
CD40-Mediated Amplification of Local Immunity by
Epithelial Cells Is Impaired by HPV
Bart Tummers1, Renske Goedemans1, Veena Jha1, Craig Meyers2, Cornelis J.M. Melief3,
Sjoerd H. van der Burg1 and Judith M. Boer4,5,6

The interaction between the transmembrane glycoprotein surface receptor CD40 expressed by skin epithelial
cells (ECs) and its T-cell–expressed ligand CD154 was suggested to exacerbate inflammatory skin diseases.
However, the full spectrum of CD40-mediated effects by ECs underlying this observation is unknown. Therefore,
changes in gene expression after CD40 ligation of ECs were studied by microarrays. CD40-mediated activation for
2 hours stimulated the expression of a coordinated network of immune-involved genes strongly interconnected
by IL8 and TNF, whereas after 24 hours anti-proliferative and anti-apoptotic genes were upregulated.
CD40 ligation was associated with the production of chemokines and the attraction of lymphocytes and myeloid
cells from peripheral blood mononuclear cells (PBMCs). Thus, CD40-mediated activation of ECs resulted in a
highly coordinated response of genes required for the local development and sustainment of adaptive immune
responses. The importance of this process was confirmed by a study on the effects of human papilloma virus
(HPV) infection to the EC’s response to CD40 ligation. HPV infection clearly attenuated the magnitude of the
response to CD40 ligation and the EC’s capacity to attract PBMCs. The fact that HPV attenuates CD40 signaling in
ECs indicates the importance of the CD40-CD154 immune pathway in boosting cellular immunity within epithelia.
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INTRODUCTION
CD40 is a 48-kDa transmembrane glycoprotein surface recep-
tor also known as the tumor necrosis factor receptor super-
family member 5 (TNFRSF5). It is expressed at the cell surface
of antigen-presenting cells of the hematopoietic lineage,
including B cells, dendritic cells (DCs), Langerhans cells, and
macrophages, and is also expressed by non-hematopoietic
cells such as endothelial cells (Hollenbaugh et al., 1995),
fibroblasts (Fries et al., 1995; Yellin et al., 1995), smooth

muscle cells, and epithelial cells (ECs) (Galy and Spits, 1992).
The ligand for CD40 is the type II membrane protein CD40L
(CD154), which is primarily expressed on activated CD4þ

T-helper cells. The CD40–CD154 interaction has a role in both
cellular and humoral immune responses. Upon CD40 ligation,
DCs mature and become activated to produce high levels of
pro-inflammatory cytokines and chemokines, and upregulate
major histocompatibility complex class II and co-stimulatory
molecules such as CD80 and CD86. Together, these upregu-
lated molecules facilitate effective priming of CD8þ T cells
and stimulate activated CD8þ T cells to become cytotoxic
effector cells (Ma and Clark, 2009). In B cells, CD40 ligation
induces immunoglobulin isotype switching and differentiation
as well as inhibits apoptosis by upregulating anti-apoptotic
genes such as cIAPs, members of the BCL2 family, and MYC
(Kehry, 1996; Laman et al., 1996). Deregulation of CD40–
CD154 interaction can lead to various clinical conditions
(Peters et al., 2009), such as autoimmune diseases, multiple
sclerosis, allograft rejections, intraepithelial pre-malignancies,
and inflammatory skin diseases such as psoriasis and subacute
cutaneous lupus erythematosus (Caproni et al., 2007).

In the epidermis, CD40 is expressed at low levels by basal
and parabasal layer ECs. ECs upregulate CD40 expression
when stimulated with IFNg (Denfeld et al., 1996; Gaspari
et al., 1996; Peguet-Navarro et al., 1997), which is normally
produced by effector cells of the innate immune system and by
activated type 1 polarized (IFNg-producing) CD40L-expressing
CD4þ T-helper (Th1) cells that enter the skin (Swamy et al.,
2010; van den Bogaard et al., 2013). Indeed, CD40 is highly
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expressed by ECs in T-cell–infiltrated psoriatic lesions (Denfeld
et al., 1996). A limited number of in vitro studies on CD40
ligation of human primary IFNg-stimulated ECs showed that
these cells express ICAM-1 and secrete RANTES (CCL5), TNFa,
IL-6, IL-8, and MCP-1 (CCL2) (Denfeld et al., 1996; Gaspari
et al., 1996; Peguet-Navarro et al., 1997; Companjen et al.,
2002; Pasch et al., 2004). In addition, there is evidence that
CD40-activated ECs stop proliferating and start differentiating
(Peguet-Navarro et al., 1997; Grousson et al., 2000; Concha
et al., 2003; Villarroel Dorrego et al., 2006). However, the full
spectrum of effects mediated by CD40 ligation on the response
of ECs is still unknown.

