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ABSTRACT
A new automatic identification system using photographic images has been designed
to recognize fish, plant, and butterfly species from Europe and South America. The
automatic classification system integrates multiple image processing tools to extract
the geometry, morphology, and texture of the images. Artificial neural networks
(ANNs) were used as the pattern recognition method. We tested a data set that
included 740 species and 11,198 individuals. Our results show that the system per-
formed with high accuracy, reaching 91.65% of true positive fish identifications,
92.87% of plants and 93.25% of butterflies. Our results highlight how the neural
networks are complementary to species identification.
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INTRODUCTION
The Global Taxonomy Initiative highlights the knowledge gaps in our taxonomic system

due to the shortage of trained taxonomists and curators which reduces our ability to

understand, use, and conserve biological diversity (Convention on Biological Diversity,

2014). High levels of global biodiversity and a limited number of taxonomists represents

significant challenges to the future of biological study and conservation. The main problem

is that almost all taxonomic information exists in languages and formats not easily

understood or shared without a high level of specialized knowledge and vocabularies.

Thus, taxonomic knowledge is localized within limited geographical areas and among a

limited number of taxonomists. This lack of accessibility of taxonomic knowledge to the

general public has been termed the “taxonomic crisis” (Dayrat, 2005).

Recently, taxonomists have been searching for more efficient methods to meet species

identification requirements, such as developing digital image processing and pattern recog-

nition techniques. Researchers currently have recognition techniques for insects, plants,

spiders, and plankton (Gaston & O’Neill, 2004). This approach can be extended even

further to field-based identification of organisms such as fish (Strachan, Nesvadba & Allen,

1990; Storbeck & Daan, 2001; White, Svellingen & Strachan, 2006; Zion et al., 2007; Hu et al.,

2012), insects (Mayo & Watson, 2007; O’Neill, 2007; Kang, Song & Lee, 2012), zooplankton

(Grosjean et al., 2004) and plants (Novotny & Suk, 2013). These methods are helpful in alle-

viating the “taxonomy crisis”. In this research, we present a new methodology for the iden-

tification of different taxonomic groups to the species level for fish, plants, and butterflies.
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We designed a simple and effective algorithm (preprocess solution) and defined a range

of new features that use pattern recognition with artificial neural network designs (ANN).

MATERIALS AND METHODS
Images
Image data were taken from two sources: natural history museum records, and online

(Data S1). Each collection was analyzed according to the country of origin. Ichthyology

collections from Colombia were compiled from the Instituto de Investigaciones Marinas y

Costeras (INVEMAR), the Colección de Referencia Biologı́a Marina Universidad del Valle

(CRBMUV), and the Coleccion Ictiologica Universidad de Antioquia (CIUA). Ichthyology

collections from Brazil were found in the Museu de Zoologia da USP (MZUSP), the

Instituto Nacional de Pesquisas da Amazônia Manaus (INPA), and the Museu Nacional

Rio de Janeiro (MNRJ). Image data from Spain came from the Museo Nacional de Ciencias

Naturales Madrid (MNCN). We tested a data set that included a total of 740 species and

11,198 individuals of fish, plants, and butterflies. Fish specimen images were taken using

a Canon EOS 6dD one-use camera with a 1,280 × 960 pixel resolution. A total of 697

fish species previously identified by experts, were photographed (see Fig. 1 for a subset

of photographed species). Images of 32 plant species were downloaded from the Flavia

database (2009) (http://flavia.sourceforge.net/) (see Fig. 2). Image data for 11 species of

butterflies were downloaded from the MorphBank database (Erickson et al., 2007) (see

Fig. 3).

System development
Based on pattern recognition theory (De Sá, 2001) and basic computer-processing

pathways used in typical automated species identification systems (Gaston & O’Neill,

2004), we designed a system for automatic individual identification at the species level

(Fig. 4). In a novel way, our system shared preprocess and extraction components with

both training and recognition processes. Features of training images are used to build a

model of the classification progress pattern after feature extraction. These features and

the trained model were then recorded in the database and incorporated in the analysis

of subsequent photos. This process used two types of data to model image features and

resulted in better species identification results. Features can be found in Supplemental

Information.

