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Abstract

Minimal physiologically based pharmacokinetic (mPBPK) models provide a simple and sensible
approach that incorporates physiological elements into pharmacokinetic (PK) analysis when only
plasma data are available. With this modeling concept, a second-generation mPBPK model was
further developed with specific accommodations for the unique PK properties of monoclonal
antibodies (mAb). This study applied this model to extensively survey mAb PK in man in order to
seek general perspectives on mAb distributional and elimination features. Profiles for 72
antibodies were successfully analyzed with this model. The model results provide assessment
regarding: 1) predominant clearance site, in plasma or interstitial fluid (ISF); 2) mAb ISF
concentrations in two groups of lumped tissues with continuous (Vyig) or fenestrated (Vjeaky)
vascular endothelium; 3) Transcapillary Escape Rate (TER), an indicator of systemic vascular
permeability. For 93% of surveyed mAbs, the model assuming clearance from plasma (CL)
produced better or at least equivalent model performance than the model with clearance from IS
and yielded most consistent values of vascular reflection coefficients (o1 and op) among all
antibodies. The average mAb IS concentration in Viignt and Vieaky at equilibrium was predicted to
be about 6.8% and 37.9% of that in plasma. A positive correlation was detected between plasma
clearance and TER among most mAbs, which could be interpreted as both parameters having
common determinants related to |SF tissue distribution in this model context. The mAbs with
relative higher plasma clearance (> 0.035 L/hr/70 kg) did not reveal such positive correlation
between clearance and TER, implying that the factors contributing to high clearance may not
necessarily increase tissue distribution and penetration. In conclusion, this mMPBPK model offers a
more mechanistic approach for analyzing plasma mAb PK than compartment models and
generates parameters providing useful intrinsic distributional and elimination insights for a large
number of mAbs that were examined in man.
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Introduction

Over the last three decades, monoclonal antibodies (mAb) have dramatically transformed
drug discovery and human therapeutics. More than 30 antibodies have been approved by the
U.S. Food and Drug Administration, and hundreds of candidates are in clinical trials [1]. So
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far, most of the approved mAbs are used for cancer [2] and autoimmune diseases [3], but it
is likely that therapeutic antibodies will find indications for a variety of other diseases.

Pharmacokinetic (PK) studies are important in almost every stage of drug development and
a proper PK model can assist in quantitation and prediction of drug properties [4]. It has
been well documented that mAbs exhibit many different PK behaviors from small molecules
[5], such as limited vascular permeability, much less renal filtration and hepatic metabolism,
and more common receptor-mediated nonlinearity. Models that specially accommodate
these PK features would be helpful. Although a typical bi-exponential PK profile is often
observed for many mAbs, the underlying processes are intrinsically different from small
molecules. Hence, in mAb PK analysis, classical PK approaches (noncompartmental
analysis (NCA), twocompartment models (2CM)) should be applied with caution as the
analysis results sometimes involve problems for interpretation [6, 7], particularly for those
mAbs with activity within or clearance from peripheral tissues that are not in rapid
equilibrium with plasma.

Minimal physiologically-based pharmacokinetic (mPBPK) models offer a simple and
sensible modeling approach to incorporate physiological elements into pharmacokinetic
(PK) analysis when only plasma data are available [8]. We introduced a second-generation
mPBPK model, which was developed in specific consideration of those unique PK
behaviors of mAb [9]. Specifically, the model divides the system tissues into two groups
based on the structure of their vascular endothelium, continuous and discontinuous or
fenestrated. Lymph was separately considered in this model and convection was assumed as
the primary distribution and recycling mechanism. This model has shown the potential to
serve as a general approach if one can only analyze mAb plasma concentration vs time data
and it generates parameters providing better PK insights than NCA and the 2CM
mammillary model. One feature of this model is predicting antibody concentrations in the

I SF of two groups of lumped tissues, which is always a challenging task for experimental
measurements. This becomes particularly important for antibodies with targets in 1SF, as the
predicted | SF concentrations may allow assessments of receptor occupancy and the
following pharmacodynamics at the site of action, which otherwise has to rely on plasma
concentrations.

