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Abstract

The oral route is the most convenient and least expensive route of drug administration. Yet, it is 

accompanied by many physiological barriers to drug uptake including low stomach pH, intestinal 

enzymes and transporters, mucosal barriers, and high intestinal fluid shear. While many drug 

delivery systems have been developed for oral drug administration, the physiological components 

of the gastro intestinal tract remain formidable barriers to drug uptake. Recently, microfabrication 

techniques have been applied to create micron-scale devices for oral drug delivery with a high 

degree of control over microdevice size, shape, chemical composition, drug release profile, and 

targeting ability. With precise control over device properties, microdevices can be fabricated with 

characteristics that provide increased adhesion for prolonged drug exposure, unidirectional release 

which serves to avoid luminal drug loss and enhance drug permeation, and protection of a drug 

payload from the harsh environment of the intestinal tract. Here we review the recent 

developments in microdevice technology and discuss the potential of these devices to overcome 

unsolved challenges in oral drug delivery.
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Introduction

Among the various routes of drug administration, including intravenous, intraperitoneal, 

intramuscular, and transdermal administration, oral administration is most preferred for its 

numerous advantages. Oral drug formulations are self-administrable and less invasive, 

leading to higher patient compliance and decreased cost of care. While oral drug 

administration is ideal in terms of cost and convenience, the oral bioavailability of many 

drugs is limited by a unique set of barriers to oral drug uptake, including low pH of the 

stomach, intestinal enzymes, transporter proteins expressed in intestinal epithelial cells, and 

the motile mucosal lining of the gastrointestinal (GI) tract. Many small molecule drugs 
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suffer from poor oral bioavailability as a result of factors such as low permeation through 

the thick and hydrophobic mucosal layer and cell membrane, low drug solubility, and 

metabolic and transporter protein activity [1–2]. In addition, many recently developed 

biotherapeutics, including peptides, proteins, DNA, RNA, and macromolecules, have 

particularly low oral bioavailabilities [3]. This is due to their relatively large size and high 

complexity, causing decreased permeability and a tendency to denature under harsh 

conditions [4].

While there are many barriers to oral drug uptake, these barriers can be categorized into 

issues of 1) low drug permeation, 2) drug degradation, and 3) low drug solubility [5]. 

Current approaches to overcoming these barriers include enteric coating, permeation 

enhancers, drug modification, metabolic and transporter protein inhibitors, and micro-/

nanoparticulate systems, which have been reviewed in detail before [6–12]. While these 

systems have made advances in improving oral bioavailability of select therapeutics, no 

reliable method for the oral delivery of biomolecules has been developed, and no single 

system has been shown to comprehensively address the three categories of barriers to drug 

uptake previously mentioned. Thus, more advanced approaches are required to provide 

sufficient systemic uptake of orally administered drugs ranging from small molecules to 

macromolecular structures.

In the past decade, micro-electro-mechanical systems (MEMS) technology originally 

developed by the semiconductor industry has been applied to many biomedical applications. 

Microfabrication techniques have facilitated the development of novel devices with precise 

control over device shape and size, allowing for the creation of devices specifically designed 

to address issues affecting drug uptake. Specifically, microfabricated devices for oral drug 

delivery, termed microdevices, are designed to maximize residence time in the GI tract, 

provide unidirectional drug release toward the intestinal epithelium, and release drug in a 

sustained manner. Together, these characteristics allow microdevices to simultaneously 

address issues with drug permeation, solubility, and degradation in a manner not provided 

by other drug delivery systems. This mini-review will highlight the unique mechanisms by 

which microdevices address the barriers to oral drug delivery, describe recent innovations in 

the design and fabrication of these devices, and review the efficacy of these devices in vitro 

and in vivo.