Image preprocessing
Image heterogeneity in terms of orientation, size, brightness, and illumination was

common (Fig. 5.1). The image background was removed with Grabcut’s algorithm (Rother,

Kolmogorov & Blake, 2004) (Fig. 5.2) and converted to grayscale (Fig. 5.3). Different filters

were applied to improve the image by removing image noise; the filters used were smooth

and median (Figs. 5.4 and 5.5), and the image was then reduced to one of two possible

levels, 0 or 1 (Fig. 5.6). Next, the processed image was brought to a contour (Fig. 5.7) and

then a skeleton (Fig. 5.8). All of these processes were performed for each taxonomic group

using the image processing in MATLAB R2009b.
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Figure 1 Samples of some species. (1) Curimata mivartii (2) Leporinus striatus (3) Ctecolucius hujeta (4) Cinopotamus magdalenae (5) Astyanax
magdalenae (6) Roeboides occidentalis (7) Genycharax tarpon (8) Cyphocharax magdalenae (9) Hemibrycon decurrens (10) Brycon medemi
(11) Lebiasina multimaculata (12) Hemibrycon dentatus (13) Triporheus magdalenae (14) Characidium phoxocephalum (15) Leporinus muyscorum
(16) Hemibrycon boquiae (17) Brycon hennir (18) Characidium caucanum (19) Roeboides dayi (20) Astyanax fasciatus (21) Argopleura magdalenensis
(22) Apteronotus eschemeyeri (23) Eigenmannia virescens.

Feature extraction
A series of 15 geometrical, morphological, and texture features, that could be efficiently

extracted with image processing and were unique to species, were used in our automatic

identification system; these features can be efficiently extracted with image processing

(Table 1).

Geometrical
Geometric features contain information about form, position, size, and orientation of the

region. The following six geometric features were commonly used in pattern recognition.
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Figure 2 Samples of plants. (1) Phyllostachys edulis (2) Aesculus chinensis (3) Berberis anhweiensis (4) Cercis chinensis (5) Indigofera tinctoria
(6) Acer Dalmatum (7) Phoebe zhennan (8) Kalopanax septemlobus (9) Cinnamomum japonicum (10) Koelreuteria paniculata (11) Ilex macrocarpa
(12) Pittosporum tobira (13) Chimonanthus praecox (14) Cinnamomum camphora (15) Viburnum awabuki (16) Osmanthus fragrans (17) Cedrus
deodara (18) Ginkgo biloba (19) Lagerstroemia indica (20) Nerium oleander (21) Podocarpus macrophyllus (22) Prunus yedoensis (23) Ligustrum
lucidum (24) Tonna sinensis (25) Prunus persica (26) Manglietia fordiana (27) Acer buergerianum (28) Mahonia bealei (29) Magnolia grandiflora
(30) Populus Canadensis (31) Liriodendron chinense (32) Citrus reticulate.

Table 1 Features extracted.

Type Variable Description

Geometrical A Area

P Perimeter

D Diameter

C Compatibility

Co Compactness

S Solidity

Texture u Median

δ2

Er,θ

Hr,θ Variance

HGr,θ Uniformity

Ir,θ Entropy co-occurrence

ϕ1 Homogeneity

I1,I2 Inertia

Morphological Hu1

Ami1-Ami2
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Figure 3 Samples of butterflies. (1) Agraulis vanillae (2) Anthocharis midea (3) Ascia monuste (4) Danaus gilippus (5) Danaus plexippus (6) Dryas
iulia (7) Enodia portlandia (8) Glutophrissa Drusilla (9) Heliconius charithonia (10) Pieres rapae (11) Pontia protodice.

Figure 4 System architecture.
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Figure 5 Image processing. (1) jpg image, (2) Image background was removed, (3) grayscale image,
(4) smoothing filter, (5) median filter, (6) binarized image, (7) contour image (8) skeletonized image.

1-Area was the total number of pixels of the specimen area, and was defined as:

A(s) =


x


y
I(x,y)dydx

I(x,y) depended on the limits of the shape (Fig. 5.7).

2-Perimeter was the number of pixels that belonged to the edge of the region (Fig. 5.8). In

other words, it was the curve that enclosed a region S, defined as

P(s) =


t


x2(t) + y2(t)dt.

