were based on 1,843

neutral AFLP markers - these were the 2,054 evolutionary

informative AFLP markers minus the 211 inferred outlier loci

(see more details below). These neutral markers led to a clustering

of individuals that approximately matches the geographic origin of

the samples (Figure 1) except that the Swiss vole populations were

somewhat farther apart than geography would suggest. The entire

individual-based AFLP data set (Figure 2A) as well as the PCA

from estimated population-specific allele frequencies (Figure 2B)

show very similar patterns and allow a clear separation of the

populations, which indicates the high information content of these

AFLP markers.

Genome scan
The BayeScan analysis of the 2,054 informative AFLP markers

in 21 populations across Europe revealed 211 markers with a PO

for selection larger than 10 with an associated FDR of less than

1.4%. Among these markers under selection, 138 (6.7%) had high

FST (mean FST: 0.52) indicative of positive selection, and 73 were

associated with very low FST (mean FST: 0.08) indicative of

balancing selection (Figure 3; Table 2).

Inference of balancing selection
Bimodal band intensity information of AFLPs (for more details

see Figure 4A and B, or [40,56,57]) was used to identify prime

candidates for balancing selection and to exclude false positives

among the 73 low FST outliers. Among these, 40 markers were

considered as unlikely to be under balancing selection, either

because outliers showed significant band intensity differences

between males and females (t-test, p,0.05) and were thus likely

sex-chromosome linked (33 markers, Table 3, Figure 4C and D)

or because of PCR amplification strength differences between 96-

well plates (7 markers of the primer combination GGtc).

Among the remaining 33 markers with low FST values, 27

showed distributions that could be compatible with other factors

than just balancing selection. Two markers (CAta44 and GCtc76)

had an overall bimodal distribution, but a clear bimodality was

missing in individual populations. Thirteen markers had either a

unimodal or multimodal band intensity distribution. Twelve

markers had low allele frequencies (0.04–0.21) that could be a

consequence of negative selection or frequency dependent

Balancing and Positive Selection in Common Voles
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selection, which is also form of balancing selection. Finally, six

markers were identified as prime candidates for balancing

selection (Table 3), as homozygous individuals had approximately

twice the band intensity of heterozygous individuals (Figure 4A)

and all populations showed intermediate allele frequencies across

the European continent (see e.g. Figure 5A).

Table 2. AFLP markers detected under positive selection with BayeScan.

Primers Markers # BayeScan Marker ID of specific primer combination

ACag 201 9 33; 77; 84; 85; 119; 136; 186; 187; 200

ACtc 175 2 21; 94

ACtt 157 5 40; 76; 79; 115; 142

AGaa 147 4 5; 56; 60; 101

AGac 200 7 3; 13; 84; 144; 161; 188; 190

AGtg 141 4 97; 103; 106; 126

CAat 210 5 102; 103; 145; 166; 181

CAta 185 8 73; 84; 116; 155; 157; 158; 165; 169

CCac 195 4 17; 129; 153; 167

CCta 219 3 88; 153; 213;

CCtt 256 12 2; 34; 41; 42; 50; 67; 97; 158; 168; 169; 193; 208

CGag 101 4 67; 69; 70; 97

CGtt 86 6 24; 40; 50; 51; 79; 87

CTaa 239 11 3; 7; 78; 86; 166; 173; 184; 185; 187; 208; 232

CTag 208 9 64; 90; 102; 125; 132; 133; 147; 154; 176

CTtg 211 10 46; 93; 97; 104; 117; 133; 170; 174; 175; 187

GCat 224 12 15; 31; 60; 106; 169; 175; 180; 181; 192; 208; 212; 213

GCta 199 6 7; 20; 33; 82; 98; 187

GCtc 181 7 16; 22; 40; 43; 160; 166; 172

GGac 168 4 30; 31; 36; 164

GGtc 136 6 15; 18; 64; 85; 125; 129

Total 3839 138

Given are the 21 primer combinations investigated, the total number of scored AFLP markers per primer combination across all individuals, the number of markers with
a posterior odds (PO).10 and the primer combination specific IDs of the markers under selection.
doi:10.1371/journal.pone.0112332.t002