Barriers to oral drug delivery

The comprehensive set of barriers to oral drug uptake must be considered when examining 

the rationale behind microdevice design. Orally administered drugs face a sequential set of 

barriers to systemic drug uptake as outlined in Figure 1A. Following oral administration, 

drugs encounter pH values ranging from 1.5 to 3.5 and digestive enzymes in the stomach 

and are subsequently exposed to pH values of 5 to 7 and additional proteolytic and 

metabolic enzymes in the small intestine [13]. After entering the small intestine, the primary 

site of drug and nutrient uptake, drugs must then pass through a hydrophobic mucous 

membrane composed of a motile layer moving in contact with an underlying firmly adherent 

layer [14]. The motile mucus layer ranges between 100 and 500 µm in thickness, and the 

adherent mucus layer ranges from 0 to 20 µm in thickness [15–16]. After penetrating the 
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mucus layer, drugs must pass through the glycocalyx, an extracellular matrix approximately 

0.5 to 1 µm thick composed of negatively charged glycoproteins, proteoglycans, 

glycosaminoglycans, and glycolipids [17–18]. Drugs must then pass through the polarized 

enterocyte monolayer by either paracytosis directly through enterocytes or transcytosis 

through junctions between enterocytes. Paracytosis involves permeation through the apical 

cell membrane into enterocytes and subsequent permeation through the basal cell membrane 

into the interstitium. Paracytosis occurs through both passive diffusion through the cell 

membrane and facilitated diffusion involving transporter proteins or endocytosis [19–21]. 

Within the cytosol of enterocytes, drugs are exposed to influx and efflux protein transporters 

differentially expressed on the apical and basal cell membranes as well as metabolic 

enzymes [1]. The alternate pathway of transcytosis involves travel between cells through 

tight junctions, structures between closely associated cells composed of multiprotein 

complexes with pores approximately 1 to 3 nm in diameter [22–23]. This small pore size 

presents a significant obstacle to drug uptake, particularly for high molecular weight 

therapeutics. These barriers present a unique set of challenges not encountered in other 

routes of drug administration.

Rationale for designing oral drug delivery microdevices

Like most previously developed oral drug delivery microparticulate systems made via 

precipitation methods, microdevices are designed on a scale small enough to fit within the 

features of the intestinal wall, which is made up of micron-sized folds and pits of the 

intestinal villi [24]. Also, microdevices are designed to be large enough to prevent device 

uptake into cells through endocytosis. While microdevices are similar in size to many oral 

drug delivery particulate systems, conventional methods of microfabrication deliver precise 

and consistent dimensions of microdevices, resulting in much higher monodispersity in size 

and shape [25]. In addition to providing monodispersity, microfabrication also provides the 

ability to create devices with custom shapes and dimensions. This abililty has been utilized 

to design devices with a planar design that simultaneously address drug permeability 

barriers, drug degradation, and low drug solubility (Figure 1B).

To address issues with poor drug solubility and increase overall drug exposure, 

microdevices are designed to be relatively flat, providing multiple advantages for drug 

transfer. A flat shape increases the surface area in contact with the GI wall, improving 

adhesive properties of the device [26]. In addition, a flat microdevice shape decreases the 

shear force per mass on the devices as shown in Figure 1B, preventing detachment of the 

device from the intestinal epithelium and further increasing residence time [27]. To 

overcome a second major barrier to oral drug uptake - issues with drug permeability, 

microdevices are designed with reservoirs on only one side of the device, allowing drug to 

be released in only one direction. In addition to asymmetric shape, devices can be 

asymmetrically modified with targeting moieties, mucoadhesive materials, and micro- and 

nanotopography, providing selective binding of the device side from which drug will be 

selectively released [26]. Thus, microdevices are designed to adhere to the mucosal or GI 

epithelial layer and release drug to enterocytes in a proximal, unidirectional manner as 

shown in Figure 1B. Releasing drug directly toward the epithelial barrier rather than into the 

lumen provides a more efficient mechanism of drug release by decreasing the loss of drug 
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downstream through the lumen and also increasing the exposure of the enterocytes to the 

drug. Furthermore, the unidirectional release of drug in a localized, high concentration at the 

device-intestinal wall interface creates a strong concentration gradient, thereby enhancing 

drug permeation across the intestinal enterocytes [27]. This localized release of drug in high 

concentrations may also increase drug uptake through a second mechanism, as high drug 

concentrations may saturate metabolic enzymes and protein transporters, in turn increasing 

the bioavailability of the drug [28].

Numerous treatments have been studied for the disruption of drug transporters, metabolic 

enzymes, and endothelial tight junctions to allow for increased passage of drug [10–12]. 

