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Summary

T cells with a CD4+ CD8+ double-positive (DP) phenotype are present in
small numbers in the peripheral blood of healthy humans and may have
anti-viral capacities. Here we investigate numbers and function of DP T cells
in patients with relapsing–remitting multiple sclerosis (MS), either
treatment-naive or under therapy with natalizumab. Flow cytometry analysis
revealed that frequencies of circulating DP T cells in treatment-naive and
natalizumab-treated MS patients are comparable to healthy controls. These
cells have a memory phenotype with cytotoxic potential, express high levels
of CD49d and are similarly functional in treatment-naive as well as
natalizumab-treated MS patients. DP T cells were enriched in the cerebrospi-
nal fluid, but do not invade acutely inflamed MS lesions. In conclusion, DP T
cells are functional in MS and may play a role in the immune surveillance of
the central nervous system, but do not display functional impairment under
natalizumab therapy.
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Introduction

Besides mature single-positive (SP) CD4+ or CD8+ lympho-
cytes, T cells with a CD4+ CD8+ double-positive (DP) phe-
notype are present in small numbers in the peripheral
blood of healthy humans. Increased frequencies of circulat-
ing DP T cells have been reported in autoimmune diseases
such as myasthenia gravis [1], idiopathic immune thrombo-
cytopenia [2] and multiple sclerosis [3]. Moreover, DP T
cells were found to be enriched at the site of inflammation
in rheumatoid arthritis and autoimmune thyroiditis [4,5].

The origin and function of T cells co-expressing both the
CD4 and CD8 co-receptor is the subject of ongoing debate.
While initially it has been suggested that DP T cells result
from premature release of CD4+CD8+ thymocytes to the
periphery [6,7], others have proposed that these cells are in
fact specialized T cells with high anti-viral activity [8].
Expansion of DP cells was observed in human immunodefi-
ciency virus (HIV) and Epstein–Barr virus (EBV) infections
[9–11] and was reported as an early event following HTLV-1
exposure [12]. DP T cells were found to have a memory phe-
notype. Upon exposure to viral antigens they may differenti-
ate into effector cells producing high amounts of interferon
(IFN)-γ and tumour necrosis factor (TNF)-α, resulting in a
high anti-viral activity that exceeds their SP counterparts
[9,13]. The finding that circulating CD4+CD8+ DP T cells

correlated with viral kinetics in an animal model of persistent
chronic viral diseases (i.e. hepatitis C) [8] suggests that
peripheral blood DP T cell expansion may be indicative of
virus reactivation. Here we addressed the frequency, pheno-
type and functional activity of circulating DP T cells in
multiple sclerosis (MS) patients and controls. Paired cerebro-
spinal fluid (CSF) and peripheral blood samples as well as
biopsy specimens were analysed to assess a possible involve-
ment of DP T cells in the immune surveillance of the central
nervous system (CNS). In addition, we addressed a possible
impact of natalizumab treatment on this specialized T cell
subset and its anti-viral reactivity.

Methods

Patients and sample collection

The study was approved by the Ethics Committee of the
Friedrich-Alexander University Erlangen (no. 4203).
Written informed consent was obtained from all partici-
pants. To be eligible for this study, patients had to be diag-
nosed with relapsing–remitting multiple sclerosis (RRMS)
according to the McDonald criteria [14]. Patients were
either treatment-naive (n = 30) or treated with natalizumab
(n = 32) for at least 2 months. Patients treated with
glucocorticoids within 4 weeks of the study entry were
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excluded. All patients were assessed for expanded disability
status scale (EDSS) and disease-specific parameters at the
Academic MS Centre of the Friedrich-Alexander University
of Erlangen. Healthy volunteers (n = 41) served as controls.
Peripheral blood was obtained by venipuncture and pro-
cessed immediately as described below. For CSF analysis
consecutive patients with primary diagnosis of RRMS
(n = 11) and non-inflammatory neurological diseases that
underwent lumbar puncture for diagnostic reasons (NIND,
n = 29; e.g. pseudotumour cerebri, normal pressure hydro-
cephalus, headache, somatoform disorder) were included.
In addition, two patients under natalizumab therapy under-
went lumbar puncture to rule out/confirm progressive
multi-focal leucoencephalopathy (PML).