Figure 2. Principal component analysis (PCA) of (A) the neutral binary AFLP data matrix of 444 individuals from 21 populations
across Europe using 1,843 neutral and evolutionary informative AFLP markers (see Material and Methods). (B) PCA of the 21
population-specific allele frequency estimates of neutral AFLP markers by BayeScan. The distribution of the populations on the plot roughly follows
the geographic origin of the samples. (C) PCA of the estimated population-based allele frequencies of the 138 outliers probably under positive
selection. For population IDs see Table 1. Colours correspond to country affiliation (see Figure 1).
doi:10.1371/journal.pone.0112332.g002
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Inference of positive selection across Europe
We detected a total of 138 markers potentially under positive

selection across Europe, with an average of 6.6 outliers per tested

primer combination (range: 2–12; Table 2). For these outliers,

strong allele frequency differences were always identified in three

or more populations compared to the rest, showing that selection

was inferred independently in multiple populations (see e.g.

Figure 5 B–D).

The PCA based on allele frequencies estimated for the 138 loci

potentially under positive selection revealed a different pattern

than the neutral markers (Figure 2C). Especially the populations

within the Swiss Alps (CHAP, CHBo, CHCa, CHDP, CHBw,

CHMe, CHGS and CHSF) and Italian Alps (INa) are much more

separated from the other populations and show larger extent of

differentiation among themselves compared to the PCA on neutral

loci (Figure 2A and B), which is potentially indicative of strong

selection pressures in the alpine area.

SAMOVA allowed us to identify the outlier loci that produced

the strongest splits between two groups of populations across

Europe leading to the highest level of genetic differentiation (FCT),

which might be an indication of the strength of selection. The

three loci that showed the strongest splits are ACag119 with a FCT

of 0.93 (Figure 5B), CTaa3 with a FCT of 0.89 (Figure 5C) and

GGac31 with a FCT of 0.87 (Figure 5D). The pairwise comparison

of allele frequencies of outlier loci identified that ACag119 showed

a significant correlation with only three other loci, CTaa3 with six

and GGac31 with 16 loci. Among the 138 loci under positive

selection the average number of associations was 6.1 with a range

of 0 to 24 associations. Additional information for all 138 outlier

loci can be found in Table S2.

Discussion

The current study illustrates the capacity of Bayesian FST outlier

approaches to identify the signature of positive and balancing

selection in non-model organisms. The nearly 4,000 AFLP

markers, of which 2,054 were evolutionarily informative, clearly

allowed us to screen a representative part of the common vole

genome for loci linked to recent adaptation on a continental scale

in Europe.

Genetic structure across Europe inferred by AFLPs
The neutral AFLP markers allowed us to accurately resolve

population genetic structure of the 21 vole populations across the

European continent and the PCA led to a clustering of individuals

and populations that corresponds approximately to the geographic

origin of the samples (Figure 1 vs. 4A and B). Similar patterns

were found in humans were genetic data also mirror geography in

Europe [84]. This high resolution indicates the large information

content present in this AFLP data set and is further supported by a

very similar PCA-based clustering of populations inferred by 6,807

polymorphic SNPs (see Figure S2 in [60]), which were used to

resolved the four evolutionary lineages present in Europe [43].

Pattern of selection across European continent
We scanned 21 vole populations across the European continent

for evidence of selection. Overall slightly more than 8% of all

markers were under positive or balancing selection. Despite the

detection of some candidate loci for balancing selection (1.6%),

more loci for local positive selection (6.7%) were identified. These

results suggest that drift and the demographic history of vole

Figure 3. Results of BayeScan analysis for 2,054 informative AFLPs genotyped in 444 M. arvalis voles sampled in 21 populations. The
marker-specific FST is plotted against the posterior odds (PO) of being under selection. The vertical line shows the critical PO of 10 used to identify
outlier markers. Markers on the right side of the vertical line are outliers: 138 markers with high FST indicative of positive selection and 73 markers
with low FST indicative of balancing selection were identified. Markers having a log10(PO).4 were summarized in the category 4.
doi:10.1371/journal.pone.0112332.g003
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populations have strongly influenced the observed genetic

diversity, but that also positive selection plays an important role

in shaping the genetic diversity of vole populations, while

balancing selection is less common. Nevertheless, the detection

of several markers with multiple evidence of balancing selection is

remarkable, especially the signature of a stabilizing evolutionary

process on such a large geographic scale.

