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Abstract

Use of biomarkers in the detection of early and preclinical Alzheimer’s disease (AD) has become 

of central importance following publication of the NIA-Alzheimer’s Association revised criteria 

for the diagnosis of AD, mild cognitive impairment (MCI) and preclinical AD. The use of in vivo 

amyloid imaging agents, such a Pittsburgh Compound-B and markers of neurodegeneration, such 

as fluoro-2-deoxy-D-glucose (FDG) are able to detect early AD pathological processes and 

subsequent neurodegeneration. Imaging with PiB and FDG thus has many potential clinical 

benefits: early or perhaps preclinical detection of disease and accurately distinguishing AD from 

dementias of other etiologies in patients presenting with mild or atypical symptoms or 

confounding comorbidities in which the diagnostic distinction is difficult to make clinically. From 

a research perspective, this allows us to study relationships between amyloid pathology and 

changes in cognition, brain structure, and function across the continuum from normal aging to 

MCI to AD. The present review focuses on use of PiB and FDG-PET and their relationship to one 

another.
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Alzheimer’s disease (AD) is the most common cause of dementia in the elderly with a 

worldwide prevalence estimated to quadruple over the next 50 years. AD is pathologically 

characterized by the presence of amyloid plaques, containing amyloid-beta (Aβ), and 

neurofibrillary tangles, containing hyperphosphorylated tau, as well as significant loss of 

neurons and deficits in neurotransmitter systems. A growing consensus points to deposition 

of Aβ plaques as a central event in the pathogenesis of AD. This “amyloid cascade 

hypothesis” (Hardy and Allsop, 1991; Hardy and Higgins, 1992) states that overproduction 

of Aβ, or failure to clear this peptide, leads to AD primarily through amyloid deposition, 
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which triggers the production of NFT, cell death and, ultimately, the clinical symptoms such 

as memory loss and cognitive impairment (Hardy et al., 1998).

Definitive diagnosis of AD relies on the demonstration of sufficient amounts of Aβ plaques 

and NFT in autopsy brains (Mirra et al., 1991). Recently, the development of the PET tracer 

Pittsburgh Compound-B has made the in-vivo imaging of amyloid possible, with striking 

differences in PiB retention observed between control and AD subjects in brain areas known 

to contain significant amyloid deposits in AD (e.g., frontal cortex and parietal cortex) 

(Figure 2) (Klunk et al., 2004). Fluoro-2-deoxy-D-glucose (FDG) PET shows decreases in 

cerebral glucose metabolism, with a characteristic regional pattern of posterior 

temporoparietal > frontal hypometabolism in AD (Foster et al., 2007; Friedland et al., 1983; 

Herholz et al., 2007; Jagust et al., 2007) (Figure 2).

Imaging AD pathology, using amyloid PET imaging agents such as PiB, and imaging AD 

neurodegenerative processes, using FDG PET (as well other markers such as structural MRI 

and CSF tau), have several potential clinical benefits: early or perhaps preclinical detection 

of disease and accurately distinguishing AD from non-AD dementia in patients with mild or 

atypical symptoms or confounding comorbidities (in which the distinction is difficult to 

make clinically). From a research perspective, these imaging techniques allow us to study 

relationships between amyloid, cognition and neurodegenerative processes across the 

continuum from normal aging to AD; and to monitor the biological effects of anti-Aβ drugs 

and relate them to effects on neurodegeneration and cognition. In particular, understanding 

biomarkers such as PiB and FDG in relation to normal aging has become critical given that 

we have entered the era of “prevention” trials in AD with two studies targeting autosomal 

dominant AD (DIAN and API), one study targeting homozygous APOE*4 carriers (API) 

and one study targeting typical late-onset disease (A4). All of these studies rely heavily on 

biomarkers in general and on Aβ biomarkers in particular. A key concept underlying these 

trials is the recently developed NIA-Alzheimer’s Association research criteria for preclinical 

AD, suggesting that Aβ deposition in cognitively normal individuals is in fact a preclinical 

stage of AD (Sperling et al., 2011). These criteria were recently operationalized by Jack et 

al. (Jack et al., 2012), and suggest amyloid biomarkers, including PiB-PET, become 

abnormal first and are followed by biomarkers of neuronal injury and degeneration, 

including FDG-PET, closer to the time when cognitive symptoms appear (Figure 1) (Jack et 

al., 2012). The present review focuses on use of PiB and FDG-PET and their relationship to 

one another.