The basal and parabasal layer ECs of squamous epithelia are
a well-known target for different viruses (Andrei et al., 2010),
including high-risk human papilloma virus (hrHPV). Chronic
infections with hrHPV can last for many years, probably as a
result of several sophisticated mechanisms employed by hrHPV
to evade the hosts’ innate immune response (Karim et al., 2011;
Reiser et al., 2011; Karim et al., 2013). Interestingly, an in vivo
model for EC-specific human-CD40 expression and activation
showed that CD40 ligation on ECs enhanced DC migration and
T-cell priming in a mouse model (Fuller et al., 2002),
suggesting that ECs boost the activity of cells from the
adaptive immune system. HPV-specific cellular immunity,
however, develops quite late and slowly during persistent
HPV infections (van der Burg and Melief, 2011), posing the
question whether HPV may also impair pathways typically
associated with activation of the adaptive immune response.

To obtain a better understanding of the outcome bet-
ween the interaction of ECs and CD40 ligand–expressing

CD4þ Th1 cells, we analyzed the genome-wide expre-
ssion profiles of CD40-stimulated undifferentiated primary
ECs. We observed that ECs react in a very coordinated
manner to CD40 ligation with the induction of mainly
immune-related genes and the attraction of immune cells.
The parallel analysis of hrHPV-infected primary ECs revealed
that hrHPV did not grossly change the gene expression
pattern but attenuated the magnitude of the CD40-stimulated
immune response, resulting in an impaired immune cell
attraction. These data strengthen the notion that the CD40–
CD154 pathway has an important role in protective epithelial
immune responses.

RESULTS
CD40 upregulation and functionality on ECs
To study how ECs respond to CD40 ligation on a genome-
wide scale, we mimicked the CD40–CD154 interaction
between ECs and IFNg-secreting CD4þ T cells. Basal CD40
levels on cultured ECs are too low for efficient in vitro ligation
with CD154; however, ECs upregulate the expression of CD40
when stimulated with IFNg (Denfeld et al., 1996; Gaspari
et al., 1996; Peguet-Navarro et al., 1997). Therefore, we
measured by flow cytometry the CD40 expression on
primary undifferentiated ECs stimulated with increasing
concentrations of IFNg for 72 hours. In line with previous
reports, CD40 expression was enhanced by IFNg at all
concentrations but became optimal at a concentration equal
to or 450 IU ml� 1 IFNg for the primary ECs obtained from
four different healthy donors (Figure 1a and b). Therefore, this
dose was used in our subsequent studies.
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Figure 1. Epithelial cells (ECs) produce cytokines and chemokines upon CD40 ligation. (a) CD40 upregulation on vaginal ECs upon stimulation with 0, 5, 10, 20,

50, 100, or 200 IU ml� 1 IFNg for 3 days. The height of the bars represents the CD40 mean fluorescence intensity as determined by flow cytometry. (b) Histogram

of CD40 expression on vaginal ECs stimulated 3 days with 0 and 50 IU ml�1 IFNg. ELISA for IL8 (c) and RANTES (d) in cleared supernatants from IFNg-pre-

stimulated foreskin, vaginal, and cervical EC cultures (n¼ 5–12) cocultured for 24 hours with control or CD40L-expressing L cells in the presence of IFNg.

*** Indicates Po0.0005. Reverse transcriptase-quantitative PCR of IL8 (e) and RANTES (f) expression by IFNg-pre-stimulated vaginal ECs cocultured with

L-control or L-CD40L cells in the presence of IFNg for 0, 1, 2, 3, 6, 12, or 24 hours. Gene expression was normalized using GAPDH as the calibrator gene.

Fold changes over 0 hours coculture were calculated and depicted. These data are representative for two to three independent experiments.
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ECs were reported to secrete the pro-inflammatory
chemokines IL8 (CXCL8) and RANTES (CCL5) upon CD40
ligation (Denfeld et al., 1996; Gaspari et al., 1996; Peguet-
Navarro et al., 1997; Pasch et al., 2004). Indeed, this
was also observed for CD40-expressing ECs stimulated with
CD154-expressing L cells (CD40L) as compared with ECs
cultured with control L cells (Figure 1c and d), showing
that our ECs expressed functionally active CD40. To deter-
mine the optimal time points for measuring the response
of CD40-ligated ECs on a genome-wide scale, ECs were
stimulated for up to 24 hours with CD40L and the peak gene
expression of IL8 and RANTES was determined. The highest
expression of IL8 was detected after 2 hours (Figure 1e),
whereas RANTES peaked after 24 hours of CD40 ligation
(Figure 1f). We concluded that these two time points were
most suited for studying early and late responses of ECs to
CD40 ligation.