Contrasting to our results, balancing selection played in the past

an important role in evolutionary genetics in explaining the high

level of genomic polymorphism observed among species or

populations [8,10]. Six decades ago Dobzhansky [1] suggested

that genetic polymorphisms were maintained in populations by

selection favouring heterozygotes, thus by balancing selection.

Later Kimura [2,85] has shown that most polymorphisms in the

genome should be selectively neutral after the action of purifying

selection. It follows that clear examples of balancing selection in

any organism should be quite limited and mainly inferred by a

candidate gene approach (see Introduction and e.g. [12–25]), but

little is known about the prevalence of balancing selection on a

genome wide scale [26–28]. In humans balancing selection is

thought to have a limited role in preserving genome-wide

polymorphisms [26,86], as a specific survey of balancing selection

in humans identified only 60 out of 13,400 genes [27]. In this study

we identified 33 loci with significantly low levels of differentiation

among populations, which represent slightly more than 1.5% of all

informative markers and hence slightly more that the 0.5%

inferred in humans [27]. Our findings, together with the human

studies [27], indicate that large geographic scale balancing

selection is probably not as frequent as previously suspected, and

hence only plays a minor role in maintaining polymorphism in a

population or in shaping the genetic diversity of a species.

The observation of evenly distributed allele frequencies across

the whole European continent (e.g. see Figure 5A) despite

extremely strong levels of differentiation among populations

(average FST = 0.31) is quite remarkable, especially for a species

with limited dispersal ability [43,87]. Such even allele frequencies

across a large geographic range are difficult to explain in absence

of strong stabilizing selection and hence good support for the

presence of balancing selection.

Figure 4. Bimodal band intensity distribution of two low FST outlier markers. (A) Bimodal distribution of a marker likely to be under
balancing selection (CTaa125). The zero class of the distribution represents individuals not showing any band, the following first peak corresponds to
heterozygous individuals and the second peak represents homozygous individuals. The black line represents a fitted density curve. (B) Comparison of
band intensities in males and females for marker CTaa125 shown in (A) revealing no statistical difference and suggesting it is an autosomal marker. (C)
Bimodal distribution for marker ACtt16. (D) Corresponding box plot of sex-specific band intensities for marker ACtt16 where females have band
intensities about twice larger than males, hence suggesting it is an X-linked marker.
doi:10.1371/journal.pone.0112332.g004
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Table 3. List of the 73 markers identified by BayeScan as being potentially under balancing selection.

Frequency

ID PO FST Marker Allele Marker categorization

CCta185 226.3 0.105 0.991 0.843 bimodal (balancing selection)

CGag21 ‘ 0.057 0.918 0.764 bimodal (balancing selection)

CTaa125 63.1 0.136 0.927 0.699 bimodal (balancing selection)

CTaa235 14.0 0.157 0.813 0.618 bimodal (balancing selection)

GCat153 ‘ 0.094 0.723 0.476 bimodal (balancing selection)

GCtc42 118.0 0.120 0.904 0.770 bimodal (balancing selection)