Amyloid imaging using PiB PET

The earliest studies with PiB in AD patients showed markedly increased PiB retention was 

observed in brain areas known to contain high levels of amyloid plaques when compared to 

HC subjects. In brain regions such as parietal and frontal cortices, the pattern of PiB 

retention was markedly different in AD patients compared to the HC subjects (Klunk et al., 

2004). PiB retention in AD patients was generally most prominent in cortical areas and 

lower in white matter areas, in a manner most consistent with post-mortem studies of Aβ 

plaques in the AD brain (Thal et al., 2002). PiB retention was broadly observed in frontal 

cortex in AD, but also was observed in precuneus/posterior cingulate, temporal and parietal 
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cortices. The occipital cortex and lateral temporal cortex were also significantly affected 

with a relative sparing of the mesial temporal areas. Significant striatal PiB retention also 

was observed, consistent with previous reports of extensive Aβ deposition in the striatum of 

AD patients (Braak and Braak, 1990; Brilliant et al., 1997; Suenaga et al., 1990; Wolf et al., 

1999). These original studies provided a landmark description of the natural history of Aβ 

deposition in living subjects, and were later confirmed by additional studies using PiB in AD 

patients and cognitively normal subjects (Archer et al., 2006; Buckner et al., 2005; Edison et 

al., 2006; Fagan et al., 2006; Fagan et al., 2007; Kemppainen et al., 2006; Lopresti et al., 

2005; Mintun et al., 2006; Nelissen et al., 2007; Pike et al., 2007; Price et al., 2005a; Rowe 

et al., 2007; Ziolko et al., 2006).

In early studies of mild cognitive impairment (MCI), PiB appeared to show a bimodal 

distribution, with 60%–75% of subjects showing a typical, AD-like pattern and burden of 

PiB retention, while the remaining subjects showed levels typical of PiB-negative [PiB(−)] 

controls (Jack et al., 2009; Lopresti et al., 2005; Price et al., 2005b; Rowe et al., 2007). 

Variations in PiB retention have also been explored when examining MCI subjects based on 

MCI subtype; subjects with non-amnestic MCI were much less likely to be PiB-positive 

[PiB(+)] than subjects with amnestic MCI (Jack et al., 2008; Kemppainen et al., 2006; Pike 

et al., 2007; Price et al., 2005a; Rowe et al., 2007), although other studies also found 

significant PiB retention in non-amnestic MCI (Wolk et al., 2008). These studies have 

suggested that the non-amnestic MCI subtype may include depression or incipient dementia 

where Aβ deposition is not a feature (e.g. frontotemporal or vascular dementia), or they may 

prove to be part of the 5–10% who have stable MCI, or the 20% who revert to apparent 

normality (Busse et al., 2006; Gauthier et al., 2006).

Longitudinal studies have suggested that MCI subjects with high PiB retention are much 

more likely to convert to AD than subjects with low PiB retention. In a study by Forsberg 

and colleagues (2007), all 7 MCI-to-AD converters were amyloid-positive at baseline and 9 

of the 14 non-converters were amyloid-negative. In addition, none of the baseline PiB(−) 

MCI subjects converted to AD. This effect has also been observed is several subsequent 

studies, with MCI subjects with increased PiB retention showing much more frequent 

conversion to AD (Koivunen et al., 2011; Villemagne et al., 2011; Wolk et al., 2009). 