However, each of these mechanisms is accompanied by severe clinical side effects [1, 23, 

29]. If the total surface area of administered microdevices is significantly smaller than the 

surface area of the GI tract, microdevices have the potential to deliver drug to select regions 

of intestinal tissue. While drugs delivered in standard tablet form will diffuse to reach 

enterocytes with a relatively even distribution within a region of the GI tract, larger 

microdevices with high residence times have potential to only deliver drug to a small subset 

of intestinal epithelial cells. This could be advantageous in combination therapy for 

increased drug bioavailability. Given their potential to target a small subset of cells with 

high drug concentrations, microdevices could be designed to release permeation enhancers 

in localized regions in which the drug of interest is also released while leaving the majority 

of the GI tract unaffected. Finally, to address the third major barrier to oral drug uptake - 

drug degradation, microdevices are fabricated to include drug reservoirs that allow for 

sustained release of drug, thereby decreasing the exposure of drugs to harsh conditions of 

the GI relative to a bolus dose [26]. With a variety of sustained drug release systems 

developed in the recent past for oral delivery including pH-sensitive hydrogels [30–32], 

enteric coating [33], and degradable polymers, well established microfabrication techniques 

can be effectively used to incorporate microdevice reservoirs with these drug systems [27, 

34–36].

In addition to delivery of drugs for systemic uptake, oral microdevices have the potential to 

treat diseases local to the GI tract including Crohn’s disease, inflammatory bowel disease 

(IBD), and irritable bowel syndrome (IBS). While the site of action of most therapeutics for 

GI disorders is in intestinal tissue, many of these drugs in conventional large doses lead to 

severe systemic side effects [37–38]. For more efficient treatment of these diseases, 

microdevices could be modified to adhere to only the diseased GI tissue for localized 

delivery of drugs directly to the therapeutic target [39]. Direct targeting of sites of 

inflammation could improve drug efficacy while reducing severity of side effects associated 

with therapies for diseases of the GI tract.

Materials utilized for microdevice structure

To prevent toxicity and inflammation, microdevices must be made from biocompatible 

material. The first systems of oral microdevices used standard semiconductor materials, 

including silicon oxide and porous silicon as the device material [40–41]. While silicon and 

silicon oxide have been found to be relatively non-toxic in some studies [42–44], they have 

also been associated with inflammation [45–46]. In order to overcome this issue, 
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microdevice fabrication shifted towards the use of relatively non-toxic polymers, including 

hydrogels and biodegradable materials. Poly(methyl methacrylate) (PMMA), an FDA-

approved polymeric material [47] used in contact lenses and bone cement and also known to 

be stable at low pH values [26], has been utilized in numerous oral microdevice designs 

[34–35, 48–51]. Microdevices have also been fabricated from SU-8, an epoxy-based 

negative photoresist originally developed as an ultra-thick photoresist [36, 52]. While SU-8 

is not currently FDA approved, studies have shown that SU-8 is non-toxic as an implantable 

material [53–55]. Other biocompatible polymers utilized for microdevice fabrication include 

chitosan [56], gelatin [57], poly(lactic-co-glycolic) acid (PLGA) [56–58], polypropylene 

(PP) [59], and poly(ethylene glycol) (PEG) [27, 52, 56]. The intrinsic biocompatibility, 

biodegradation, hydrophobicity, and structural properties of individual polymers can be 

tuned by adjusting the chemical structure of the monomer(s) used in polymer synthesis, the 

molecular weight of the polymer, and/or the crosslinking density [56, 60–62].

While materials utilized in microfabrication are typically chosen for biocompatibility and 

structural properties, there is a strong interest in utilizing bioresponsive or bioadhesive 

materials for additional properties to aid in drug delivery. The Peppas Lab has developed 

pH-sensitive hydrogel systems for selective insulin release in the small intestine [30–32]. 

These hydrogels retain insulin in low pH environments similar to that of the stomach but 

swell and release insulin as pH values increase to a simulated intestinal environment with a 

pH of 6.5 [31]. Similar pH-responsive materials could be incorporated into planar 

microdevices for selective drug release upon entry into the small intestine. In addition, 

microdevices could be surface coated with or encapsulated within enteric materials insoluble 

at low stomach pH values but soluble in the nearly neutral pH of the small intestine to 

prevent drug release and degradation [33].