The study applies this model to over 80 literature-surveyed mAb PK profiles in man, mainly
to: 1) evaluate the feasibility of this model as a general modeling approach for mAb PK
analysis; and 2) seek general perspectives of distributional and elimination properties of
available mAbs.

Theoretical

Second-generation mPBPK model

The second-generation mPBPK model was developed specifically for linear mAb PK
analysis (9). The model structure is shown in Figure 1. Two groups of tissues (Vijgnt and
Vieaky) Were defined in the model according to the vascular endothelial structure as 1SF
volumes in tissues that have continuous or fenestrated capillaries [10]. The Vyjgh includes
muscle, skin, adipose and brain and Vjeqy refers to all other tissues (liver, kidney, heart,
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etc). Model A assumed clearance from plasma and Model B assumed clearance from |SF.
The differential equations for the model A (with CLy) are:

dC, Input
= é’ H[Clympho L—CpoLyo(1—1)—Cpe Lye(1—ay)—CpeCL,]/V, (1)
p
dClins,
dfzq ' [Lie(1—01)eCp—Lie(1—0,)eCpil/Viight ()
dCleak:
%:[LQ L] (1 — 0'2) L] Cp — L2 ] (1 — O'L) L] Cleaky]/‘/leaky (3)
dclymph_

It =[Lie(1—0,)eCgni+Lre(1—0,)®Creaty — Crymph ® L] /Vigmph  (4)
where Cp and Cjympn, are antibody concentrations in plasma and lymph and Cijgnt and Cieaxy
are antibody concentrations in tissues with continuous endothelium (Vyignt) and with
fenestrated or discontinuous endothelium (Vjeaky). The L is total lymph flow and equals the
sum of Lq and Ly, where L1 = 0.33¢L and L, = 0.67-L. These fractions were derived from
previously used values of lymph flow in full PBPK models [11, 12] except for brain that has
no measurable lymph flow [13]. The o1 and o are vascular reflection coefficients for Vyjgne
and Vieaky- The oy is the lymphatic capillary reflection coefficient, which is assumed to be
0.2 [11]. The CL; and CL, are clearances from IS= and plasma. All Initial Conditions are
concentrations = 0.

The physiological restrictions are: V;, is plasma volume and Viympn is total lymph volume,
and:

o1<land o2<l (53 b)

Viignt=0.65 - ISF - K and Vieaky=0.35 - ISF - K},  (6a, b)

where ISF is total system ISF and K, is available fraction of 1SF for antibody distribution.
The physiologic parameters [14, 15] for a 70 kg body weight person are: L = 2.9 L/day, |SF
=15.6 L, Viymph = 5.2 L, and Vpjasma = 2.6 L. Also, K = 0.8 for native IgG; and 0.4 for
native 1gG4 [16, 17].

Only three parameters need to be estimated in this model: 01, 2 and CL, (or CL;). The two
clearances are not estimated together, but the model can test which one works better. One
point should be clarified is that this model does not enact the function of FcRn according to
our previous analysis [9]. The analysis showed that FcRn may play important role in
antibody systemic persistence but may not substantially contribute to tissue distribution.

The Transcapillary Escape Rate (TER) is the sum of two routes,

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2015 December 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Cao and Jusko Page 4

TER=L;e (1 —0;)+Lge(1—0p) )

The concentration ratios at equilibrium between ISF and plasma can be calculated in Model
A as,

(I —=01)/(1 = o )forVijgn and (1 — 02) /(1 — oy )forVieary (8, b)

In Model B, where clearance from |SF (CL;) is assumed, the ratios are:

CTigh,f, _ Lie(l—o0y) and Cr,mky _ Lye(1—o09)
Cp Llo(l—aL)—l—CLi Cp Lg.(l—O’L)+CL7;

(9a, b)

As shown in Eq. (7) — (9), the vascular reflection coefficients (o7 and o5) are parameters that
not only determine transcapillary rate but also predict the extent of distribution. The lower
vascular reflection coefficient produces a more rapid transcapillary rate, resulting in earlier
peaking and higher concentrations of mAb in the lumped | SF compartment.

The ADAPT and WinNonlin model codes for these equations were provided previously [9].