Therefore, amyloid PET is likely to have a prognostic role in the clinical evaluation of MCI, 

by identifying subjects who have underlying AD pathophysiology and are therefore at high 

risk for further clinical decline (Albert et al., 2011). Several studies have now demonstrated 

PiB retention in cognitively normal controls. Depending on the site, reports have ranged 

from a proportion of 10–30% of normal elderly subjects with significant PiB retention [i.e., 

PiB(+)] (Figure 3) (Aizenstein et al., 2008; Jack et al., 2008; Kantarci et al., 2012; Klunk et 

al., 2004; Mintun et al., 2006; Mormino et al., 2009; Mormino et al., 2011; Pike et al., 2007; 

Reiman et al., 2009; Rowe et al., 2010; Villemagne et al., 2008). Similarly, PiB-PET studies 

have found that ApoE4 genotype is associated with higher PiB retention in cognitively 

normal elderly in a dose-dependent manner (Morris et al., 2010; Reiman et al., 2009; Rowe 

et al., 2010), and ApoE4 carriers are more than twice as likely to convert from PiB(−) to 

PiB(+) over time (Reiman et al., 2009). Conversely, ApoE2 has been associated with lower 

PiB retention in normal elderly (Morris et al., 2010). This wide range likely depends on 

factors like the age of the cohort, proportion of subjects carrying the ApoE4 allele, definition 
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of “cognitively normal” and the threshold for defining amyloid-positivity. The relationship 

between increased PiB retention and cognition in the normal elderly has been difficult to 

define. It is apparent that among cognitively normal subjects, significant plaque load is not 

related to broad differences in cognitive (Aizenstein et al., 2008; Jack et al., 2008; Mintun et 

al., 2006; Nebes et al., 2013; Rowe et al., 2010). In other studies, an increase in PiB 

retention has been associated with poorer performance on episodic memory tests (Kantarci 

et al., 2012; Mormino et al., 2009; Mormino et al., 2011; Pike et al., 2007; Villemagne et al., 

2008). Most significantly, longitudinal studies have found that cognitively normal 

individuals with elevated PiB are at much higher risk for longitudinal cognitive decline and 

the emergence of clinically significant cognitive impairment than PiB(−) age and education 

matched subjects (Morris et al., 2010; Resnick and Sojkova, 2011; Storandt et al., 2009; 

Villemagne et al., 2011; Villemagne et al., 2008). Further, recent theoretical models suggest 

that the period of time from the first detection of Aβ deposition to levels typically seen in 

MCI is ~15 years, providing further evidence for an extended preclinical phase of AD 

(Villemagne et al., 2013).

Cerebral glucose metabolism imaging using FDG PET

Reductions of cerebral metabolism are well established in AD (Lopresti et al., 2005; 

Minoshima, 2003; Mosconi et al., 2007; Silverman and Alavi, 2005). Similar changes have 

been reported in cognitively normal individuals at high risk for AD due to expression of the 

ApoE4 alelle (Reiman et al., 1996; Small et al., 2000). Further, hypometabolism has been 

reported in cognitively normal individuals with a parent with AD (Mosconi et al., 2009; 

Mosconi et al., 2014; Mosconi et al., 2008a; Mosconi et al., 2013). Changes in cerebral 

metabolism also have been detected in MCI in many studies (Arnaiz et al., 2001; Chetelat 

and Baron, 2003; Chetelat et al., 2003; Del Sole et al., 2008; Garibotto et al., 2008; Li et al., 

2008a; Li et al., 2008b; Mevel et al., 2007; Mosconi et al., 2006; Mosconi et al., 2008b; 

Perneczky et al., 2007). These early changes in suggest FDG could play a predictive role in 

detecting which normal controls or MCI patients are most likely to convert to AD (Yuan et 

al., 2008) Indeed, hypometabolism in AD-affected regions in normal, elderly controls has 

been related to global cognitive decline (de Leon et al., 2001; Jagust et al., 2006) and several 

studies have shown that abnormalities in FDG PET predict progression from MCI to AD 

(Anchisi et al., 2005; Drzezga et al., 2005; Mosconi et al., 2004).