Techniques utilized in the micro- and nanofabrication of oral drug delivery 

devices

A variety of fabrication methods, including photolithography, electron beam lithography, x-

ray lithography, and soft lithography techniques are available for the fabrication of 

microdevices. The use of micro- and nanofabrication techniques for biological applications 

has been reviewed in detail elsewhere [63–65], but this review will highlight a selection of 

techniques that are particularly useful for oral microdevice fabrication. Many studies to this 

date have utilized conventional photolithography techniques originally developed by the 

microchip industry for the fabrication of microdevices [27, 34, 36, 40, 50–52, 62, 64–67]. 

Photolithography involves selective UV exposure of a photosensitive material, termed a 

photoresist, and is often followed by an etching step to transfer the photoresist pattern to a 

substrate. Typically, the substrate is spin-coated to form a thin film deposition, and a 

photoresist layer is spin-coated onto the substrate. The photoresist is then exposed to UV 

light through a mask created with custom patterns by computer-aided design (CAD), 

transferring the mask pattern through selective polymerization or cleavage of the photoresist 

in regions exposed to UV light, and non-polymerized or cleaved resist is removed by 

chemical development. The resist pattern can then be transferred to the substrate through 

either wet or dry etching processes with the resist acting to selectively protect regions of the 
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substrate. In a straightforward fabrication technique, Tao et al. applied photolithography to 

fabricate microdevices from SU-8 in a two-step process [36]. A layer of SU-8 was exposed 

to UV light to form a device base, and then a second layer of SU-8 was UV-exposed to form 

the walls of drug reservoirs. The use of SU-8 photoresist as the structural component of 

microdevices eliminates the need for etching of a substrate material following UV exposure. 

To create microdevices from non-photoreactive materials, photolithography followed by 

reactive ion etching (RIE), a dry etching technique involving directional destruction of 

material by bombardment with chemically reactive plasma, has been employed [34]. As 

shown in Figure 2, Chirra and Desai used two series of steps each composed of 

photolithography followed by RIE with oxygen plasma to create microdevices with three 

reservoirs partially etched through the microdevice structure.

While photolithography techniques are often expensive and require access to cleanroom 

facilities, soft lithography allows for replication of a hard patterned substrate to create an 

inverse pattern with a soft elastomer such as polydimethylsiloxane (PDMS). The patterned 

elastomer can then be used as a master mold to repeatedly pattern a wide range of materials 

under standard laboratory settings. These patterned elastomers can be used as either a mold, 

to create devices from recessed regions, or as a stamp, which can be coated with material to 

create devices or patterned surface modifications in regions of contact. Guan et al. have 

demonstrated a variety of soft lithography techniques that can be utilized to fabricate 

microdevices (Figure 3) [56, 59–60, 68]. In one study, a micropillar PDMS stamp was 

coated with PPMA before bringing the stamp into contact with a glass slide coated with 

polyvinyl alcohol (PVA), creating PPMA microdevices in regions of contact (Figure 3A) 

[59]. In contrast, Guan et al. also used a microwell stamp to collect PPMA within recessed 

regions before bringing the stamp into contact with PVA-coated glass, creating 

microdevices from the wells of the microstamp (Figure 3B) [59]. In later studies, a mixture 

of PEGMA and PEGDMA was applied to a PDMS microwell stamp, allowing for 

microdevice formation through discontinuous dewetting (Figure 3C) [56]. As a result of the 

interactions at the interface of the polymer solution and the PDMS, the PEGMA/PEGDMA 

resin selectively collected in the microwells before UV exposure induced polymerization via 

a photoinitiator [56, 69]. A number of other studies have utilized similar soft lithography 

techniques in the fabrication of microdevices [65, 70–74].

Currently, only a select number of microparticulate drug delivery systems have incorporated 

nanostructures to enhance oral drug delivery [75–77]. As microdevice design advances, 

future studies may apply a wide range of nanofabrication techniques to microdevice design 

as nanotopography has been shown to enhance muco- and cytoadhesion and interact with 

epithelial cells to enhance drug permeability [77–78]. However, resolutions below 100 nm 

are difficult to achieve with UV-based photolithography due to the diffraction limit of light 

[79]. For fabrication of devices with nanoscale features, nanofabrication techniques are 

required. One such technique, X-ray lithography, uses electromagnetic radiation with 

wavelengths ranging from 0.5 to 4 nm and is capable of achieving resolutions approaching 