ECs upregulate genes involved in immune signaling and
proliferation after CD40 ligation
The effects of CD40 ligation on four freshly isolated unin-
fected primary EC cultures from healthy donors of foreskin,
vaginal, or cervical origin were studied by genome-wide
expression profiling. These ECs are the natural target for
hrHPV, which is most commonly transmitted by sexual
contact. We verified that the cells were activated via CD40
by confirming the increased expression of IL8 (2 hours) and
RANTES (24 hours) (Supplementary Figure S1 online), and
subsequently subjected the samples to microarray analysis.
Plots with microarray log2 intensities confirmed that IL8 and
RANTES were upregulated after 2 and 24 hours, respectively
(Supplementary Figure S1 online) and confirmed the results
obtained by quantitative PCR.

By using a false discovery rate p0.05, the response to
CD40 ligation in the four primary EC cultures was analyzed
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for genes that were at least twofold up- or downregulated
(log2-fold change filter (LogFC) X1) after 2 or 24 hours of
stimulation. The response obtained in EC cultures with control
cells was used to correct the results obtained with CD40-
ligated ECs for both the time of coculture with L cells and total
cell density. In total, 60 probes showed differential expression,
representing 49 differentially expressed genes. Twenty-four
genes were upregulated after 2 hours and 29 genes after 24
hours, whereas five genes were upregulated at both time
points. One gene (MMP3) was significantly downregulated
after 24 hours (Figure 2a; Supplementary Table S1 online).

By Ingenuity Pathway Analysis (IPA), we explored whether
these 49 differentially expressed genes were enriched for
biological pathways and how they were connected. IPA
enrichment analysis showed that the 24 genes differentially
expressed after 2 hours of CD40 ligation were mainly involved
in ‘‘cellular movement’’, especially ‘‘leukocyte migration’’,
‘‘cell-to-cell signaling and interaction’’, and ‘‘cell death and
survival’’. The highest upregulated gene was IL8, followed by
CCL20, TNFAIP3, TNF, CXCL1, EFNA1 (TNFAIP4), IL36G, and
UBD, all having a LogFCX2. At 24 hours post stimulation the
highest upregulated genes were CCL5 (RANTES), UBD, MMP9,
C15orf48, SOD2, SerpinA3, and BIRC3 (cIAP2). The 30 genes
differentially expressed at this time point are involved in
‘‘cellular movement’’, ‘‘cell death and survival pathways’’,
‘‘posttranslational modification’’, and ‘‘protein degradation’’.

According to the IPA knowledge database, 37 of these 49
differentially expressed genes formed a network (117 connec-
tions), including 23 out of the 24 genes differentially expressed
after 2 hours and 19 out of the 30 genes differentially
expressed after 24 hours (Figure 2b and c). The most inter-
connected genes within the center of the network were TNF
and IL8, both upregulated only after 2 hours of CD40 ligation.
These data indicated that CD40 stimulation of ECs results in a
very coordinated reaction; first highly connected immune-
involved genes that are able to recruit leukocytes or regulate
cytokine expression are upregulated, and subsequently genes
involved in the regulation of cell death and survival are
upregulated.

CD40 ligation amplifies immune cell attraction to ECs

Many of the genes that were expressed by ECs after CD40
stimulation belonged to the ‘‘leukocyte migration’’ group,
indicating that CD40–CD154 interactions between T cells
and ECs may serve primarily to boost the attraction of immune
cells. Therefore, as a second functional assay to study the
impact of CD40 ligation, we assessed the capacity of ECs to
induce immune cell migration after stimulation with CD40L or
control cells. The culture supernatants were isolated and used
in a trans-well system with peripheral blood mononuclear
cells (PBMCs) seeded in the top wells. To confirm that CD40
ligation is associated with the production of chemokines
belonging to the ‘‘leukocyte migration’’ group, the production
of the representative cytokines IL8 and RANTES was mea-
sured. Their increased secretions are representative for the
production of several chemoattractants following CD40 sti-
mulation (Figure 3a). Indeed, higher numbers of PBMCs
migrated toward the supernatants from CD40-ligated ECs
when compared with supernatants of control ECs (Figure 3b
and c). Analysis of the fraction of lymphocytes and myeloid
cells in the migrated PBMCs suggested that the myeloid
fraction in the total pool of migrated PBMCs was slightly
more increased (Figure 3b). These data indicate that CD40
stimulation of ECs mainly results in the secretion of pro-
inflammatory cytokines that aid ECs in the attraction of
PBMCs.