Flow cytometry

For DP T cell frequency analysis, 100 μl of ethylenediamine
tetraacetic acid (EDTA) containing whole blood were stained
in TrucountTM Tubes (BD Biosciences, San Jose, CA, USA)
with anti-CD45 (2D1), anti-CD3 (HIT3a), anti-CD4 (SK3)
and anti-CD8 (SK1) antibody or the respective isotype
control antibodies in a fluorescence-minus-one control stain-
ing for 30 min at 4°C. Following erythrocyte lysis using an
ammonium–potassium–chloride buffer, cells were washed
twice and analysed on a BD fluorescence activated cell sorter
(FACS)Canto II using FacsDiva software. For further charac-
terization of DP T cells, one of the following antibodies was
employed in addition to the antibodies named above: anti-
granzyme B (GB11), anti-CD49d (9F10), CX3CR1 (2A9-1),
anti-CD45RO (UCHL1), anti-CCR7 (3D12) and anti-CD8b
(SIDI8BEE). All antibodies were purchased from eBioscience
(San Diego, CA, USA) or BD Biosciences. CSF samples were
obtained by lumbar puncture and processed immediately for
flow cytometry. CSF was centrifuged at 300 g for 10 min to
pellet cells. Samples with contaminating red blood cell
content were excluded. CSF and paired blood samples were
stained as described above. Only samples with > 1000 counts
within the lymphocyte gate (acquired by flow cytometry)
were included.

Proliferation assay

Peripheral blood mononuclear cells were isolated via Ficoll
gradient centrifugation; 106 peripheral blood mononuclear
cells (PBMC) were stained with 0·1 μM carboxyfluorescein
diacetate succinimidyl ester (CFDA-SE) (Molecular Probes/
Invitrogen, Carlsbad, CA, USA) and cultured on a 96-well
round-bottomed plate (2·5 × 105) in the presence or absence
of CD3/CD28 Dynabeads (at a bead-to-cell ratio of 1:25) for
72 h. To assess antigen-specific proliferation in response to
viral stimuli, PBMC were cultured as stated above and
exposed to overlapping peptide pools (15-mer) of cytomeg-
alovirus (CMV) antigen pp65 (CMV PepTivator® pp65
human), EBV antigen EBNA-1 (EBV PepTivator® EBNA-1

human), JC virus (JCV) VP-1 (JCV PepTivator® VP1
human) or myelin basic protein (MBP) (MBP PepTivator®
Isoform 1 human) in a concentration of 0·6 nmol/l for 7 days
(all Miltenyi Biotec, Bergisch Gladbach, Germany). All
samples were run in duplicate and pooled for flow cytometric
analysis. The mean background proliferation was defined as
proliferating fraction in media alone. The mean change in
proliferating fraction (ΔPF) was calculated by subtracting the
mean background proliferation from the mean proliferating
fraction in response to antigen.

IFN-γ secretion

PBMC/well (2 × 106) were cultured for 16 h on a 48-well
plate in the presence of CD28 stimulating antibody CD28·2
(2 μg/ml) in addition to CMV PepTivator® pp65, EBV
PepTivator® EBNA-1, JCV PepTivator® VP1 human or
MBP PepTivator® (Miltenyi Biotec) in a concentration of
0·6 nmol/l. Phorbol myristate acetate (PMA) (50 ng/ml)/
ionomycin (750 ng/ml) was used as a positive control. For
the last 4 h of culture BD Golgi Plug™ was added. Cells
were processed for intracellular cytokine staining using the
BD Bioscience intracellular cytokine staining kit in con-
junction with anti-CD4 (SK3), anti-CD8 (SK1) and anti-
interferon (IFN)-γ (4S.B3) following the manufacturer’s
instructions.