Relationship between amyloid deposition and glucose metabolism

Comparisons of PiB and FDG PET data for detection of AD found PiB was more accurate 

than FDG both on visual reading (accuracy, 90% vs. 70%) and ROC analysis (95% vs. 

83%). The authors concluded that the visual analysis of PiB images appears more accurate 

than visual reading of FDG for identification of AD (Ng et al., 2007). Similar results were 

found by Rabinovici et al.(Rabinovici et al., 2011) with inter-rater agreement significantly 

higher for PiB (kappa = 0.96) than FDG (kappa = 0.72), as was agreement between visual 

and quantitative classifications (average kappa = 0.90 for PiB, 0.66 for FDG). The authors 

concluded that PiB was the superior qualitative technique in that visual assessment was both 

more accurate and more precise. While PiB and FDG demonstrate high (94%) agreement in 

differentiating AD from normal controls, agreement is lower in classifying MCI subjects 
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(54%), arguing for combining the two modalities (Li et al., 2008a). In addition, when 

exploring the use of PiB and FDG among both AD and MCI subtypes it was demonstrated 

that while PiB and FDG displayed similar diagnostic accuracy, PiB was significantly better 

at separating MCI subtypes (Lowe et al., 2009). These findings are not surprising since the 

two tracers provide complementary information, with PiB quantifying molecular pathology, 

and FDG demonstrating neuronal dysfunction. The complementary nature of the two 

techniques are reflected in the new diagnostic guidelines for MCI and AD dementia, which 

require biomarker evidence of both Aβ deposition (decreased CSF Aβ or elevated amyloid 

PET) and neurodegeneration (elevated CSF tau, hypometabolism on FDG-PET or atrophy 

on MRI) to diagnose AD pathophysiology with high-likelihood during life (McKhann AD 

criteria, Albert MCI criteria). Further, the lowered accuracy of FDG-PET in many of these 

studies may likely be due to the fact that FDG-PET may reflect hypometabolism and 

neurodegeneration resulting from non-AD syndromes, such as frontotemporal lobar 

degenerations (FTLD). In one of the largest comparison studies to date, Rabinovici et al. 

(2011) tested the diagnostic performance of PiB-PET in distinguishing clinically diagnosed 

AD (N=62) and FTLD (N=45) patients and compared it to the performance of FDG-PET. 

PET scans were rated visually (blinded to clinical diagnosis) as PiB-positive or PiB-negative 

and as consistent with the FDG patterns of AD (temporoparietal-predominant 

hypometabolism) or FTLD (frontal or anterior temporal-predominant hypometabolism). PiB 

visual reads were more sensitive for AD than FDG reads (89.5% vs. 77.5%) with similar 

specificity (83% vs. 84%). PiB outperformed FDG in a subset of 12 patients who underwent 

autopsy or carried a known pathogenic gene mutation, with an overall accuracy of 97% for 

PiB and 87% for FDG.

In the initial PiB-PET study, the largest and only significant difference in glucose 

metabolism (determined with FDG PET) between AD patients and control subjects was 

observed in parietal cortex. An inverse correlation between PiB retention and glucose 

metabolism was observed in most cortical areas, but this trend reached significance only in 

the parietal cortex. The lack of correlation between PiB and glucose metabolism in the 

frontal cortex suggests that Aβ deposition is not sufficient to locally reduce cerebral 

metabolism, suggesting that perhaps compensatory changes in neurotransmitter systems in 

the frontal cortex delay FDG hypometabolism in frontal brain regions (DeKosky et al., 

2002; Ikonomovic et al., 2007). Edison et al. (2006) investigated the association between 