Persistent infection with hrHPV attenuates the intensity of the
CD40-induced gene expression
High-risk HPVs are known to deregulate the response of ECs
to TNF (Termini et al., 2008). In view of the cellular mediators
shared between the TNF and the CD40 pathway, we studied
whether a persistent infection with hrHPV influences the gene
expression pattern of CD40-stimulated ECs by genome-wide
expression analysis. We confirmed the expression of CD40
after IFNg stimulation at the cell surface of hrHPV-positive ECs
as well as the expression of IL8 after 2 hours and RANTES after
24 hours of CD40 ligation (Supplementary Figure S1a–c
online) and the secretion of these cytokines in the supernatant
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of hrHPV-infected ECs (Figure 5a). The gene expression
profiles of four hrHPV-positive primary EC cultures, stably
harboring HPV16 or HPV18 episomes, were compared with
those of the four uninfected primary EC cultures. The expres-
sion of IL8 and RANTES of HPV-infected ECs after CD40
stimulation was verified by quantitative PCR (Supplementary
Figure S1e online). The log2 intensity plots of these genes as
measured by microarray (Supplementary Figure S1f online)
showed that the results obtained by both methods were
comparable.

We studied differential gene expression in HPV-positive ECs
after CD40 ligation. At 2 hours, HPV-positive ECs differentially
expressed 13 genes, 11 of which overlapped with the 24
genes differentially expressed in uninfected ECs (Figure 4a). At
24 hours, HPV-positive ECs differentially expressed 19 genes,
10 of which overlapped with the 30 genes differentially
expressed in uninfected ECs (Figure 4b). This was a first

indication that HPV does not grossly alter the reaction to
CD40. All differentially expressed genes, 65 in total, were
analyzed by IPA and the resulting network (159 connections)
was highly similar to the network of genes expressed by
CD40-stimulated noninfected ECs (Supplementary Figure S3
online; Supplementary Table S1 online). There were no
specific clusters of genes that were either up- or down-
regulated in HPV-positive ECs but not in uninfected ECs
(Supplementary Figure S2 online); rather, the expression
intensities of the differentially expressed genes were attenu-
ated in HPV-positive ECs. Focusing on the immune-related
genes (Figure 4c) revealed that the presence of hrHPV in ECs
impaired the expression of 12 immune-related genes after 2
hours of CD40 stimulation, whereas one gene (BDKRB1) was
enhanced. After 24 hours of stimulation, hrHPV impaired the
expression of eight genes and upregulated seven immune-
related genes in ECs. A closer look into the seven upregulated
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genes was carried out. Three genes, IL7R, LTB, and SAA1,
showed similar upregulation in the uninfected ECs but did not
reach our significance and fold change thresholds
(Supplementary Figure S4 online). The remaining four genes,
CXCL9, CXCL10, CXCL11, and RSAD2, were already strongly
upregulated in uninfected ECs compared with HPV-positive
ECs in response to the IFNg pre-stimulation, and were not
further increased by additional CD40 ligation (Supplementary
Figure S4 online). In HPV-positive ECs, CD40 ligation resulted
in the upregulation of these genes to levels similar to those in
uninfected ECs (Supplementary Figure S4 online).

hrHPV impairs CD40 ligation–mediated immune cell attraction
to ECs

The T-cell–attracting chemokines CXCL9, 10, and 11 are
known to be induced by IFNg in various cell types, including
ECs (Sauty et al., 1999; Kanda et al., 2007; Kanda and
Watanabe, 2007; Ohta et al., 2008; Kawaguchi et al., 2009).
Although CD40 stimulation salvaged the expression levels of
CXCL9, CXCL10, and CXCL11 in HPV-positive ECs to
similar levels found in noninfected ECs (Figure 4d–f), ELISA
assays showed that hrHPV-positive ECs still secreted
lower levels of CXCL9 and CXCL10 compared with non-
infected ECs (Figure 4g and not shown). On average, the
CD40-ligated HPV-positive ECs also produced lower
amounts of IL8 and RANTES (Figure 5a), albeit that in some
experiments the levels approached that of noninfected
ECs. To obtain a broader view of the impact of HPV in
CD40L-induced immune activation, their capacity to attract
PBMCs was also tested. Notwithstanding the production of
the earlier tested cytokines, no increased attraction of
PBMCs to the supernatants of CD40L-stimulated HPV-posi-
tive ECs was observed (Figure 5b and c). This indicates that
the production of other chemokines within the ‘‘leukocyte
migration’’ group, those that are key in the attraction
of PBMCs, must also have been impaired in HPV-positive
ECs. In independent experiments, the absolute numbers of
migrated PBMCs differed per primary EC culture and PBMC
donor used; however, the increase in PBMC attraction