20 nm [80–82]. Similar to UV lithography, X-ray lithography uses an X-ray source such as a 

synchrotron or laser-induced plasma generator to irradiate X-ray-sensitive material through 

an X-ray absorbing mask [80, 82]. Maskless lithography techniques, including electron 

beam, ion beam, and dip-pen lithography are also available for nanofabrication. Electron 
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beam lithography directs a beam of electrons to create a pattern on a material sensitive to 

electron irradiation, which is later developed or etched to form features on the irradiated 

material or an underlying substrate [83]. Similarly, ion beam lithography utilizes a focused 

beam of ions to either remove a substrate material or deposit a dissociated precursor material 

onto the substrate [84]. Dip-pen lithography adapts a scanning atomic force microscopy 

probe to direct inorganic or biological ink molecules across a substrate where they 

subsequently adsorb [85]. Because maskless techniques require low throughput de novo 

pattern creation, they are often used to create a master mold, which is then used to transfer 

the inverse pattern to other materials through nanoimprinting [86–89]. In addition, 

templating of polymeric material with nanoporous membranes provides high-throughput 

fabrication of nanowire arrays [90–91]. In template synthesis, a polymer is exposed to a 

nanoporous membrane at a temperature greater than the polymer’s glass transition 

temperature. The polymer is incorporated into the membrane, and the membrane is then 

selectively dissolved, leaving the polymer with the inverse nanowire array. Membrane 

selection provides control over the nanowire diameter and spacing, and templating time and 

temperature are adjusted to control nanowire length.

Structural and chemical modifications to improve microdevice muco- and 

cytoadhesion

Because microdevices rely on adhesion to increase residence time and prolong drug 

exposure in the GI tract, many designs to increase device adhesion have been developed, 

including the utilization of mucoadhesive materials, targeted molecular interactions, gecko-

inspired micro/nano topography, and mechanical interactions as shown in Figure 4. 

Conjugation of lectins to microdevices and other drug delivery systems has proven effective 

in increasing both adhesion to Caco-2 cell monolayers and intestinal mucosa (Figure 4A) 

[34–35, 50, 92–93]. Conjugation of tomato lectin to PMMA microdevices resulted in a two- 

to six-fold increase binding of microdevices to a Caco-2 cell monolayer relative to 

unmodified microparticles [50]. Furthermore, upon binding to a cell monolayer under 

physiologically relevant shear stress levels, only a small fraction of lectin-conjugated 

devices detach, and the majority of the detached devices reattach [94]. However, given the 

sensitivity of lectins and other peptide targeting molecules to the low pH values and 

enzymes of the GI tract, incorporation of bioadhesive materials and topographies that are 

less prone to degradation may provide more stable mechanisms for bioadhesion. Features on 

the micron-scale such as microposts and microneedles have also been developed to aid in 

transdermal drug delivery [18, 95–96]. These features have also been incorporated into 

planar oral drug delivery microdevices (Figure 4B) to penetrate the mucous membrane in 

order to increase both drug permeation and device residence time [57]. Utilizing 

topographical features at a smaller scale, gecko-inspired nanotopography can be 

incorporated into microdevices to promote adhesion by providing dramatically increased 

surface area, resulting in increased vaan der Waals interactions. The Desai Lab has created 

hierarchical nanoengineered microparticles (NEMPs) composed of silicon oxide 

microspheres coated with silicon nanowires (Figure 4C) that demonstrated a 100-fold 

increase in lift-off force in vitro and a ten-fold increase in residence time in vivo relative to 

uncoated silica microspheres [34, 90]. Fabrication conditions have been altered to produce 
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planar NEMPs, resulting in significant increases in drug uptake both in vitro and in vivo 

[76]. Nanostructured surfaces are also capable of loosening the epithelial barrier and 

providing increased permeability to protein therapeutics [78]. Therefore, incorporation of 

nanotopography into microdevices has potential to simultaneously increase device adhesion 

to the epithelial barrier and interact with epithelial cells to increase drug permeability, and 

studies regarding this concept are currently underway in our laboratory. Given the 

mucoadhesive properties of chitosan [94, 97–99], chitosan-based hydrogels show great 

promise as materials for oral drug delivery microdevices. Hydrogels also have dynamic 

interactions with water, providing swelling properties that can be utilized to incorporate 

folding properties into microdevices [60]. Guan et al. created self-folding bilayered 

microdevices composed of layers of crosslinked chitosan and poly(PEGMA-co-PEGDMA) 

[56]. These devices were fabricated with arms that folded upon contact with water as a result 

of differential swelling of the two polymer layers (Figure 4D), resulting in mechanical 

attachment of the devices to excised pig intestinal mucosa [56].