3-Diameter was the value that represented the diameter of a circle with the same area as the

region. 4-Compatibility was the efficiency of the contour or perimeter P(s) that enclosed

the area A(s)

C(s) =
4πA(s)

P2(s)
.
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5-Compactness was the efficiency with which area A(s) enclosed a speciment and was

determined by P(s)

Co(s) =
P2(s)

4πA(s)
.

6-Solidity was the scalar specifying the proportion of the pixels in the convex hull that were

also in the region. This property was supported only for 2-D input label matrices.

Texture
Textures are important visual patterns for homogeneous description of regions. Intuitive

measures provide properties such as smoothing, roughness, and regularity (Glasbey, 1996).

Textures depend on the resolution of the image and can follow two approaches: statistical

and frequency. We used the statistical approximation in which statistical values are

analyzed first order (on the histogram) and second order (on the co-occurrence matrix).

Statistical first order was obtained from the gray level histogram of the image. Each value

was divided by the total number of pixels (area) and had a new histogram representing the

probability that a determined gray level was displayed in the region of interest.

The properties obtained were:

7-Median

µ =

n
x=1

xh(x).

8-Variance

δ2
=

n
x=1

(x − µ2)h(x).

The second order of statistics were the matrix of spatial dependence of gray levels or

co-occurrence matrices. Given a vector of polar coordinates, δ = (r,θ) we calculated the

conditional probability that two properties appeared separated by a given distance δ,Pδ

using an angle θ of −45 and a distance r equal to one pixel. The features that were extracted

from this matrix were:

9-Uniformity

n
x=1

n
y=1

Pδ(x,y)2.

10-Entropy co-occurrence

−

n
x=1

n
y=1

Pδ(x,y)logPδ(x,y).
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11-Homogeneity

n
x=1

n
y=1

Pδ(x,y)

1 + |x − y|
.

12-Inertia

n
x=1

n
y=1

Pδ(x,y)(x − y)2.

Morphological
The morphological features were those that concentrate on the organization of pixels.

They performed a comprehensive description of the region of interest. They fell into two

categories: two-dimensional Cartesian moments and normalized central moments.

The two-dimensional Cartesian moments were variable at minor order, and were initiated at

zero at higher orders. The moment of order p and q of a function I(x,y) was defined as:

mpq =


∞

−∞


∞

−∞

xpyqI(x,y)dxdy.

mpq statistical moments, the parameters p and q denoted the order of the moment. When

p = 0 and q = 0, which determined the center of mass or gravity of the overall function in

binary images, the center of mass or gravity of the region under study was:

x̄ =
m10

m00
ȳ =

m01

m00
.

The center of mass or gravity can defined the central moments that were invariant to

displacement or translation of the image’s region of interest defined as:

upq =


x


y

(x − x̄)p(y − ȳ)qI(x,y)ΔA.

Where ΔA was the area of a pixel.

The normalized central moments were invariant to scale which was defined as:

npq =
upq

uγ
00

where γ =
p+q

2 ∀p + q > 2.

The above equations were defined by seven moments that were invariant to rotation,

translation, and scale changes, known as the Hu invariant set of moments (Hu, 1962). In

this study, we used the first Hu moment defined as:

13-Hu1

ϕ1 = m20 + m02.
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Normalized central moments were generated by related moment invariants “AMI” (Flusser

& Suk, 1993), based on the theory of algebraic invariants and invariants under general

affine transformation. We used two of the four invariants associated with discriminant

character moments defined as:

14-Ami1

I1 =
u20u02 − u2

11

u4
00

.

15-Ami2

I2 =
u2

30u2
03 − 6u30u21u12 + 4u30u3

12 + 4u3
21u03 − 3u2

21u2
12

u10
00

.

These moments enable a high degree of insensitivity to noise that is not altered by rotation,

translation, or staggering.

The use of the above 15 features (Table 1) characterised the structure of the individual’s

body, which was important for the identification at species level. We designed and realized

automatic extraction algorithms to compute the values of these features so that all variables

and features were calculated automatically.