Data analysis

The second-generation mPBPK model was applied to analyze 83 mAb PK profiles found in
the literature for man (Tables 1 and 2). The mAbs selected were those with linear PK in the
tested dose range and study conditions. Plasma concentration versus time data for these
antibodies were captured using Digitizer software. Where possible, a wide range of doses
were utilized with all data for each mAb and fitted jointly. Given the similar isoelectric point
(pl) values (in the range of 8-9) of the currently assessed mAbs with native 1gG;, K was set
to 0.8 in this analysis.

Two clearance mechanisms CL; and CL, were tested and compared in terms of model
performance and parameter estimates. Three categories were defined to indicate the
preference for Model A with CL, for the overall clearance: “Yes”, “Similar”, and “No”.
Based on the results obtained from the model with CLy,, “Yes” was defined by either better
model performance in comparison with the model with CL; (AObj < - 3.0), or the model
with CL; resulted in unreasonable estimated parameters, such as o1 < o or with minute o
values; “Similar” was defined by comparable model performance with reasonable parameter
estimates; “No” was defined by poorer model performance (AObj > 3.0) than the model with
CL; and less reasonable parameter estimates.

All fittings utilized the maximum likelihood method in ADAPT 5 [18] and naive pooled
data modeling. The variance model was:

Vi=(intercept+slope - Y (£;))* (10)
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where: V; isthe variance of the response at the ith time point, t; is the actual time at the ith
time point, and Y(t;) is the predicted response at time t; from the model. Variance parameter
intercept and slope were estimated together with system parameters.

Model performance was evaluated by goodness-of-fittings, visual inspection, sum of square
residuals, Akaike Information Criterion (AIC), Schwarz Criterion (SC), and Coefficient of
Variation (CV) of the estimated parameters.

Results

The second-generation mPBPK model provides a modeling approach specifically for PK
analysis of mAbs. The model, with several assumed physiologic parameters and fitting only
plasma concentration vs time data, provides estimations of average vascular reflection
coefficients (o1 and o5) and assesses the possible location of predominant clearance in either
plasma or |SF. Values of TER were calculated from the estimated o1 and o, values (Eq. (7))
to reflect the overall vascular permeability. The equilibrium concentration ratio (1S-/
Plasma) was predicted based on the estimated o (Eg. (8)) and clearance values (Eq. (9)).
Literature data for 83 mAbs with linear PK were analyzed with this modeling approach. Of
these mAbs, 72 mAb PK profiles were well-captured with reasonable parameter estimates
(Table 1). Representative plasma concentration versus time profiles are shown for 9 mAbs
in Figure 2. Additional fitted mAb profiles were shown in our previous publication [9].
Eleven mADs failed with this model due to several speculative reasons (Table 2).

Single or several dose profiles were characterized (Figure 2) and all parameters were
estimated with reasonable precision (CV% < 50%) for the 72 well-captured mAbs (Table 1).
In the model with CL, the estimated o ranged from 0.693 to 0.999 with an average of
0.945 and o, ranged from 0.202 to 0.984 with an average of 0.697. The grouped o7 values
showed lower inter-antibody variability (CV% = 3.67%) than o, (CV% =16.9%) (Figure 3).
Some mADs did not have sufficient data to support a clear identification of o, different from
1, which resulted in an estimate of o7 as 1 (the physiological limit). In those cases, o1 was
fixed to 0.95, the average value from the other mAbs with precise estimates of ;1. No
correlation (r? = 0.038) was found between o1 and o5 for the surveyed mAbs. The estimated
values of CLp ranged 0.517 — 66.4 mL/hr/70 kg with high inter-antibody variability (Figure
3). The average CLp was 17.6 + 15.0 mL/hr/70 kg. Of note, 9 mAbs (13%) showed
relatively high clearance (> 35 mL/hr/70 kg).