CAta44 ‘ 0.032 1 0.738 bimodal a

GCtc76 ‘ 0.029 0.984 0.847 bimodal a

ACtc64 999.0 0.063 0.995 0.972 multimodal b

AGaa48 554.6 0.084 1 0.844 multimodal b

AGaa96 22.5 0.153 0.785 0.546 unimodal b

AGtg79 130.6 0.117 0.941 0.728 unimodal b

CAat185 249.0 0.078 0.969 0.812 unimodal b

CAta9 ‘ 0.035 1 0.940 unimodal b

CAta91 32.1 0.107 0.932 0.783 unimodal b

CCta61 28.6 0.126 0.934 0.761 unimodal b

GCat12 ‘ 0.033 1 0.982 unimodal b

GCat95 ‘ 0.054 0.913 0.739 unimodal b

GCat152 1249 0.075 0.93 0.740 unimodal b

GCta26 91.6 0.124 0.888 0.696 unimodal b

GCtc48 12.1 0.148 0.857 0.596 unimodal b

ACag100 134.1 0.113 0.226 0.131 low frequency c

CCac84 11.2 0.120 0.052 0.049 low frequency c

CCta81 27.9 0.105 0.074 0.044 low frequency c

CCta90 59.2 0.100 0.064 0.052 low frequency c

CCta180 31.5 0.102 0.06 0.037 low frequency c

CCta184 10.7 0.127 0.065 0.043 low frequency c

CCtt32 10.1 0.132 0.07 0.054 low frequency c

CCtt65 ‘ 0.078 0.33 0.206 low frequency c

CCtt131 39.3 0.109 0.119 0.082 low frequency c

CCtt145 383.6 0.068 0.075 0.074 low frequency c

CGtt4 16.5 0.139 0.204 0.123 low frequency c

CGtt6 40.0 0.109 0.098 0.069 low frequency c

ACtc47 ‘ 0.066 0.991 0.812 sex-linked d

ACtt16 ‘ 0.026 1 0.787 sex-linked d

ACtt18 105.4 0.120 0.881 0.734 sex-linked d

ACtt31 ‘ 0.024 0.998 0.762 sex-linked d

ACtt46 276.8 0.121 0.938 0.713 sex-linked d

AGac127 ‘ 0.079 0.998 0.829 sex-linked d

AGtg131 160.3 0.135 0.78 0.596 sex-linked d

CAat112 33.2 0.144 0.847 0.618 sex-linked d

CAta114 ‘ 0.024 0.986 0.744 sex-linked d

CAta142 ‘ 0.068 0.961 0.772 sex-linked d

CCac46 ‘ 0.038 0.995 0.747 sex-linked d

CCac57 ‘ 0.029 1 0.763 sex-linked d

CCta11 ‘ 0.024 1 0.752 sex-linked d

CCta29 34.7 0.148 0.66 0.477 sex-linked d

CCta73 12.4 0.101 0.998 0.983 sex-linked d
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This study used a conservative post-hoc evaluation of AFLP

marker band intensity distributions to provide further support for

the authenticity of the signature of balancing selection, which

allowed us to prioritize prime candidate loci for balancing

selection. Six markers were characterized by low FST values,

evenly distributed allele frequencies among populations (Fig-

ure 5A) and especially by the bimodal band intensity distribution,

which clearly indicates the presence of heterozygous individuals in

several populations (Figure 4A). Apart from these six loci, 27

markers showed peculiarities also compatible with other factors

than only balancing selection. Twelve markers had low allele

frequencies across Europe, maybe as a result of frequency-

dependent selection, a selective mechanism that favours alleles

when they are rare and might result in balanced genetic

polymorphisms in populations [11]. But the observed low allele

frequencies might also be explained by slightly negative selection

[27]. For 15 markers no obvious bimodal band intensity

distribution was observed, hence no clear signal of heterozygous

individuals within populations could be identified, which might be

explained by the stochasticity of slight technical variation in the

sequencing machine that might have eroded the signal. However,

especially the detection of 33 sex-chromosome linked markers

(Figure 4B) clearly supports the use of AFLPs as a partially

codominant marker system and indicates that heterozygous

individuals or individuals carrying only one gene copy can reliably

be estimated from the band intensity distribution in AFLP markers

[56,57].

Compared to balancing selection the inference of directional

selection is less questioned, even though some confounding

demographic factors (e.g. surfing during range expansions;

[88,89]) might produce some false positives. However, as we have

used a quite stringent threshold for accepting a locus to be under

selection (PO.10), our results suggest that we have here a very

low false discovery rate of less than 1.4%. We detected that 6.7%

of the informative markers probably evolved as a consequence of

directional selection, which might be linked to adaptation to

spatial heterogeneity of the environments of European vole

populations. Given the wide distribution range and highly

Table 3. Cont.