Neural network
A neural network is defined as a parallel computer model composed of a large number

of adaptive processing (neural) units which communicate via interconnections with

variables. A multiple layer network has one or more layers (neurons) that enable the

learning of complex tasks by progressively extracting more meaningful features from the

input image patterns (Wu, 1997). Compared to other machine learning methods, neural

networks learn slower but predict faster and have very good models for nonlinear data.

The simple perceptron was assigned multiple inputs but generates a single output, similar

to different linear combinations that depend on input weights and generated a linear

activation function (Rosenblatt, 1958). Mathematically, the neural network was described

with the following equation:

y = ϕ


n

i=1

wi ∗ xi + b



wi: weight vector, xi: input vector, b: bias activation function.

A multilayer perceptron consisted of a set of source nodes containing one or more input

layer and a set of hidden-node outputs. The input signal propagated through the network

layer by layer (Zhang, Patuwo & Hu, 1998) (Fig. 6).

The neural network structure was composed of N inputs N = [N1,N2,...,Nn], a hidden

layer h and an output vector S = [S1,S2,...,Sm]. Each Si was assessed by a single step that

transformed the vector S binary signal [0, 1]. A supervised training phase, or sigmoid

activation, is based on the back propagation algorithm in which the weights and biases

were updated in the direction of the negative gradient of the performance and then
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Figure 6 Multilayer perceptron.

updated in the opposite direction (Werbos, 1974; Rumelhart, Hinton & Williams, 1986;

Parker, 1987; Smith & Brier, 1996). The sigmoid activation function for the hidden layer

and output layer was determined by the following equation:

f (x) =
1

1 + e−x
.

In this study, the number of input neurons was determined by the number of descriptors

that were available in each pattern, which in this case was 15 (see variables section).

The number of neurons in the hidden layer, h, was experimentally determined from the

error set by comparing with the general training data of the ANN. The number of output

neurons was determined by the number of species classified in each database.

To determine the optimal number of neurons given a data image, the relationship

between the identification success rate and the number of neurons was explored. Figure 7

shows this relationship for the different configurations considered. We finally established

our networks with 200 neurons for FC-MZUSP, 180 neurons for FC-INPA, 60 neurons

for FC-MNRJ, 250 neurons for FC-INVEMAR, 60 neurons for FC-CIUA, 300 neurons for

FC-CRBMUV, 250 neurons for FC-MNCN, 60 neurons for FLAVIA, and 35 neurons for

BUTTERFLIES (see Table 2). The number of generations (i.e., a finite set of input patterns

presented sequentially) for training and testing the ANNs was variable in the different

collections between 50,000 and 140,000. It is evident that a high number of neurons and

generations is required to process the information of the images in each collection.

The data set was randomly divided into 60–70–80–90% training images, resulting in

40–30–20–10% test images (Table 3). The results with the highest average accuracy for

species identification were networks using 80–90% training and 20–10% test images.

For these tests, the declared success rate was related to the number of species identified
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Figure 7 Rate and the number of neurons. Relationship between the success rate and the number of neurons for each neural network.

correctly. Recognition became more difficult with increased species number, as observed

in the results from collections from MZUSP, INPA, INVEMAR, CRBMUV, and MNCN

which averaged below 90% recognition.

RESULTS
Experiments were divided into two groups: (1) images from the training group were used

for building the classifications of the model; (2) images from the test group were used for

the reorganization and testing of the developed model.

DISCUSSION
Similar to previous findings (Strachan, Nesvadba & Allen, 1990; Storbeck & Daan, 2001;

White, Svellingen & Strachan, 2006; Zion et al., 2007; Novotny & Suk, 2013), the neural

network used classified species from image data. However, most other studies only
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Table 2 Parameters used in ANN. Parameters used in neural network systems.

Data set Learning
rate

Number of
generations

Number of Hidden
layers

Number of input
layers

Number of output
layers (# species)

FC-MZUSP 0.2 95,000 200 15 100

FC-INPA 0.15 100,000 180 15 91

FC-MNRJ 0.25 78,000 60 15 14

FC-INVEMAR 0.3 84,000 250 15 189

FC-CIUA 0.12 90,000 60 15 33

FC-CRBMUV 0.35 140,000 300 15 172

FC-MNCN 0.2 110,000 250 15 98

FLAVIA 0.1 50,000 60 15 32

BUTTERFLIES 0.5 50,000 35 15 11

Notes.
FC, Fish collection.