Approaches to drug loading of microdevices

Drug loading of microdevices is a difficult challenge with the ultimate goal of loading drug 

in a high-throughput, low-waste, and precise manner. Initial studies utilized microinjection 

of drug into the device reservoir with subsequent drying and crystallization of the drug [40]. 

For higher throughput drug loading and custom release kinetics, drug-laden PEGDMA 

hydrogels were spin-coated onto devices and selectively polymerized by photolithography 

(Figure 5A) [52]. The ability to lithographically pattern drug-loaded hydrogels was utilized 

by Ainslie et al. to layer drugs into reservoirs for sequential drug release kinetics [52]. In 

addition, Chirra and Desai loaded PMMA hydrogels crosslinked with PEGDMA each 

containing a differing model drug into three device reservoirs [34]. While 

photolithographically based drug loading allows for high precision and incorporation of 

hydrogels with custom release kinetics, drug is lost in the process of spin-coating and 

developing the drug-hydrogel solution, which is a major drawback when utilizing expensive 

biotherapeutics. To load drugs in a low-waste manner, discontinuous dewetting properties 

have been utilized. In one study, microdevices were brushed with a solution of sodium 

chloride, and surface interactions with drug solvent resulted in collection and crystallization 

of the model drug in the device reservoirs to provide a high-throughput method of drug 

loading with minimal drug waste (Figure 5B) [56]. In a more precise drug loading method, 

Marizza et al. recently developed inkjet printing for loading of drug solutions into 

microdevice reservoirs (Figure 5C) [100]. While this method requires sequential loading of 

each microdevice in a semi-automated manner and is not currently as high-throughput as 

discontinuous dewetting or photolithographic drug loading techniques, it is capable of 

precise, quasi-zero-waste performance. Marizza et al. went on to combine this method with 

supercritical fluid impregnation, allowing for the loading of hydrophobic drugs without the 

use of an organic solvent (Figure 5D) [101]. Other techniques for loading drug over the 

entire microdevice surface rather than into reservoirs have been utilized. NEMPs, with a 

large surface area as a result of nanowire coating, were loaded with insulin via a solvent-

evaporation-induced capillary effect, in which drug crystallized over the microparticle 

surface at the base of the nanowires [76, 102].
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Efficacy of microdevices in vitro and in vivo

Within the last few years, the utilization of semi-conductor industry principles to fabricate 

oral microdevices has advanced leaps and bounds. Yet, the testing of these devices in 

improving the overall efficacy of most therapeutics is still at its relative infancy. Recent 

studies related to in vitro drug release and permeation have been done over monolayers of 

Caco-2 epithelial cells using Transwell® inserts. Ainslie et al. showed that the localized high 

concentration of drug at the device-cell interface resulted in an enhancement of drug 

permeation across the Caco-2 monolayer under physiological fluid flow, with a ten-fold 

increase in fluorescein permeation when released from microdevices relative to fluorescein 

free in solution [27]. Also, a sequential release of different sized drugs, insulin and 

camptothecin was achieved with the use of a dual layered hydrogel system that was present 

in microdevices made up of a single reservoir [103]. While sequential release can be 

harnessed to improve drug bioavailability by first releasing a permeation enhancer followed 

by the drug of interest, the release kinetics of the drug are co-dependent on the release 

kinetics of the permeation enhancer from its respective top hydrogel layer. To overcome this 

co-dependence issue, Chirra et al. used multiple reservoirs that can be filled with different 

drugs using different hydrogel/biodegradable polymeric systems [34]. Figure 6B shows the 

independent release of multiple model fluorophore-tagged BSAs from respective reservoirs 

as shown in Figure 6A. Such a device system can be used to release permeation enhancers, 

proteolytic enzyme inhibitors, and drugs of interest at independent rates and release times, 

thereby making oral microdevices effective for increasing drug efficacy as well as for 

combinatorial therapy. The Desai Lab also used Caco-2 monolayer coated parallel plate flow 

chambers to study the extent of oral microdevice retention under GI flow conditions. They 

have shown that 93% of tomato lectin microdevices remain attached to the cell surface 

under one hour of physiological shear conditions after initial binding, indicating that 

microdevices are capable of remaining attached to GI tissue for extended periods of time 

under physiological conditions [103].