Frequency

ID PO FST Marker Allele Marker categorization

CCtt100 ‘ 0.031 0.991 0.710 sex-linked d

CCtt150 ‘ 0.042 0.998 0.757 sex-linked d

CCtt191 ‘ 0.029 0.995 0.712 sex-linked d

CTaa27 ‘ 0.040 0.984 0.775 sex-linked d

CTaa102 ‘ 0.040 0.934 0.662 sex-linked d

CTaa113 ‘ 0.049 1 0.780 sex-linked d

CTag19 ‘ 0.045 1 0.772 sex-linked d

CTag94 ‘ 0.027 0.998 0.797 sex-linked d

CTtg10 ‘ 0.076 0.896 0.738 sex-linked d

CTtg105 ‘ 0.038 0.971 0.730 sex-linked d

CTtg155 ‘ 0.059 0.943 0.721 sex-linked d

GCat44 ‘ 0.068 0.946 0.778 sex-linked d

GCat69 ‘ 0.023 0.995 0.742 sex-linked d

GCat98 ‘ 0.044 0.995 0.792 sex-linked d

GCta14 ‘ 0.060 1 0.817 sex-linked d

GCta96 4999 0.090 0.895 0.632 sex-linked d

ACag54 262.2 0.125 0.576 0.831 sex-linked d

AGtg13 13.4 0.153 0.444 0.301 sex-linked d

GGtc1 ‘ 0.033 0.998 0.866 lab amplification difference e

GGtc9 45.3 0.122 0.988 0.748 lab amplification difference e

GGtc10 ‘ 0.047 0.995 0.981 lab amplification difference e

GGtc21 4999 0.097 0.846 0.714 lab amplification difference e

GGtc34 16.2 0.089 0.995 0.968 lab amplification difference e

GGtc37 ‘ 0.023 0.998 0.863 lab amplification difference e

GGtc55 ‘ 0.057 0.998 0.817 lab amplification difference e

The top six markers are prime candidates for being under balancing selection (underlined markers) due to their clear bimodal intensity distribution in all populations.
Thirty-three additional markers are sex-lined. Given are marker ID, posterior odds (PO) for the marker, marker frequency, estimated allele frequency and marker
categorization.
aclear bimodality was not found in single population.
bunimodal or multimodal band intensity distribution.
clow allele frequency.
dsex-chromosome linkage.
ebimodal distribution probably due to PCR amplification strength difference between 96-well plates of one specific primer pair (GGtc).
doi:10.1371/journal.pone.0112332.t003
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heterogeneous environments where these voles are found, it is

indeed expected that different polymorphisms might be selected in

different populations and habitats [5,26]. The markers detected

under positive selection in this study display a wide variety of allele

frequency patterns across Europe. The PCA based on 138 markers

under positive selection revealed a quite different structure

(Figure 2C) than the PCA computed on 1,843 informative and

neutral AFLPs (Figure 2A and B), indicating that selection acts

differently on these loci than the interplay of drift and geographic

separation. It is difficult to draw conclusions on the selection

pressure from the allele frequency distribution of these markers;

nevertheless there are some interesting patterns, which might be

explained by environmental differences among populations. The

two outlier loci that showed the strongest splits between two

groups of populations across Europe (Figure 5B and C), were

driven by populations from Alpine areas (some of the vole

populations lived above 2,000 m asl). Hence they might be related

to an adaptation to high elevation [40,90] or just to the highly

heterogeneous environment observed at a small geographic scale,

which is specific to Alpine regions [91]. These Swiss and Italian

Alpine populations are much more separated in the PCA on loci

under selection (Figure 2A) than in the neutral PCAs, indicating

that probably many loci are under selection in this region.

However, there are also patterns that are more difficult to interpret

in environmental or geographic context, e.g. Figure 5D, but biotic

interactions can be also very important for local adaption and are

much more difficult to infer.

Outlook
AFLP genome scans enable us to detect markers under recent

selection in the common vole genome, but it is unfortunately

impossible to determine their function and location in the absence

of a sequenced genome for this species. New high-throughput

technologies make full genomes more accessible than before (for

review see [92–94]), but target-capture sequencing of hundreds of

individuals is still prohibitive for most non-model organisms [57]

and full genome re-sequencing studies of pooled population data

(Pool-Seq) is only possible for rather small genomes (see e.g.

[91,95,96]). An alternative strategy would be the investigation of

candidate loci for selection by direct high-throughput sequencing

of AFLP fragments [60,97], which could be useful to further

characterize candidate regions and genes linked with AFLP

markers in this non-model organism.
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