PiB and FDG PET in AD. AD subjects showed significant increases in PiB retention in 

cingulate, frontal, temporal, parietal, and occipital cortical areas and levels of temporal and 

parietal regional glucose metabolism were reduced by 20% in AD. Higher PiB retention 

correlated with lower regional glucose metabolism in temporal and parietal cortices, but not 

in frontal areas. While these typical negative correlations were observed in AD, subjects 

with MCI have been found to display positive correlations between PiB and FDG, reflecting 

increased brain reserve in those subjects who remain at the MCI level of cognitive 

impairment further into the process of Aβ deposition (Figure 4) (Cohen et al., 2009). 

Similarly, a positive relationship between PiB and FDG was also observed in cognitively 

normal adults (Oh et al., 2014). Recently, cortical hypermetabolism measured by FDG has 

been observed in cognitively normal controls with significant amyloid deposition in areas 

both likely (superior temporal gyrus) and unlikely (medial thalamus) to contain significant 
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amyloid pathology (Figure 5) (Johnson et al., 2014) and independent of amyloid deposition 

in ApoE4 carriers (Yi et al., 2014). The phenomenon of hypermetabolism early in the course 

of Aβ deposition may be prove to be of great interest, particularly when considering the 

preclinical staging of AD, as those with significant amyloid and hypermetabolism will be 

less likely to be classified as neurodegeneration positive.

It is interesting that there is considerable overlap between the regional distribution of 

amyloid deposition and the “default mode network” (Buckner et al., 2005), a group of brain 

areas that are more active during rest (McKiernan et al., 2003; Shulman et al., 2007). This 

spatial overlap has led to the hypothesis that there could be a relationship between brain 

activity patterns in early adulthood and later amyloid deposition (Buckner et al., 2005; 

Jagust and Mormino, 2011). This raises the possibility that when Aβ deposition starts, it 

becomes more pronounced in brain regions with high default mode activity. It has been 

shown in animals that Aβ levels are directly influenced by synaptic activity and are related 

to exocytosis of synaptic vesicles (Cirrito et al., 2005). Although much less direct, there is 

similar evidence in humans. Using intracerebral micro-dialysis in patients, positive 

correlations between Aβ levels and neurological status ( a proxy for neuronal activity) have 

been reported, suggesting that in patients with acute brain injury as neuronal activity 

increases, Aβ levels increase as well (Brody et al., 2008).

However, there are several studies that demonstrate the opposite effect in cognitively normal 

controls, with several groups demonstrating hypometabolism in cognitively normal 

individuals with significant amyloid deposition (Knopman et al., 2013; Lowe et al., 2009). 

Further, while Yi and colleagues demonstrated hypermetabolism in frontal and anterior 

temporal regions in cognitively normal ApoE4 carriers, they also demonstrated 

hypometabolism in temporoparietal regions. After adjusting for the effect of amyloid 

deposition most of the hypometabolic regions disappeared while the hypermetabolic regions 

persisted, suggesting that while hypometabolism may be amyloid dependent in this cohort, 

hypermetabolism was not (Yi et al., 2014). Additionally, longitudinal studies indicate that 

cognitively normal participants with significant amyloid deposition at baseline demonstrate 

significant increases in neurodegeneration markers at follow-up including, including FDG 

hypometabolism (Knopman et al., 2012a; Knopman et al., 2013). Further, individuals with 

both markers of amyloid deposition and neurodegeneration were more likely to develop 

cognitive impairments at follow-up (Knopman et al., 2012a; Landau et al., 2012).