Surprisingly, 11 mAbs failed in application of this model with either inadequately captured
PK profiles or unreasonable parameter estimates. Table 2 lists these mAbs and provides the
possible reasons. Figure 4 displays two representative suboptimal cases. For most of these
mADbs, the mPBPK model had difficulties in capturing the initial phase (early a-phase).
Given the fact that the mPBPK model assumes actual plasma volume as the initial
distribution space, the under-prediction of the initial phase with such model assumption is
unexpected and may be caused either by measurement error or blood collection from the
infusion tubing in the original study. The over-prediction was speculated due to appreciable
nonspecific binding of mAb in blood, a mechanism not included in the mPBPK model.
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As indicated in Eq (8), the vascular reflection coefficients affect not only TER but also I1SF
concentrations. High TER values anticipate high |SF concentrations. Figure 5 displays the
IS / Plasma concentration ratios for Vjeqy and Viighe that were calculated for all 72 mAbs
listed in Table 1. The average ratios for Vjgn, Were about 6.8% and for Vjeaxy about 37.9%.
Six antibodies (tocilizumab, APG101, daclizumab, siplizumab, AMG386, aflibercept) had
equilibrium ratios in Veqyy higher than 81%, indicating relatively high vascular permeability
and probably rapid distribution of these mADbs into tissues with leaky endothelium.

Comparisons of Clearances

Table 1 lists the occurrence of model-based preference for a predominant CL, that was
implied by this modeling approach: 37 mAbs (51%) are “Yes”, 5 mAbs (7%) are “No”, and
30 mAbs (42%) are “Similar”. In the “Yes” group, the model with CL, showed better model
performance for 6 mAbs and the model with CL; resulted in unreasonable parameter
estimates (either o1 < oy or very small o) for the remaining 31 mAbs. In the “No” group, the
model with CL, showed worse model performance in comparison with model with CL;.
There are 30 mADbs in the “Similar” group that showed similar model performance and both
models gave reasonable parameter estimates. Thus, for 93% of the well-fitted antibody PK
profiles, the model with CLy, is either preferred or equivalent to that with CL;.

Interestingly, as shown in Figure 6, many of the mAbs in the “Yes” group appeared to have
higher clearances than the mAbs in the “Similar” group (p = 0.035), which suggests that the
mAbs with relatively high clearance are more likely degraded or eliminated from plasma
rather than from 1SF. No statistical difference in clearances was detected between the mAbs
in the “Yes” group and “No” group, probably because of the limited numbers in the latter
group.

Distribution (TER) vs CL

The estimated TER values were in the range of 1.70 — 66.6 mL/hr/70 kg. As shown in Figure
7, the estimated TER is about 2.5-fold higher than CL, values and TER positively correlated
with CL, (r? = 0.336). As mentioned before, higher TER generally produces higher |SF
concentrations in this modeling context. Thus, such correlation also reflects a relationship
between IS distribution extent and CL. This provides further evidence in support of
previous observations that enhancement of tissue distribution usually results in an increase
in systemic clearance [19]. The mAbs with the highest clearances were not included in the
regression and correlation analysis. No statistical difference was detected in comparison of
the TER values for the high CL, mAbs versus other mAbs (0.032 vs 0.026, p = 0.28).
HuMv833 and gemtuzumab ozogamicin were mAbs as exceptions with fast clearance but
relatively small TER.

As shown in Figure 7, the type of immunoglobulin did not appear to affect the TER or CL,
values, as the values for mAbs that were 1gG» or 1gG4 were dispersed within the data for
IgG1 mAbs.

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2015 December 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Cao and Jusko Page 7

Discussion

The mPBPK model provides a consistent and mechanistic approach for analyzing PK
profiles for mAb and allows systematic comparisons of their elimination and distributional
properties. By fitting only plasma data, the mPBPK model provides assessments regarding:
1) predominant clearance site, plasma or 1SF; 2) |SF concentrations in two groups of lumped
tissues, Vieaky and Viight; 3) TER, an indicator of systemic vascular permeability. Many of
these issues could not be easily addressed experimentally, but sometimes are essential for
therapeutic mAb development and optimization. Therefore, the mPBPK model appears to be
preferable for mAb PK analysis than the commonly used 2CM to address these critical
issues when fitting only plasma data.