The several advantages of using asymmetric planar oral microdevices including 

unidirectional release to avoid luminal drug loss, increased contact surface area and reduced 

shear stress with a planar design, and selective modification of reservoir side of device to 

introduce muco- or cytoadhesive properties were recently tested in vivo. Our lab observed 

that upon oral administration to mice, PMMA microdevices having the same contact surface 

area as that of symmetric PMMA microparticles have a 27% retention in the proximal small 

intestine after 2 hours due to the relatively low shear stress experienced by the thin device 

side walls, as compared to a retention of 12% for the curvilinear microparticles [66]. Also, a 

further enhancement of microdevice retention to 41% was observed after conjugation of the 

bioadhesive protein lectin, which targeted the intestinal epithelial cell wall. We have shown 

that with the help of microdevices, even the poorly permeable drug Acyclovir had a five-

fold increase in oral bioavailability in mice as compared to that of a conventional solution of 

Acyclovir of same dosage [66]. This enhancement of oral bioavailability drastically reduces 

the overall dosage needed for effective therapy. Such a reduction in dosage with improved 

bioavailability proves vital in significantly alleviating issues of systemic side effects, 

thereby opening up oral administration to an array of toxic and expensive therapeutics. 
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While most of the recent in vivo work was done using small molecule drugs, microdevices 

can be applied to the oral delivery of macromolecules and high-efficacy low-dosage drugs 

(e.g. Leuprolide, human growth hormone, etc.). Detailed studies on improving drug loading, 

dosage optimization, improved protection against GI environment, sustained release for 

systemic delivery, targeted attachment, and GI pathology oriented localized delivery are 

currently underway and are of much interest for future work. Therefore, the use of 

microfabricated planar oral devices holds promise in augmenting the range of oral 

therapeutics used, while solving pharmacokinetic issues associated with low permeability 

and avoiding systemic side effects.

Conclusion

Microfabrication techniques allow for the creation of devices with properties not easily 

attainable through other methods of conventional particle synthesis. This advanced control 

over device properties allows microdevices to be designed to simultaneously address many 

barriers to oral drug uptake. Specifically, planar device shape, asymmetric modifications for 

cyto- and mucoadhesion, and unidirectional drug release are utilized to overcome barriers to 

oral drug delivery. These devices can be modified with targeting moieties and tunable drug 

release profiles to address specific drug delivery applications. Future developments in 

microdevice fabrication may involve the incorporation of additional biocompatible and 

bioresponsive materials for smart drug delivery and mucoadhesion. Also, new micro- and 

nanofabrication techniques may be developed to provide device topography in order to 

improve cellular permeability and enhance device adhesion. Challenges in the application of 

microdevices to oral drug delivery include a limited drug loading capacity and the high cost 

of some microfabrication techniques. These potential drawbacks can be mitigated by 

selecting highly potent drugs to reduce the number of devices required per dosage and by 

optimizing fabrication and drug loading techniques to minimize cost and maximize drug 

capacity. Microdevices have demonstrated promising results for oral drug delivery both in 

vitro and in vivo. However, the exact mechanisms by which these devices interact with the 

mucous and epithelial layers are yet to be fully determined. Further trials will determine 

whether the devices function primarily through either mucoadhesion or cytoadhesion and 

which drugs and drug combinations are best suited for use in planar microdevices. Multi-

drug carrying microdevices may allow for combination therapy involving a drug of interest 

and a disruptive drug for increasing bioavailabilty through localized and transient disruption 

of digestive enzymes, transporter proteins, and epithelial tight junctions. In addition to 

applications in increasing systemic drug bioavailability, microdevices could be modified for 

targeted and localized drug delivery to diseased tissue in the GI tract. As new materials, 

fabrication methods, and drug combinations are developed, microdevice technology has the 

potential to significantly improve the oral delivery of a wide range of therapeutics including 