following CD40 ligation was consistently and significantly
higher in uninfected ECs (Figure 3c), but not in hrHPVþ ECs
(Figure 5c). Together, these data show that hrHPV does not
grossly alter, but rather attenuates, the intracellular response
of ECs to CD40 ligation, resulting in a hampered ability of
the HPV-positive ECs to attract immune cells.

DISCUSSION
We studied the response of ECs to CD40 ligation, a major
immune trigger of B- and T-cell immunity and a major cue for
leukocyte migration toward the skin. Stimulation of ECs via
CD40 resulted in a highly coordinated regulation of predomi-
nantly immune-related genes involved in the attraction,
sustainment, and amplification of adaptive immune responses
as well as resulted in the attraction of immune cells. Interest-
ingly, hrHPV infection did not qualitatively alter the gene
expression profile of CD40-stimulated ECs; instead, the extent
of the response was attenuated. The fact that HPV attenuates
CD40 signaling in ECs indicates the importance of the CD40–
CD154 immune pathway in boosting immunity in epithelia.

Microarray expression studies showed that CD40 ligation of
non-hematopoietic cells, such as endothelial cells (Pluvinet
et al., 2008), pancreatic cells (Klein et al., 2008), renal
proximal tubule ECs (Li and Nord, 2005), smooth muscle
cells (Stojakovic et al., 2007), microglia (Ait-Ghezala et al.,
2005), and ECs (this report), generally results in the upregu-
lation of genes involved in immunity and inflammatory
responses, cell fate, and cell adhesion. The response of ECs
to CD40 stimulation is alike that of muscle cells and
pancreatic cells. Endothelial cells seem to have a broader
response as they also upregulate genes involved in the viral
immune surveillance system, e.g., the 20-50-oligoadenylate/
RNase L system and guanylate-binding proteins (GBP1–4),
potentially to keep the vasculature from harmful conse-
quences and prevent the spread of systemic viral infection in
the host (Pluvinet et al., 2008). ECs are well equipped with
viral sensors, which can launch an antiviral response upon
infection (Karim et al., 2011), and the CD40 pathway may
help to establish efficient adaptive B- and T-cell immunity to
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Figure 5. Human papilloma virus (HPV) infection hampers the enhanced attraction of immune cells by CD40-stimulated epithelial cells (ECs). (a) ELISA for IL8

and RANTES in cleared supernatants from IFNg-pre-stimulated HPV-positive foreskin, vaginal, and cervical EC cultures (n¼ 5–12) cocultured for 24 hours with

control or CD40L-expressing L cells in the presence of IFNg. ** Indicates Po0.005 using unpaired Welch-corrected t-test. (b) Example of a representative

experiment of the production of IL8 and RANTES in cleared supernatants of vaginal EC donors used for the migration assay by ELISA, and peripheral blood

mononuclear cell (PBMC) migration toward these cleared supernatants from vaginal EC donors prepared for the migration assay. (c) Migration index of total PBMC

toward indicated HPV-positive foreskin, vaginal, and cervical EC supernatants of four independent experiments. NS indicates P is not significant.
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expand the precision of protection after the initial innate
immune cell response.

Interestingly, we found that late CD40-mediated responses
in ECs involved the upregulation of the anti-apoptosis genes
cIAP2 and BCL3 as well as the negative regulator of prolifera-
tion RARRES1. These observations may explain earlier findings
that ECs do not go into apoptosis but rather stop proliferating
after CD40 ligation (Peguet-Navarro et al., 1997). We are
currently exploring this further. The response of ECs to CD40
stimulation is paralleled by B cells, which respond to CD40
ligation by preventing apoptosis through the upregulation of
several anti-apoptotic genes, including cIAPs, MYC, and BCL2
members (Kehry, 1996; Laman et al., 1996).