This survey indicated that an assumption of CL, provides better or at least equal model
performance than does CL; for 93% of the surveyed mAbs. It can be seen in Table 1 that
Model A with CL, produces highly consistent values of o1 and o, while Model B produces
highly variable results. This may further suggest that CL, reflects the most common
nonspecific clearance mechanism for most mAbs. As stated in our previous analysis [9], the
linear clearance in this model context mostly represents the nonspecific clearance and such a
clearance preference may be not directly associated with target location. From a mechanistic
perspective, the degradation in endothelial lysosomes contributes to CLp, in this model
framework given the efficient endocytosis that allows rapid uptake of mAb into endothelial
endosomes and the rapid ‘equilibrium’ between endothelial endosomes and plasma [20].
Although the functioning of FcRn was not enacted in this model, a higher FcRn affinity
would reduce mAb lysosome degradation and anticipate a lower estimate of CL, (data not
shown). Then, for mAbs with a dominant CLy, it may be of pharmacokinetic and therapeutic
value to design features to increase systemic persistence via an improved FcRn-binding
affinity. If CL; is dominant, less efficiency is expected by this strategy. The present model
allows assessment of the two clearance mechanisms and may help new mAb development
strategy in this regard.

It should be clarified that a preference for CL; or CL suggested by the model does not
necessarily exclude the existence of the other. Both CL; and CL, processes could more or
less exist. The use of model fitting for such discrimination should be followed by direct
experimental validation, if possible, when this is an important issue. As shown in Table 2,
modeling alone is often inadequate to differentiate the two clearance mechanisms.

Interestingly, the mAbs that were associated with a preferred CL,, tend to have higher
clearance than the others (Figure 6). This could be related to their limited vascular
permeability. Simulations of PK profiles with high values of CL; provide a further
explanation for this, as the plasma profiles and apparent plasma clearance would not further
change when CL; was set higher than TER. This is because the apparent plasma clearance
would not go any higher than TER if the predominant clearance occurs in |SF. It is a similar
principle to the well-stirred hepatic clearance model where the apparent plasma clearance
would be largely restricted by blood flow and become less dependent on intrinsic clearance
when intrinsic clearance is much higher than blood flow. Therefore, it is expected that, when
a mAb has a high apparent plasma clearance, particularly a clearance higher than
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distribution clearance (TER), it would become less likely to have a predominant CL;. This
also explains why the mAbs with high clearances (> 35 mL/hr/70 kg) were more often
associated with a model-preferred CL, (Table 1).

Many factors have been found to influence mAb tissue distribution and systemic clearance
[21], including size, shape, hydrophobicity, and charge. The mPBPK model supports a
positive correlation between tissue distribution and systemic clearance (Figure 7), but the
isotype of the immunoglobulins was not a factor. The TER vs CL, correlation poses a
challenge in selection of strategies for improving tissue distribution to enhance target site
exposure as the systemic clearance would probably increase consequently and offset the
improved distribution. An increase of net positive charge has shown to increase both tissue
retention and systemic clearance [19]. The effect of molecular size was also investigated in
this scenario showing that a larger molecule would generally result in lower tissue
penetration with reduced systemic clearance [22]. An optimum probably exists when putting
all these factors together to consider a general balance between distribution and clearance.
Whatever factors contribute to this, this positive correlation seems not applicable to mAbs
with high clearances (> 35 mL/hr/70 kg), implying that the factors contributing to high
clearance may not necessarily increase tissue distribution and penetration, in contrast with
most mAbs and other macromolecules.

Our results and conclusions should be considered with some caution. Firstly, the fitting
results for each mAb (Table 1) should be interpreted within the specific study conditions
where the data were originally collected. For instance, some mAbs, such as rituximab [23]
and cetuximab [24], display nonlinear PK in certain populations while our assessment only
considered the subjects and dose ranges with linear PK. Secondly, the model did not take
account of immunogenicity, differing measurement assays and variability, and concomitant
medications. These factors could potentially impact mAb PK and result in different model
fittings and parameter estimates. In addition, the data digitization and model fittings utilized
the available average PK profiles and thus the parameter estimates are approximate. Other
cautions relate to the model assumptions regarding the available fraction of I1SF for mAb
distribution, convection as the major extravasation mechanism, assuming the same CL; in
Vieaky and Vyignt, and use of standard physiological constants. However, our assumptions
allowed a simple and consistent starting point and allowed a global comparison among
studies.