small molecule drugs, mid-size peptide therapeutics including insulin and antigens for 

immunization, and larger protein-based therapeutics.
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Figure 1. 
A. Physiological barriers to oral drug delivery. After encountering digestive enzymes and 

the low pH of the stomach, drugs enter the small intestine, the primary site of drug uptake 

where drugs encounter additional metabolic and proteolytic enzymes. Drugs must then pass 

through the motile and adherent mucus layers, the cellular monolayer through either a 

paracellular or transcellular route and finally pass through the interstitium and basement 

membrane to enter the capillary from which they are shuttled to the liver before entering 

systemic circulation. B. Advantages of asymmetric microdevice design for oral drug 
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delivery include 1) reduced shear force per mass, increasing residence time, 2) 

unidirectional drug release toward endothelial tissue, increasing drug permeation, and 3) 

sustained release, reducing drug exposure to the harsh conditions of the GI tract and 

decreasing drug degradation.
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Figure 2. 
Photolithography-based techniques for microfabrication of multi-reservoir PMMA devices. 

A. PMMA and, subsequently, photoresist are spin-cast onto a silicon wafer. B. A circular 

pattern is transferred from a UV-blocking photomask to the photoresist through UV-induced 

cleavage. C. Reactive ion etching with oxygen plasma directionally destroys PMMA not 

protected by the photoresist pattern. D. Following photoresist removal and re-coating of a 

fresh resist layer, a reservoir-containing pattern is transferred to the photoresist by UV-

exposure. E. Reactive ion etching is used to partially etch the PMMA layer to form drug 

reservoirs. F. Photoresist is chemically removed. Adapted with permission from [34].
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Figure 3. 
Soft lithography-based techniques for microdevice fabrication. A. Microcontact printing can 

be utililized for fabrication of microdevices in regions of contact of PVA with micropillar 

stamp with subsequent dissolution of PVA in water for device release [59]. B. Fabrication of 

microdevices from recessed regions of microwell stamp. The stamp was brought into contact 

with glass to remove PPMA from non-microwell regions before bringing the remaining 

PPMA into contact with PVA [59]. C. Discontinuous dewetting utilized to selectively 

collect resin before UV-induced polymerization. Microdevices were then brought into 

contact with PVA with subsequent dissolution in water for device release. [56]. Adapted 

with permission.
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Figure 4. 
Chemical and structural modifications to enhance microdevice adhesion and increase 

residence time. A. Fluorescence micrograph of FITC-lectin (green) asymmetrically coated 

onto the drug-releasing side of microdevices for targeted bioadhesion to the intestinal 

mucosa with fluorescently labeled BSA shown in blue [34]. B. Microdevices with 

microposts designed to penetrate the mucus membrane surrounding a drug reservoir [57]. C. 

Planar nanowire-coated microparticles dramatically increase surface area and enhance 

microdevice adhesion through increased non-covalent interactions [76]. D. Self-folding 

microdevices shown before (i) and after (ii) exposure to water are designed to mechanically 

attach to intestinal tissue [60]. Reproduced with permission.
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Figure 5. 
Current techniques for drug loading of microdevices with images of drug-loaded devices for 

each approach. A. Photolithography can be utilized to selectively induce crosslinking of 

drug-laden hydrogels in device reservoirs [34]. B. Discontinuous dewetting utilizes a 

hydrophilic material to selectively collect drug solution in device reservoirs before the 

drying the solvent to load drug into the device reservoir [56]. C. Inkjet printing can be 

utilized to deposit droplets of drug solution into device reservoirs, which later dries, leaving 

solidified drug [100]. D. Supercritical impregnation first utilizes inkjet printing to deposit a 

polymer solution into device reservoirs. After drying, the polymer is exposed to drug 

dissolved in supercritical carbon dioxide gas, allowing for drug incorporation of 

hydrophobic drugs without the use of organic solvent [101]. All scale bars are 100 µm. 

Adapted and reproduced with permission.
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Figure 6. 
Microdevices loaded with multiple drugs with separate release profiles. A. Fluorescent 

image demonstrating separate drug loading of each microdevice reservoir with device shape 

outlined in white. Scale bar is 100 µm. B. Custom release profiles for each drug controlled 

by hydrogel crosslinking density. Reproduced with permission from [34].
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