Transmigration assay

Transmigration was assessed in a well-established assay
[15]. Using 3-μm pore-size, fibronectin-coated semi-
permeable membranes (Corning Incorporated Costar®,
Corning, NY, USA). Membranes were rehydrated with
RPMI-1640 for 1 h at 37°C; 106 PBMCs suspended in 1 ml
of RPMI-1640 plus 2·5% fetal calf serum (PAA, Pasching,
Austria) were added to the upper chamber. The lower com-
partment was filled with 1·5 ml of RPMI-1640 supple-
mented with 10% fetal calf serum. After 12 h at 37°C,
contents of the lower chamber were collected and processed
for flow cytometry.

Immunohistochemistry

Tissue blocks were sampled from the CNS autopsy material
of patients diagnosed with MS (n = 4) and CNS vasculitis
(n = 2) in accordance with the Ethical Review Board of the
Göttingen University Medical Centre (UMG). The age of the
four MS patients at the time of death ranged from 36 to 54
years (mean ± standard deviation: 43·5 ± 7·7 years). The
vasculitis patients were aged 43 and 49 years. Sections
from paraffin-embedded tissue (2–3 μm thick) were
deparaffinized, stained and pretreated as described previously
[16]. Briefly, the sections were incubated overnight at 4°C
with primary antibodies against CD4 [1:50, rabbit monoclo-
nal; dendritic cells (DCs), SP35] and CD8 (1:50, mouse
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monoclonal; Dako, Glostrup, Denmark; C8/144B) diluted in
10% fetal calf serum in phosphate-buffered saline (PBS).
Antibody detection was achieved using fluorescently labelled
secondary antibodies (CD4, Alexa-488; Invitrogen; CD8,
Cy3; Jackson ImmunoResearch, West Grove, PA, USA). Fluo-
rescent signals were collected with a XM10 camera
(Olympus, Tokyo, Japan) mounted on a BX51 epifluo-
rescence microscope (Olympus) using a ×20 objective. All
lesions were active demyelinating according to the criteria of
Brück et al. [17]. CD4+/CD8–, CD4–/CD8+ and CD4+/CD8+

cells were counted manually for each patient in a minimum
of 10 high-power fields (×400) or > 100 lymphocytes.

Statistical Analysis

Data from multiple experiments are expressed as mean ±
standard error of the mean (s.e.m.). Non-parametric tests
(Mann–Whitney U-test, Kruskal–Wallis test) were used to
compare the data. The GraphPad Prism software was used.
A value of P < 0·05 was considered statistically significant
and was indicated as *.

Results

The frequency of circulating DP T cells in
treatment-naive MS patients is comparable to
healthy controls

DP T cell frequencies were assessed by flow cytometry in
the peripheral blood of treatment-naive patients with
relapsing–remitting disease (RRMS, n = 30) and healthy

donors (n = 41; see Supporting information, Table S1 for
patient characteristics). The mean percentage of DP T cells
was 1·75 ± 0·37% (± s.e.m.) in RRMS patients and did not
differ from the ostensibly healthy control cohort
(1·74 ± 0·23%, Fig. 1a). The same held true for absolute
numbers of DP T cells (HD 59·8 ± 8·95 cells/μl; RRMS
57·3 ± 9·75 cells/μl). Two subsets of CD4+CD8+ DP T cells
have been reported that can be differentiated based on the
level of CD4 and CD8 expression and may account for
different DP T cell functions [18]. Therefore, we further
analysed our data by gating on CD4highCD8low and
CD4lowCD8high CD3+ T cells. Despite large interindividual
variations (Fig. 1b), the frequency of CD4highCD8low and
CD4lowCD8high DP T cell subsets was comparable in
MS patients and controls (Fig. 1c,d). Moreover, the
CD4highCD8low to CD4lowCD8high ratio did not differ between
both groups. Our gating strategy was confirmed by analys-
ing the composition of the CD8 receptor (αα homodimer
in 89·9 ± 2·5% of CD4highCD8low, αβ heterodimer in
90·4 ± 2·2% CD4lowCD8high) in a subgroup of patients
(n = 10, data not shown).