Table 3 Results of ANN. Results of ANN tests with species tests for 15 features.

Average percentage of images (Training/test)

Data set Species Images 60/40 70/30 80/20 90/10

FC-MZUSP 100 1,718 76.67 81.34 83.34 88.31

FC-INPA 91 1,640 76.29 78.94 84.44 89.93

FC-MNRJ 14 422 82.62 87.18 90.56 91.65

FC-INVEMAR 189 1,703 76.72 84.03 86.45 88.08

FC-CIUA 33 472 83.08 86.99 90.19 91.77

FC-CRBMUV 172 2,392 77.36 85.21 87.29 88.85

FC-MNCN 98 959 72.34 86.21 88.15 89.11

FLAVIA 32 1,800 68.79 88.48 91.61 92.87

BUTTERFLIES 11 92 73.62 80.43 88.83 93.25

Notes.
FC, Fish collection.

employed databases with low levels of species richness usually spanning many different

orders and families and were easily classified due to large differences in morphological

characteristics. Our neural network built on the work of these networks, and required low

operator expertise, costs, and response time. It also offered high reproducibility, species

identification accuracy, and usability. The ANN algorithm was optimized for testing

datasets with high levels of species richness; in this case 740 species (11,198 individuals)

of fishes, plants and butterflies.

The predictive ability of the ANNs was affected by the high phenotypic similarity

between species in our analysis. For example, small fish species such as those from

the family Characidos were similar and difficult to distinguish (Annex S1, Fig. 8). The

magnitude of this error came from low phenotypic differences of some species that varied

only in minor details, of teeth or fin radii, which hinders classification. However, the error

obtained on the neural network model was low in other taxonomic families (Table 3).

Overall performance of the system achieved high accuracy and precision, with 91.65%
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Figure 8 An example of species confusion in the genus Astyanax. (1) Astyanax magdalenae,
(2) Astyanax caucanus, (3) Astyanax fasciatus, and (4) Astyanax microlepis.

true positive fish identifications, 92.87% plant identifications, and 93.25% butterfly

identifications. The discrimination of species with a lower species number had higher

success rates, possibly explained by species with very distinct morphological characteristics

rather than actual number of species.

Direct observation of an individual through a taxonomic key is the most widely used

technique for species recognition and classification. This technique not only assumes prior

knowledge in the area of taxonomy by those who apply it, but also training and experience

to achieve acceptable classification results. Training and experience are absolutely

necessary for the classification specialist, who must acquire an ability to distinguish specific

characteristics of the species. Therefore, we compared features of individual images with

classifications of a traditional taxonomist. According to taxonomists and classification

keys, characters used to discriminate species are morphological structures, color patterns,

and sizes. These observations are taxonomical characteristics of individuals that depend

on the particular appreciation of the taxonomist. Thus, some taxonomists may bias the

value of any given characteristic, and may also require relatively more time than others to

carry out the classification. Therefore, human subjectivity and time constraints may be

eliminated through the use of machine based classification.

CONCLUSIONS
The method we propose for feature extraction does not depend on variations in how a

person observes individual specimens of each species, and therefore eliminates human

subjectivity. For this reason, the method can be a rapid and effective species identification

tool. However, a human taxonomist is still required to train the neural network defining

species, and subjectivity or uncertainty is possible in this step.

The strength of this research is in its applicability to combat the “taxonomic crisis”. In

the past three decades, many promising techniques for fish identification have emerged.

Many of them are based on genetics, interactive computer software, image recognition,

hydro-acoustics, and morphometric (Fischer, 2013). In our study, neural networks were

tested as a possible method for species identification. However, taking advantage of the fast
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performance of the ANNs and the speed of modern PCs, further research should explore

the applications of the ANN methodology to automate biomass estimation and real-time

species classifications. This could produce useful tools for both scientific and commercial

use. Fischer (2013) concluded that the image recognition methods were useful but their

transferability and resolution are poor because species differ between geographic regions.

This is a clear obstacle to future ANN development and network identification success. Our

advances in this field in relation to species identification should be developed for specific

geographic regions and translated into user-friendly applications.
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