CD40 stimulation of DCs has been thoroughly studied as it
has a key role in the activation, maturation, and T-cell priming
capacity of DCs. Upon CD40 stimulation, DCs produce pro-
inflammatory cytokines and chemokines, upregulate human
leukocyte antigen class I and II as well as the co-stimulatory
molecules CD86 and CD80 (Ma and Clark, 2009). This allows
DCs to convey the appropriate signals to T cells required for
them to become effector cells. Candidate gene studies showed
that ECs can express CD40, human leukocyte antigen class I
and II, CD86 but not CD80 (Black et al., 2007; Ortiz-Sanchez
et al., 2007; Romero-Tlalolini et al., 2013), as well as the
co-stimulatory molecules CD83 and ICAM-1 and a number of
cytokines after being exposed to IFNg and CD40 activation
(Denfeld et al., 1996; Gaspari et al., 1996; Peguet-Navarro
et al., 1997; Companjen et al., 2002; Pasch et al., 2004).
This may allow CD40-stimulated ECs to process and
present antigen to effector/memory CD4þ and CD8þ T
cells (Black et al., 2007) as well as to amplify immune
responses. However, it is not likely that such activated
ECs function as professional antigen-processing cells as it
was shown that CD40L-activated ECs fail to prime allogeneic
T-cell reactions, underlining the difference of CD40 ligation
on professional and nonprofessional antigen-processing cells
(Grousson et al., 2000).

The pathogenesis of skin diseases such as psoriasis is based
on an influx of immune cells into psoriatic lesions where
cytokine levels are elevated. Our results sustain the notion that
tissue-infiltrating T cells may exacerbate the disease via the
production of IFNg and the interaction with CD40 on ECs. The
resulting cytokines may amplify the immune response via the
attraction of more immune cells, thereby forming a loop in
EC stimulation and cytokine production. The involvement of
ECs in the exacerbation of disease has been questioned, as
CD40 expression on ECs in vivo can be weak (Ohta and
Hamada, 2004). However, we and others have shown that
CD40 expression is rapidly upregulated (at least temporarily)
under the influence of physiological doses of IFNg, and thus
weak steady-state expression does not preclude robust action
under conditions of immune activation.

HPV attenuates the extent of the ECs’ response to CD40
ligation, suggesting that HPV interferes with CD40 ligation–
induced signal transduction and subsequent canonical and
noncanonical NFkB activation (Ma and Clark, 2009;
Gommerman and Summers deLuca, 2011; Hostager and
Bishop, 2013). Several research groups have reported that

hrHPV deregulates NFkB activation following the activation of
pattern recognition receptors (PRRs) (Karim et al., 2011; Reiser
et al., 2011) or the TNF receptor (Termini et al., 2008). We
and others have previously shown that hrHPV attenuates the
pattern recognition receptor-induced (Karim et al., 2013) and
TNFR-induced (Takami et al., 2007) NFkB pathway activation
by upregulating UCHL1, a cellular deubiquitinase/E3 ligase.
Therefore, the expression of UCHL1, or other non-identified
modulators, may explain how HPV mediates the attenuation
of CD40 ligation–induced gene expression.

Surprisingly, PBMCs were more attracted to supernatants of
non-CD40-ligated HPV-positive ECs than to uninfected ECs,
implying that supernatants of HPV-positive ECs contain higher
cytokine levels compared with supernatants of uninfected ECs.
However, not only in this study but also in previous studies
(Karim et al., 2011; Karim et al., 2013) we observed that
hrHPV generally downregulates the basal expression and
secretion of many pro-inflammatory cytokines. Recent
literature has shown that metabolism intermediates can act
as inflammatory signals (Tannahill et al., 2013), implying that
a simple difference in cell density can affect basal immune
cell attraction. Although both the HPV-positive and uninfected
ECs have been treated exactly the same throughout the experi-
ments, HPV-positive ECs proliferate faster than uninfected ECs,
and as such the supernatants may contain higher metabolite
levels to mediate CD40-independent PBMC attraction toward
HPV-positive cells. In HPV-positive ECs, despite the higher
basal numbers of attracted PBMCs, CD40 stimulation does not
result in an increased number of PBMCs attracted, whereas in
uninfected ECs this is the case.

In conclusion, epithelial cells show a coordinated response
to CD40 ligation, mainly inducing the expression of genes
involved in leukocyte migration, cell-to-cell signaling and
interaction, as well as cell death and survival. HPV attenuates
the extent of CD40 signaling, resulting in lower amounts of
chemoattractants produced and a failure to enhance immune
cell migration. These data suggest that progression of inflam-
matory skin diseases may be driven by highly programmed
immune activation scenarios in ECs, which have their evolu-
tionary basis in the ECs’ response to infections.