DP T cells in the peripheral blood of MS patients and
healthy controls are memory cells with cytotoxic
potential and high anti-viral activity

The majority of DP T cells displayed a memory phenotype.
Fifty-four per cent of DP T cells stained CD45RO+CCR7–

and were considered T effector memory cells (Fig. 2a).
Approximately 8% of the DP T cells displayed a
CD45RO+CCR7+ central memory phenotype (Fig. 2b). To
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Fig. 1. Double-positive (DP) T cell frequency

in the peripheral blood of multiple sclerosis

(MS) patients and controls. (a) The percentage

of CD4+CD8+ DP T cells within the peripheral

blood CD45+CD3+ T cell population was

assessed by flow cytometry in treatment-naive

MS patients with relapsing–remitting disease

(RRMS, n = 30) and healthy donors (control,

n = 41). (b) Exemplary dot plot of DP T cell

staining in two different donors demonstrating

the high interindividual variation concerning

the proportions of CD4hiCD8lo and CD4loCD8hi

cells within the DP T cell population. (c)

Percentages of CD4hiCD8lo DP T cells within the

peripheral blood CD3+ T cell population as

assessed by flow cytometry. (d) Percentage of

CD4loCD8hi DP T cells within the peripheral

blood CD3+ T cell population as assessed by

flow cytometry.
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assess the cytotoxic potential of DP T cells, we analysed the
expression of the chemokine receptor CX3CR1 for
fractalkine that has been reported to correlate with the
cytotoxic activity of the carrying cell [19]. CD4+CD8+CD3+

T cells expressed high levels of CX3CR1 that were compara-
ble to CD8 SP T cells (Fig. 2c). No differences were
observed between untreated MS patients (n = 14) and con-
trols (n = 10) with respect to CD45RO, CCR7, CD62L and
CX3CR1 expression. Stimulation of DP T cells with anti-
CD3/anti-CD28 coated beads in increasing concentrations
led to a robust proliferation of both SP as well as DP T cells
(n = 6, data not shown). When exposed to viral peptide
pools containing overlapping 15-mer of CMV pp65 or EBV
EBNA-1, antigen-specific T cell proliferation of SP and DP
cells could be observed with large interindividual variations

(Fig. 2d,e). The proliferating fraction of DP T cells was sig-
nificantly higher compared to CD4 and CD8 SP T cells. No
differences were observed between MS patients and controls
(Fig. 2d,e). Besides myelin-reactive SP T cells, DP T cells
that proliferated in response to myelin basic peptide pools
were detected in HD and RRMS patients (Fig. 2f). No dif-
ferences concerning the percentage of myelin-reactive SP or
DP T cells could be identified between MS patients and
healthy controls. To further assess functionality of DP T
cells in MS patients, we analysed antigen-induced IFN-γ
production in SP and DP T cells. In line with our findings
on antigen-induced cell proliferation, DP T cells exposed to
viral peptide pools were strong IFN-γ secretors that
exceeded their SP counterparts in both HD and RRMS
patients (Supporting information, Fig. S1).
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Fig. 2. Double-positive (DP) T cells have a

memory phenotype and display high anti-viral

activity. (a) Percentage of CD45RO+CCR7–
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(CD4+, CD8+) and double-positive CD3+ T cell

populations (DPT) as assessed by flow

cytometry. (b) Percentage of CD45RO+CCR7+
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cell populations (DPT) as assessed by flow
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DP T cells in the cerebrospinal fluid of MS patients
and controls