Several groups also have demonstrated that there are a substantial number (~25%) of 

cognitively normal, elderly individuals without detectable amyloid deposition who display at 

least one significant marker of neurodegeneration, including FDG hypometabolism (Jack et 

al., 2012; Knopman et al., 2012b; Wirth et al., 2013). This group, defined as having 

abnormal neurodegeneration biomarkers, without significant amyloid deposition have been 

termed “Suspected Non-Alzheimer Pathology”, the SNAP category is suggested to be 

separate from preclinical AD and may represent other preclinical pathophysiologic 

processes, such as cerebrovascular disease, tauopathies or synucleinopathies (Jack et al., 

2012). Interestingly, in subjects with SNAP, Wirth et al. (2013) observed hypometabolism 

in typical AD associated areas but also observed hypometabolism in regions less associated 

with AD, which they suggested was a more global pattern of hypometabolism. Wirth and 
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colleagues (2013) also demonstrated a significant positive association between white matter 

lesions (a measure of brain cerebrovascular burden) and markers of neurodegeneration, 

consistent with the Jack et al (2012) definition of SNAP. Taken as a whole these data 

suggest that changes in glucose metabolism are clearly related to amyloid deposition but that 

early in the process of amyloid deposition this relationship is rather complex and that in 

some cases changes in amyloid and glucose metabolism may be independent of one another.

As has been reflected in the new diagnostic criteria for AD, MCI and “preclinical AD” the 

use of amyloid imaging, alone, or in conjunction with other biomarkers, will likely be 

critical to the identification of subjects at risk for AD and future decline (Sperling et al., 

2011). One facet of Aβ deposition that has become clear from PiB-PET studies is how early 

in the spectrum of AD the full burden of amyloid plaques begins to develop. Therefore, 

major challenges for amyloid imaging will be; 1) how to determine the earliest signs of 

amyloid accumulation; 2) the associations of amyloid accumulation with cognitive 

impairments and, ultimately; 3) whether or not this early amyloid deposition will invariably 

lead to clinical dementia in a high percentage of individuals. This will likely require the field 

to focus on cognitively normal elderly and detection of the earliest signs of amyloid 

deposition along with markers of neurodegeneration such as FDG, in order to determine the 

clinical significance of pre-symptomatic pathology. Further, as anti-amyloid clinical trials 

begin in asymptomatic individuals, it will be critical to effectively identify the earliest 

changes in amyloid deposition and the significance of such changes on downstream 

neurodegenerative processes.
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Highlights

• PiB and FDG are able to detect early AD pathological processes and subsequent 

neurodegeneration.

• Imaging with PiB and FDG has potential clinical benefits, including preclinical 

detection of AD.

• PiB and FDG allow the study of relationships of Aβ to changes in cognition and 

neurodegeneration.

• The present review focuses on use of PiB and FDG-PET and their relationship 

to one another.
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Figure 1. 
From Jack et al. (2012): Changes in AD biomarker data on the vertical axis vs. AD clinical 

stage, with preclinical staging highlighted in yellow Each biomarker is scaled from 

maximally normal (bottom) to maximally abnormal (top) with PET amyloid imaging (red 

line), biomarkers of neurodegeneration are FDG-PET or atrophy on MRI (blue line), and 

cognitive (purple line).
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Figure 2. 
Representative PiB and FDG scans from control and AD participants. Arrows indicate areas 

of typical hypometabolism (FDG) or typical amyloid deposition (Head et al.).
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Figure 3. 
From Aizenstein et al. (2008): Mean distribution volume ratio images for PiB-negative 

clinically unimpaired participants (left), PiB-positive clinically unimpaired participants 

(center), and patients with Alzheimer disease (AD) (right).
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Figure 4. 
From Cohen et al. (While we hypothesize that enrichment will enhance the function of the 

DMN et al.): Voxel-based correlations in AD and MCI. T values associated with negative 

correlations (blue) and positive correlations (red). Data are thresholded with FDR control at 

q = 0.1.
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Figure 5. 
From Johnson et al. (2014): FDG group voxel wise differences, regions where the PiB-

positive (red) and PiB-intermediate (green) groups, with yellow showing overlap, exhibited 

FDG hypermetabolism compared to the PiB-negative group.
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