MATERIALS AND METHODS
Ethics statement
The use of discarded human foreskin, cervical, and vaginal keratino-

cyte tissues to develop cell lines for these studies was approved by the

Institutional Review Board at the Pennsylvania State University

College of Medicine and by the Institutional Review Board at

Pinnacle Health Hospitals. The Medical Ethical Committee of the

Leiden University Medical Center approved the human tissue sections

(healthy foreskin, healthy cervix, HPV16- or 18-positive cervical

neoplasias) used for staining. All sections and cell lines were derived

from discarded tissues and de-identified; therefore, no informed

consent was necessary.

Cell culture

Primary cultures of human ECs were established from foreskin,

vaginal, and cervical tissues as previously described (Karim et al.,

2011) and grown in keratinocyte serum-free medium (K-SFM;
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Medium 154 supplemented with HKGS kit, Invitrogen, Breda, The

Netherlands). The cells morphologically and biochemically

resembled ECs in both monolayer and organotypic raft cultures, as

indicated by keratin expression, hemidesmosome, and desmosome

structures, and in their ability to differentiate into full-thickness

epithelium (Meyers et al., 1997; McLaughlin-Drubin et al., 2004).

By using the microarray data, the cells were verified to express high

levels of keratin (KRT) 10, 14, 17, and 19, and low levels of KRT18

(Supplementary Figure S5 online), a signature specific for keratino-

cytes (Moll et al., 2008; Bononi et al., 2012). EC lines stably

maintaining the full episomal HPV genome following

electroporation (HPV-positive ECs) were grown in a monolayer

culture using E medium in the presence of mitomycin C–treated J2

3T3 feeder cells (Meyers et al., 1997; McLaughlin-Drubin et al., 2004)

for two passages and were then adapted to K-SFM for one passage

before experimentation. Because primary ECs have a limited life span

and do not survive long enough to undergo a mock electroporation

procedure similar to that used to obtain HPV-positive ECs, normal

undifferentiated primary ECs were used as control. J2 3T3 mouse

fibroblasts and L cells were cultured in Dulbecco’s modified Eagle’s

medium supplemented with 8% fetal bovine serum, 2 mM

l-glutamine, and 1% penicillin–streptomycin (complete Dulbecco’s

modified Eagle’s medium) (Gibco-BRL, Invitrogen).

CD40 ligation on ECs

Uninfected ECs or HPV-positive ECs were seeded at 1.5� 105 cells

per well in six-well plates in K-SFM and allowed to attach for 24

hours, after which the cells received fresh K-SFM containing

50 IU ml� 1 IFNg (Immunotools, Friesoythe, Germany) for 72 hours.

Control or CD40L-expressing L cells were harvested, irradiated

(4,800–5,200 rad), and resuspended in K-SFM containing 50 IU ml� 1

IFNg. L cells were cocultured with ECs in a 1:1 ratio for indicated

time points, after which the supernatant was collected, the L cells

were removed, and the RNA of the ECs was harvested. CD40L

expression and functionality of the L cells were validated, as was the

percentage of residual L cells after coculture (o1%; data not shown).

RNA expression analyses and ELISA

Total RNA was isolated using the NucleoSpin RNA II kit (Machery-

Nagel, Leiden, The Netherlands) according to the manufacturer’s

instructions. Total RNA (0.5–1.0mg) was reverse transcribed using the

SuperScript III First Strand synthesis system from Invitrogen. TaqMan

PCR was performed using TaqMan Universal PCR Master Mix and

pre-designed, pre-optimized primers and probe mix for RANTES

(CCL5), IL8, and GAPDH (Applied Biosystems, Foster City). Threshold

cycle numbers (Ct) were determined using the CFX PCR System

(Bio-Rad, Veenendaal, The Netherlands), and the relative quantities of

complementary DNA per sample were calculated using the DDCt

method using GAPDH as the calibrator gene. ELISA’s for CCL2,

RANTES, IL8, and CXCL10 were performed according to the manu-

facturer’s instructions (PeproTech, London, UK). Statistical differences

in cytokine production were evaluated using a Welch-corrected t-test,

correcting for possible unequal variances between the groups.

Gene expression profiling

Four primary EC cultures were used, HVK (vaginal), HCK (cervical),

HFK_1, and HFK_2 (both foreskin), as well as four EC cell lines stably

maintaining episomal HPV16 or 18, HVK16 (vaginal), HVK18

(vaginal), HCK18 (cervical), and HPV16 (foreskin). Cells were

harvested at five conditions: 0, 2 and, 24 hours of 50 IU ml� 1 IFNg
in combination with either L-control or L-CD40L cells. Stimulated 2-

and 24-hour samples were generated in duplo. Total RNA for these

72 samples was isolated as stated above. The microarray experiment

was performed by ServiceXS according to their protocols (ServiceXS,

Leiden, The Netherlands). Briefly, total RNA was analyzed by Lab-on-

a-Chip. All RNA showed a RNA integrity number score of 49.5.