The choroid plexus has been proposed to constitute an
important route for T cell trafficking to and from the CNS
during physiological neuroimmune surveillance. Lympho-
cytes found in cerebrospinal fluid (CSF) were described to
display an activated memory phenotype and attributed
important functions in the immune surveillance of the CNS
[20,21]. Having established that DP T cells are memory cells
with a high anti-viral potency, we were interested whether
DP T cells can be found within the CSF of patients with
non-inflammatory neurological diseases (NIND, n = 29) or
MS (n = 11). Paired samples revealed an enrichment of DP
T cells in CSF (2·40 ± 0·20% of CD3+ T cells) compared to
peripheral blood (1·68 ± 0·14%; P = 0·0015; Fig. 3a).
However, no differences were observed between MS patients
and controls (MS 2·44 ± 0·42%; controls 2·38 ± 0·23%;
P = 0·39; Fig. 3b).

DP T cells were not detected at the site of
inflammation in MS

We analysed the distribution of DP T cells in human MS
lesions. For this purpose, we quantified CD4 and CD8

immunoreactive cells in tissue sections of active lesions
from four RRMS patients as well as two patients with CNS
vasculitis. While CD4 and CD8 single positive T cells were
readily detectable at the site of inflammation in all patients
irrespective of the underlying inflammatory condition (at a
CD4 : CD8 ratio of 0·4:1·44), no double-positive cells could
be identified (Fig. 4a,b).

Natalizumab treatment neither alters the frequency nor
the functional activity of JC virus-reactive
double-positive T cells

The natalizumab target molecule CD49d was found to be
expressed highly on DP T cells (Fig. 5a). No significant dif-
ferences concerning the peripheral blood frequency of DP T
cells were identified between natalizumab treated (n = 32,
1·38 ± 0·18%; for patient characteristics see Supporting
information, Table S1) and untreated RRMS patients
(1·75 ± 0·37%, see above). When exposed to JCV VP1
antigen peptide pools, robust DP T cell responses, exceeding
SP responses, were identified in both HD (=16) and RRMS
patients (n = 25, Fig. 5b). No differences were detected
between untreated (n = 11) and natalizumab-treated RRMS
patients (n = 15, Supporting information, Fig. S2). DP T cell
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proliferation to JCV antigen in individual donors correlated
well with the proliferative response of SP T cells (CD4+:
Spearman’s r 0·6655; P < 0·0001; CD8+: Spearman’s r 0·815;
P < 0·0001; Fig. 5c). In addition, DP T cells were found to
be strong IFN-γ secretors when exposed to JCV peptides
(Supporting information, data 1). Of note, cellular
responses to JCV peptides were observed in both JCV anti-
body seropositive and seronegative donors/patients
(Fig. 5d). As a proof-of-principle experiment, DP T cell fre-
quency was assessed in two natalizumab patients undergo-
ing CSF analysis for suspected PML. Although the CD4/
CD8 ratio was remarkably decreased, as can be expected in
natalizumab treated patients [22], the percentage of DP T
cells in the CSF was comparable to our findings in all other
MS patients and controls. One of these patients (depicted in
Fig. 5e) was finally diagnosed with PML. Differential effects
of natalizumab on SP and DP T cell trafficking were
assessed in modified Boyden chambers coated with
fibronectin, as described previously by Niino et al. [15]. In
this experimental set-up, CD49d on immune cells is known
to contribute to migration by interacting with the CS-1
fragment of fibronectin, implicated as one of the functional

binding partners of VLA-4 in migration across human
brain endothelial cells [15]. Although natalizumab pretreat-
ment significantly inhibited cellular migration in this
model, no differential effects on DP T cells versis SP T cells
were observed (n = 6; data not shown).

Discussion

CD4 and CD8 SP T cell compartments have been studied
extensively in MS. However, little is known on circulating
DP T cells and if they contribute to the pathogenesis of the
disease.