The present modeling approach can be useful in generally assessing mAb PK and in drug
development. While further examination of structural features contributing to the variability
in TERand CLy, values seen in Figure 7 is warranted, application of this model will provide
an indication of whether the properties of a new mAb resemble most others, particularly for
a related indication. Inconsistencies such as we noted in Table 2 may warrant more careful
analytical or clinical evaluation. The model provides approximate |SF concentrations and
can be readily extended to handle target-mediated drug disposition and dynamics [25]. If
utilized for population analysis, physiologic features can be more easily incorporated for
model components.

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2015 December 01.
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In conclusion, this study successfully applied the mPBPK model to extensively survey
literature available mAb PK in man and clearly demonstrated the feasibility of this model as
a general approach in mAb PK analysis. The estimated parameters reflect many intrinsic
distributional and elimination insights and relations. Although the reductionist feature of the
mPBPK model was emphasized in our previous publications [8, 9], specific considerations
of other kinetic mechanisms, such as target-mediated drug disposition [25], formation of
anti-drug antibodies, and target kinetics are also feasible in this modeling framework. This
mPBPK model offers a more mechanistic approach using the major structural features of full
PBPK models for mAbs in specifically analyzing mAb PK than found in compartment
models and provides an intermediary method if a full PBPK model is not available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Second-generation minimal PBPK model for monoclonal antibody pharmacokinetics.
Symbols and physiological restrictions are defined in Eq (1) — (6). Clearance is applied
either to plasma or interstitial fluid. The plasma compartment in the left box represents the
venous plasma as in full PBPK models but is not applied in this model.
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Pharmacokinetic profiles of 9 monoclonal antibodies in human subjects. Symbols are

observations and curves are mPBPK model fittings.
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Vieaky) Using the model when CL, applies. Bars indicate mean and standard deviation.

Numbers in brackets are [10% - 50% - 90%] percentiles.
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Profiles of two representative monoclonal antibodies where the minimal PBPK model was
suboptimal. The circles highlight the primary mis-fitted data points.
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the model with CL,. Bars depict mean and standard deviation. Numbers in brackets are
[10% - 50% - 90%] percentiles.

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2015 December 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Cao and Jusko

CLp (L/hri70 kg)

Figure®6.

0.06

0.04

0.02

0.00

Page 16

p =0.035
|
a
a
A (=]
a
(n]
0
(un)
a
0
a ‘
%
0ch0
o o
Yes Similar No

Preference for CL from plasma

The estimated plasma clearance (CLp) of monoclonal antibodies in groups with “Yes”
“Similar” and “No” preference for fittings with plasma clearance (CLy). Three categories are
defined in the text. The student t-test was applied.
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Correlation between plasma clearance (CLp) and Transcapillary Escape Rate (TER). The
linear regression line (forced through (0,0); slope = 0.37) and correlation coefficient are
shown for mAbs with CL, < 0.035 L/hr/70 kg. Solid symbols: clearance > 0.035 L/hr/70 kg;

open symbols: clearance < 0.035 L/hr/70 kg.
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Table 2

Monoclonal antibodies that failed in model application.

Antibodies Type Ref@ Fittingsor estimated parameters Speculative reasons
Afelimomab (Fab), [S80] over-prediction of initial phase, tiny o, and 0,  nonspecific binding in blood
AHM 19G, [S81] over-prediction of initial phase, tiny o; and 0,  nonspecific binding in blood
Bavituximab 19G, [S82]  over-prediction of initial phase, tiny o; and o,  nonspecific binding in blood
Intetumumab 19G, [S83] over-prediction of initial phase, tiny o; and 0,  nonspecific binding in blood
Roledumab 19G, [S84] over-prediction of initial phase, tiny o; and 0,  nonspecific binding in blood
SB 249417 19G, [S85]  over-prediction of initial phase, tiny o; and 0,  nonspecific binding in blood
Anti-1L-12p40  1gG, [S86]  04< o, for both clearance mechanisms unknown

Ipilimumab 19G; [S87]  under-prediction of initial phase measurement error
MDX-1303 19G, [S88] under-prediction of initial phase measurement error
Ponezumab 19G, [S89]  under-prediction of initial phase measurement error
Sirukumab 19G, [S90]  04< o, for both clearance mechanisms unknown

aReferences provided in Supplementary Materials
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