Total RNA was reverse-transcribed, amplified, and biotin labeled.

cRNA was hybridized to Illumina (San Diego, CA) Human HT-12 v4

BeadChips in a randomized manner and scanned with the Illumina

iScan. Samples passed quality control as assessed by Illumina

GenomeStudio software. Values for missing bead types on the

HumanHT-12 BeadChip were estimated using the k-Nearest Neigh-

bor (k-NN) algorithm (Troyanskaya et al., 2001) in Illumina’s

BeadStudio Gene Expression Module (v3.3þ ).

Microarray data preprocessing

The expression array data were analyzed using R2.14.1 and Biocon-

ductor (R Development Core Team, 2008). The data were normalized

using the Bioconductor package lumi version 2.6.0 (Du et al., 2008;

Lin et al., 2008), resulting in log2-transformed normalized intensities.

Quality control plots were generated using limma version 3.10.2

(Smyth, 2005) and mpm version 1.0–22 (Wouters et al., 2003;

Wouters, 2011). Uninfected and HPV-positive ECs correlated in

separate blocks, and within these blocks the next level similarity

was at the cell line level, and within cell line at the exposure level,

indicating that the data behaved as expected (data not shown). All

microarray data are MIAME compliant and the raw data have been

deposited in the MIAME compliant database Gene Expression

Omnibus with accession number GSE54181, as detailed on the

MGED Society website http://www.mged.org/Workgroups/MIAME/

miame.html.

Analysis of differentially gene expression
Differentially expressed genes were identified using maanova version

1.24.0 (Wu; Wu et al., 2003). We modeled the cell line effect as a

random effect and indicated the technical replicates in the model. We

calculated test statistics for testing the null hypotheses of no difference in

expression between L-CD40L-stimulated and L-control-stimulated cells at

2 and 24 hours for uninfected ECs as well as HPV-positive ECs for each

gene. We applied the Fs statistic, which uses a shrinkage estimator for

gene-specific variance components based on the James–Stein estimator.

To correct for multiple testing, false discovery rates were calculated using

the q-value method (Dabney; Storey, 2002). The ranking and selection of

the genes are based on these adjusted P-values.

Functional genomics analyses

The networks were constructed using Ingenuity Pathway Analysis (IPA

version 17199142; Ingenuity systems, www.ingenuity.com). The list

of differentially expressed genes was used to generate the network. All

edges are supported by at least one reference from the literature, from

a textbook, or from canonical information stored in the Ingenuity

Pathway Knowledge Base.

Box plot representations

Boxplots are drawn as a box, containing the 1st quartile up to the 3rd

quartile of the data values. The median is represented as a line within
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the box. Whiskers represent the values of the outer two quartiles.

These whiskers are, however, maximized at 1.5 times the size of the

box (also known as inter-quartile distance). If one or more values

outside of the whiskers are present, then this is indicated with a single

mark ‘‘o’’ next to the implicated whisker. Plots were generated using

the webtool R2: microarray analysis and visualization platform (http://

r2.amc.nl).

Migration assays

IFNg pre-stimulated (HPV-positive) ECs were cocultured with L cells

for 3 hours, after which the L cells were removed. The ECs were

cultured for a subsequent 24 hours with fresh K-SFM. Cleared (HPV-

positive) EC supernatants were added to the lower compartment of a

trans-well plate (Corning). The upper compartment was filled with

PBMCs, which were allowed to migrate for 16 hours, after which the

cells in the lower compartment were counted by flow cytometry in

the presence of counting beads (Invitrogen) according to the manu-

facturer’s protocol. Myeloid cells and lymphocytes were differentiated

by their respective size in the forward scatter/side scatter plot (data

not shown). To normalize for biological differences between PBMC

donors and EC cultures, a migration index was calculated of the total

number of PBMCs migrated toward the indicated stimulation over the

medium control. The statistical significance of differences in migra-

tion toward supernatants of EC cultures stimulated with CD40L or

control L cells was assessed using a paired t-test.

Flow cytometry

Expression of CD40 on ECs was analyzed by flow cytometry

using FITC-coupled mouse anti-human CD40 antibodies (BD Bio-

sciences, Breda, The Netherlands). A total of 50,000 cells per live

gate were recorded using the BD FACS Calibur with Cellquest

software (BD Bioscience) and data were analyzed using Flowjo

(Treestar, Olten, Switzerland).
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