Virus infections have long been implicated in the patho-
genesis of multiple sclerosis. However, despite large efforts
no virus has been associated unequivocally with the CNS
immunopathology. DP T cells have been reported to repre-
sent a population of effector cells with high anti-viral activ-
ity. Chronic viral infections (i.e. HCV) can be associated
with a profound increase in the percentage of circulating
DP T cells [8]. Increased frequencies of circulating DP T
cells have also been reported in different autoimmune dis-
eases. Therefore, we decided to study DP T cell frequency in
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MS patients and controls. The percentage of DP T cells
found in our study was consistent with previous reports on
DP T cell frequency in healthy donors (2–3% [18,23]). In
contrast to a study by Munschauer et al. [3], we failed to
detect differences concerning the frequency of circulating
DP T cells in MS versus healthy controls. A possible expla-
nation for this discrepancy is patient selection. All patients
in our analysis presented a relapsing–remitting disease
course with early MS [14]. In contrast, patients in the other
study had clinically definite MS according to the Poser crite-
ria [24] and 45% suffered a progressive disease course, thus
probably also representing higher age and higher disease
severity in advanced MS. Accordingly all hypotheses
deduced from our study are valid for RRMS only and may
not be transferable to patients with secondary progressive
disease. Because no quantitative changes in the DP T cell
population were observed, we next addressed a potential
dysfunction of DP T cells in MS. However, the proliferative
response of DP T cells or secretion of effector cytokines was
comparable in both groups. Myelin-specific CD4+ and CD8+

T cells have been reported repeatedly to occur in the circu-
lation of MS patients and healthy controls. We add to these
findings by demonstrating that besides CD4 and CD8 SP
cells, DP T cells with a myelin-specificity can be observed.

To our knowledge, we here provide the first systematic
analysis of CD4+CD8+ DP T cells in cerebrospinal fluid and
at the site of inflammation in multiple sclerosis. Previous
studies addressing the phenotype of CSF (single-positive) T
cells have demonstrated that CD4+ central memory cells
represent the vast majority of CSF lymphocytes [20] and
that the CSF CD4 : CD8 ratio is increased in RRMS, which
is considered to be due to a higher propensity of activated
CD4+ T cells to migrate into the CSF [21,25]. Given the fact
that circulating CD4+CD8+ DP T cells display a memory
phenotype, we addressed the presence of DP T cells within
the CSF. Our data provide evidence that DP T cells are
indeed present within the CSF. Furthermore, paired analysis
demonstrated an enrichment of this highly potent T cell
subset within the CSF, suggesting a possible role of DP T
cells in the anti-viral immune surveillance of CSF-filled
spaces. However, the lack of DP T cell accumulation within
active MS lesions argues against a major role of this T cell
subset in the pathogenesis of MS.

Long-term natalizumab treatment is associated with an
increased risk of PML [26]. Given the high anti-viral capac-
ity of DP T cells that bear high levels of the natalizumab
target molecule, CD49d, we hypothesized that natalizumab
treatment may impair DP T cell frequency or function.
However, we did not observe differences between untreated
and natalizumab treated MS patients. The fact that JCV-
reactive DP and SP T cells were found in both JCV
antibody-positive and -negative donors is not surprising.
JCV antibody testing was reported to underestimate JCV
infection rates, as 37% of JCV antibody-negative patients
were found to have JC viruria in a recent study [27]. Simi-

larly, JCV-specific T cells were repeatedly reported in JCV-
seronegative patients. The frequency of JCV-reactive T
effector memory cells was found to increase with long-term
natalizumab treatment, which has been discussed to be
indicative of JC virus replication [28]. The question of
whether prominent DP T cell responses may serve as indi-
cators of JCV replication in natalizumab-treated patients
needs to be evaluated in longitudinal studies.

Summarizing, we did not find evidence of DP T cell
impairment in multiple sclerosis. However, the presence of
DP T cells within the CSF supports a possible role of this
infrequent but highly potent T cell subset in the immune
surveillance of CSF-filled spaces.
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